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Abstract
The stiffness of micron-sized sphere–plate contacts was studied by employing high frequency, tangential excitation of variable

amplitude (0–20 nm). The contacts were established between glass spheres and the surface of a quartz crystal microbalance (QCM),

where the resonator surface had been coated with either sputtered SiO2 or a spin-cast layer of poly(methyl methacrylate) (PMMA).

The results from experiments undertaken in the dry state and in water are compared. Building on the shifts in the resonance

frequency and resonance bandwidth, the instrument determines the real and the imaginary part of the contact stiffness, where the

imaginary part quantifies dissipative processes. The method is closely analogous to related procedures in AFM-based metrology.

The real part of the contact stiffness as a function of normal load can be fitted with the Johnson–Kendall–Roberts (JKR) model. The

contact stiffness was found to increase in the presence of liquid water. This finding is tentatively explained by the rocking motion of

the spheres, which couples to a squeeze flow of the water close to the contact. The loss tangent of the contact stiffness is on the

order of 0.1, where the energy losses are associated with interfacial processes. At high amplitudes partial slip was found to occur.

The apparent contact stiffness at large amplitude depends linearly on the amplitude, as predicted by the Cattaneo–Mindlin model.

This finding is remarkable insofar, as the Cattaneo–Mindlin model assumes Coulomb friction inside the sliding region. Coulomb

friction is typically viewed as a macroscopic concept, related to surface roughness. An alternative model (formulated by Savkoor),

which assumes a constant frictional stress in the sliding zone independent of the normal pressure, is inconsistent with the experi-

mental data. The apparent friction coefficients slightly increase with normal force, which can be explained by nanoroughness. In

other words, contact splitting (i.e., a transport of shear stress across many small contacts, rather than a few large ones) can be

exploited to reduce partial slip.
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Figure 1: Sketch of the mechanisms underlying partial slip. A Hertzian contact under a tangential load has infinite tangential stress at the edge of the
contact (A). This singularity is removed by allowing for slip in a circular region close to the edge. In CM theory, the tangential stress in the sliding
region is proportional to the normal stress, where the latter follows the Hertz model (B). In an alternative model formulated by Savkoor, the tangential
stress in the sliding region is constant (C). When probing such contacts with the contact resonance method, the two models lead to different depen-
dences of the shifts in frequency, Δf, and shifts in bandwidth, ΔΓ, on the amplitude, u0. Δf and ΔΓ depend linearly and quadratically on amplitude for
the CM model and the Savkoor model, respectively (D).

Introduction
Partial slip is a widespread and multifacetted phenomenon.

When a contact experiences partial slip, parts of a contact stick

to each other under a tangential stress, while others slide. Partial

slip is found in many tribological situations of practical rele-

vance. This includes fretting wear [1,2] granular media [3],

earthquakes [4], and the collision between particles [5]. Early

models of partial slip were formulated independently by

Cattaneo [6] and Mindlin [7], who were concerned with a

Hertzian contact. If the entire contact area sticks, a continuum

treatment predicts a stress singularity at the rim of the contact

(Figure 1A). However, infinite stress is unrealistic, and among

the mechanisms removing the singularity is partial slip. Partial

slip implies that those areas, where the tangential stress exceeds

a certain critical value, slide and thereby lower the local stress.

Cattaneo and Mindlin assumed that the frictional stress in the

sliding zone, σ, is proportional to the normal pressure, p, as in

Coulomb friction (Figure 1C). The ratio of σ and p is the fric-

tion coefficient, µ. From the Cattaneo–Mindlin (CM) model,

one can derive predictions for the width of the sliding region

(which is of annular shape) and for the force–displacement rela-

tion (Figure 2D below) [8,9].

Partial slip as such is an accepted and frequently observed

phenomenon. The details of the CM model, however, are being

debated for a variety of reasons. Etsion [11] gives a detailed

account. The first category of problems originates from the

numerous assumptions in the formulation of the model. For

example, the normal pressure is assumed to stay constant during

tangential loading. A second set of limitations is related to the

idealized conditions. The CM model ignores roughness, capil-

lary forces, plastic deformation, and the effects of contamina-

tion. In particular, plastic deformation can lead to junction

growth, which stiffens the contact rather than weakening it

[12,13].

