Skip to main content
. 2015 May 5;9:169. doi: 10.3389/fncel.2015.00169

Figure 2.

Figure 2

Integrated regulation of microcircuit functions by synaptic plasticity at excitatory and inhibitory synapses. This figure shows the effect of results of integrated regulation of microcircuit functions by synaptic plasticity at excitatory and inhibitory synapses in a computational model of the cerebellar granular layer. (A) The line thickness in the circuit schemes illustrates the relative synaptic weights for the four different conditions (same colors and circuit elements as in Figure 1) and the raster plots indicate the Mossy fiber (MF) input. Systematic changes in synaptic weights could generate four different effects: (1) increase transmission; (2) signal filtering; (3) maximize time precision; and (4) maximize bursting. The GrC and GoC firing in response to the MF input burst are shown in the raster plots for each condition. (B) The peri-stimulus time histograms (PSTH) show the relative number of GrCs generating spikes in response to the input. The PSTHs change in the four different conditions. The nature of changes is illustrated in the histograms, showing the relative number of GrCs responding to the input pattern with 0, 1, 2, or 3 spikes. Modified from Garrido et al. (2013b).