There is a particular shortcoming that is on the one hand

widely observed, but also easily fixed on a heuristic level on

the other. The CM model ignores viscous dissipation. In

consequence, the energy dissipated in reciprocating sliding

scales as the cube of the oscillation amplitude in the low-

amplitude limit. Following from this scaling law, the damping

of a resonator, which experiences particle slip in one way

or another, should go to zero at small amplitudes. An explan-

ation of the contact resonance method, which probes these

relations, is given below. Deviating from this scaling pre-

diction, the contacts usually do damp a resonance even at

the smallest accessible amplitudes. This type of damping

must be related to linear viscoelasticity, meaning that the

corresponding stresses are proportional to displacement

(Figure 2C). While such viscous processes are not contained in
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Figure 2: (A) For a narrow contact between a sphere and a plate,
deformation occurs close to the contact, only. The contact may be
depicted as a spring, or more generally, as a Voigt element, where the
latter also accounts for viscous dissipation (B). In the case, where the
sphere is heavy enough to be clamped in space by inertia, it can be
depicted as a wall (right-hand side in Β). (C,D): Illustration of how Δf
and ΔΓ depend on the shape of the force–displacement loop.
(C): viscoelastic contact and (D): partial slip according to Cattaneo and
Mindlin. The frequency shift is roughly proportional to the ratio of force
and displacement at the turning point (full dots). ΔΓ is proportional to
the area inside the loop divided by u0

2 (hatched). (C) and (D) adapted
with permission from [10], copyright 2013 the American Physical
Society.

the CM model, they can be added into it in an ad hoc manner

(see Equation 12).

In the Results and Discussion section, we address a further

rather fundamental criticism of the CM model, which starts out

from the extent to which a macroscopic view of friction guides

its formulation. Macroscopic concepts enter the CM model at

two separate instances. Firstly, a sliding stress proportional to

the normal pressure is commonly associated with Coulomb fric-

tion. In Coulomb friction, the tangential force is related to the

actual area of contact, to be distinguished from the nominal area

of contact due to surface roughness. These arguments should

not apply on the nanoscale. Savkoor has responded to this criti-

cism with a modified model of partial slip, which assumes the

tangential stress in the sliding zone to be constant, independent

of normal pressure [14,15]. The value of the constant stress, τ0,

is the free parameter of the model. Savkoor solved the equa-

tions of continuum elasticity and derived the force–displace-

ment relations. These relations differ from the CM model in the

details, but deciding between the two models based on the

shape of the force–displacement loop is somewhat of a chal-

lenge. Interestingly, it is rather easy to distinguish between the

Savkoor model and the Cattaneo–Mindlin model with the con-

tact resonance method because the Cattaneo–Mindlin model

predicts a linear dependence of frequency and bandwidth on

amplitude, while the same relations are parabolic if derived

from the Savkoor model. This difference is easily observed in

experiment [16].

A second element of the CM model of genuinely macroscopic

nature is the notion of a stress singularity at the edge of the con-

tact. It is essential that this peak in stress at the edge is indeed

strong enough to locally initiate sliding. Gao and Yao have

mathematically analyzed a related problem, namely the detach-

ment of a fiber end from a flat surface under tensile load [17].

Such a contact displays a peak in tensile stress at the edge,

which governs the pull-off force if the contact diameter is larger

than about 100 nm. Pull-off then results in crack propagation.

Partial slip in the Cattaneo–Mindlin sense also results in crack

propagation, where the modes of crack opening are II and III, as

opposed to mode I, which operates during pull-off [18]. Gao

and Yao find that the crack propagation mechanism becomes

inefficient once the contact diameter falls to below 100 nm. For

small contacts, the stress concentration at the edge becomes less

and less significant. Translated to the tangential load problem,

the analysis by Gao and Yao shows that the transition from

stick to slip may occur by crack propagation (that is, by partial

slip in the Cattaneo–Mindlin sense), but that small contacts may

also start to slide as a whole. Even if partial slip at individual

contacts is found, it is expected to be more prominent for larger

contacts because the maximum level of stress depends on the

ratio of the contact diameter to the radius of the crack tip.

From an engineering perspective, partial slip (also called micro-

slip) has a slightly different meaning. It mostly denotes a

small tangential displacement at contacts between rough

surfaces. These small displacements per se have little influence

on the strength of the contact. They are still of immense

practical relevance because they cause fretting wear [19-21],

which is a special type of corrosion. Microslip at multicontact

interfaces is different from partial slip in the Cattaneo–Mindlin
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sense because it involves a debonding of the weakly coupled

load–bearing asperities and, also, because new contacts can

form at large relative displacements [22]. Depending on the dis-

tance between the individual load–bearing asperities, these are

elastically coupled to each other [23]. If the contacts are tightly

coupled, there is crack propagation with a peak in stress at the

crack tip. Otherwise, the analysis should be based on an ensem-

ble of contacts with a distribution in contact stiffness and con-

tact stress. Bureau et al. have provided such a model [24],

making extensive use of the Greenwood–Williamson formalism

[25].

The experiments below rely on the contact resonance method.

The contact resonance method is also applied on the macro-

scopic scale [26] and in AFM-based metrology [27]. In particu-

lar, the mathematics is closely related to what was reported in

[28] and [29]. Differing from many experiments performed with

AFM [30,31], the contacts here have a substructure and it is this

substructure, which gives rise to the phenomena under discus-

sion. Also, hysteresis is more important in QCM experiments

than in AFM experiments. A contact is established between a

resonator (which is a quartz crystal microbalance here and is the

cantilever in AFM experiments) and an external object. The

geometry is configured such that the contact does not over-

damp the resonance, but rather shifts the resonance frequency

and the resonance bandwidth by small amounts (termed Δf and

ΔΓ below). The contact resonance method is well suited to

detect nonlinear force–displacement relations because nonlinear

behavior leads to a dependence of Δf and ΔΓ on amplitude, u0,

while such a dependence is absent when the system obeys a

linear response. Partial slip results in a nonlinearity and whether

or not a contact undergoes partial slip can therefore be inferred

from the dependence of Δf and ΔΓ on the amplitude. More

quantitatively, the Cattaneo–Mindlin model predicts Δf and ΔΓ

to scale linearly with u0 in the low-amplitude limit and this

prediction can be tested easily.

The experiments were undertaken with a quartz crystal micro-

balance (QCM). The QCM is mostly known as a device for

thickness determination, but it can equally well be employed to

measure contact stiffness. In this regard, it is helpful to view the

QCM as a shear wave reflectometer. The amplitude and the

phase of the wave reflected at an interface is related to the stiff-

ness of this interface. Acoustic reflectometry was used to

measure contact stiffness as early as 1971 [32]. The work

reported below is concerned with discrete contacts (as opposed

to a multicontact interface), but the physical picture is closely

analogous to what is developed in [32]. The presence of

contacts at a resonator surface changes the reflectivity of the

resonator surface and thereby changes the resonator’s frequency

and its bandwidth [26].

There is a different (but equivalent) way of explaining the

measurement principle. The resonator can be represented by a

lumped element circuit [33], as shown in Figure 2B. The main

resonator is at the bottom. Its resonance frequency is given as

2π(κR/MR)1/2 where κR is the effective stiffness and MR is the

effective mass. The sample is the small sphere at the top.

Because the contact zone is small (Figure 2A), it can be repre-

sented by a spring and a dashpot arranged in parallel (a Voigt

element). If the resonator is coated with a rigid thin film (or

with nanoparticles rigidly attached to the surface), this load

increases the resonator’s effective mass, thereby lowering the

resonance frequency. In the lumped element representation, this

amounts to the sphere at the top in Figure 2B being small and

the spring being stiff. Applied in this mode, the QCM deter-

mines the value of the effective mass, hence the name “micro-

balance”. However, millimeter-sized spheres such as the ones

studied here are not samples of this kind. They are so heavy that

they do not follow the resonator’s MHz motion, but rather are

clamped in space by inertia [34]. In the lumped element repre-

sentation, they are depicted as a wall, attached to the surface

across a spring and a dashpot (a Voigt element). It is essential

that the contact diameter is much smaller than both the sphere

diameter and the wavelength of sound. The deformation is then

localized; the bulk of the sphere remains undeformed. The force

follows from integration of the stress distribution over the con-

tact area; the displacement is evaluated in the undeformed

regions far outside the contact zone. The ratio of force and dis-

placement is the contact stiffness. As we show in the modeling

section, the spring constant and the dashpot’s drag coefficient

can be easily determined from the shifts of frequency and band-

width. The ratio of the two represents the loss tangent.

The representation of the contact as a Voigt element only holds

as long as the contact behaves linearly. Partial slip, however,

results in a nonlinear behavior. Even in the precense of partial

slip, one can use the lumped element representation for the sake

of an intuitive understanding. Roughly speaking, the apparent

contact stiffness decreases at elevated amplitudes because the

sticking portion of the contact decreases. The “apparent contact

stiffness” here is the stiffness as derived from the frequency

shift (Equation 2 below). This intuitive picture can be backed

up with a rigorous mathematical model. We briefly recapitulate

the mathematics in the modeling section.

In previous work [10], we have reported details of the experi-

mental setup and elaborated on the mathematical details of what

the Cattaneo–Mindlin model and the Savkoor model predict for

the functions Δf(u0) and ΔΓ(u0). The authors in [10] focused on

how the amount of partial slip depends on contact size. For the

current work, the sphere size was chosen large enough to

always guarantee partial slip. An improved experimental setup
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allowed for a detailed quantitative analysis in both the linear

and the nonlinear regime. All experiments were repeated 9

times, which allows for a robust analysis of statistical errors.

Finally, we compare experiments undertaken in air to experi-

ments using the same sample, but immersed in water.

Experimental
Modeling
A QCM loaded with discreate contacts: linear and
nonlinear regime
We first consider the viscoelastic contact. According to the

small-load approximation, the complex frequency shift at small

amplitude is given as [35,36]

(1)

Δ f  and ΔΓ  are the shifts of the frequency and the

half-bandwidth at half-height, respectively. The parameter

Γ is related to the dissipation factor, D, by D = Γ/(2f).

fF is the fundamental frequency, which is often 5 MHz.

Zq = 8.8 × 106 kg∙m−2s−1 is the shear wave impedance of

AT-cut quartz.  is the area-averaged complex amplitude of

the tangential stress at the resonator surface, and u0 is the ampli-

tude of oscillation. The ratio of stress and velocity (where the

latter is equal to iωu0) is the complex load impedance, ZL. In

the second step in Equation 1, the stress was converted to force

by area. The force, in turn, was expressed as tangential stiffness

times amplitude (that is, as κu0). n is the overtone order, nP is

the number of spheres, and Aeff is the acoustically effective area

(similar to the electrode area, Aeff can be derived from the

experimental data [10]). κ is the tangential stiffness of an indi-

vidual contact (to be distunguished from the stiffness of a multi-

contact interface [22]). The term iωξ acounts for viscous dissi-

pation, where ξ is the drag coefficient. ξ quantifies linear

processes in the sense that the stress is proportional to the rate

of displacement. No statement is made on the mechanism(s)

leading to dissipation. The drag coefficient may be linked to

the viscoelastic nature of the materials involved, but also to

interfacial processes (as long as these obey linear mechanics).

Equation 1 can be inverted as

(2)

As shown in Equation 2, the complex frequency shift is easily

converted to a complex contact stiffness.

Up to now, linear force–displacement relations were assumed.

If linearity does not hold, the stress, σ(t), is no longer time

harmonic. In consequence, there is no complex amplitude, σ0,

which could be inserted into Equation 1. Importantly, a non-

trivial time dependence can be accounted for in an expanded

model. As long as stress is periodic with the frequency of the

resonator (but of any other shape otherwise), the QCM

measures the first Fourier component of σ(t). It then follows

that [36,37]

(3)

In the 2nd line of Equation 3, stress was replaced by the force at

the contacts, F(t), multiplied by the number density of the

contacts, nP/Aeff. There is a close analogy between Equation 3

and the principle of operation of lock-in amplifiers. Δf and ΔΓ

are proportional to the in-phase and the out-of-phase compo-

nents of the force.

Underlying both Equation 1 and Equation 3 is the small load

approximation, which states that the load impedance (often

called ZL, the ratio of σ0 and iωu0) is much smaller than the

acoustic shear wave impedance of the crystal, Zq. The small

load approximation holds as long as Δf/fF << 1, which is almost

always true. If the load is small in this sense, the magnitude of

the force is so small that the motion of the resonator surface

remains approximately sinusoidal. Put differently, the QCM

surface is under displacement control. For that reason, the time

average in Equation 3 can be converted to an average over dis-

placement, u. Note: In general, the force, F, will not only

depend on displacement, u, but also on the maximum displace-

ment, u0, and on the frequency, ω. Because the trajectories

differ between the two directions of motion, averaging must

occur separately for the two directions. The two forces are

called F−(u,u0,ω) and F+(u,u0,ω), in the following, where the

indices “−” and “+” denote movement toward negative and

positive u. The chain of algebraic conversions must be

F±(u,u0,ω) → F(t) → {Δf(u0), ΔΓ(u0)}. The first entry must be

F±(u,u0,ω), not F(u). By letting the forces depend on u, u0, and

ω, we do not mean to exclude a dependence on velocity. Such a

dependence on velocity would implicitly enter F+(u,u0,ω) and

F−(u,u0,ω) since the velocity itself is a function of u and ω,

given as iωu.

The transformation from F±(u,u0,ω) to Δf(u0) and ΔΓ(u0) take

the form [10] of Equation 4 and Equation 5. The frequency
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(4)

(5)

shift, Δf, is proportional to a weighted sum of F+ and F−. The

integrand in Equation 4 is symmetric in u/u0. The integral may

therefore be evaluated at positive values of u/u0, only. The term

u/u0(1−(u/u0)2)−1/2 then is positive and takes the role of a

statistical weight. Δf is proportional to a weighted average of

|F− + F+|, where the weight function has a sharp peak at u ≈ u0.

As the relation in the second line of Equation 4 shows, Δf

roughly scales as the force at the turning point divided by

u0. The shift in bandwidth is proportional to the difference of

F+ and F− (Equation 5). In essence, it is the area under the

force–displacement loop and thereforce scales as u0
2. The band-

width is proportional to this area divided by u0
2.

Figure 2C, D illustrates the content of Equation 4 and

Equation 5 in graphical form. For viscoelastic contacts, the

force–displacement loop is an ellipse. The ratio of force and

displacement at the peak (full dots) is independent of amplitude,

u0, and Δf therefore also is independent of u0. The area inside

the friction loop scales as u0
2, and ΔΓ therefore also is inde-

pendent of u0. This may change, if the force–displacement loop

takes some other shape. Figure 2D shows the force–displace-

ment loop according to Cattaneo and Mindlin. For contacts

following the CM model, Δf and ΔΓ decrease and increase with

amplitude, respectively.

Partial slip and its consequences for a QCM experi-
ment: predictions derived from the Cattaneo–Mindlin
model and the Savkoor model
In Cattaneo–Mindlin theory, the tangential force, Fx, and the

tangential displacement, u, are related as [8]

(6)

FN is the normal force and µ is the friction coefficient in the

Coulomb sense. No distinction is made between the static and

the dynamic friction coefficient. κ = 2G*a is the contact stiff-

ness in the low-amplitude limit. a is the contact radius and G* is

an effective modulus. The frequency shift, Δf, is related to the

contact stiffness, κ, by Equation 2. G* is the effective modulus,

given as

(7)

G and v are the shear modulus and the Poisson ratio, respective-

ly. The indices 1 and 2 label the contacting media. Given that

the contact diameter can be estimated to be larger than 1 µm,

we ignore the thin films present (SiO2, PMMA, gold) and use

the same values on both sides.

For the sake of quantitative modeling (see Figure 5 below) we

keep the Poisson number fixed at v1 = v2 = 0.17 and express the

shear modulus as

(8)

where E is the Young’s modulus and E is a fit parameter. The

contact radius, a, is assumed to obey the JKR equation, which is

(9)

where R is the (known) sphere radius, γ is the energy of adhe-

sion and E* is another effective modulus, given as

(10)

As before, v1 ≈ v2 ≈ 0.17 is assumed. Also, E1 was assumed to

be the same as E2 (E1 ≈ E2 = E) with E a fit parameter. The

energy of adhesion, γ, was also a fit parameter. All other para-

meters were fixed.
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Inserting the force–displacement relation from Equation 6 into

Equation 4 and Equation 5 and, further, expanding the result to

first order in u0, one finds [10]

(11)

At this point, we slightly extend the CM model by including

viscous dissipation. On a heuristic basis, we add a viscous term

into ΔΓ which accounts for dissipative processes with a linear

dependence on stress:

(12)

As Equation 12 shows, the Cattaneo–Mindlin theory predicts Δf

and ΔΓ to depend linearly on u0.

Savkoor [14,38] has formulated a modified model of partial

slip, which assumes the traction in the sliding zone to be

constant with a value of τ0, rather than being proportional to the

normal stress as in CM theory. The force–displacement relation

resulting from the Savkoor model is

(13)

where a is the radius of contact and c is the radius of the

sticking area, given as

(14)

Inserting Equation 13 into Equation 4 and Equation 5 and,

further, expanding the result to second order in u0, one finds

[10]:

(15)

The dependence of Δf and ΔΓ on amplitude is now parabolic,

whereas it is linear in the CM model.

Experimental details
The geometry of the experiment was based on a tripod configur-

ation as shown in Figure 3. Three glass spheres with a diameter

of either 2.2 mm or 1.2 mm were glued to a backing plate in the

form of an equilateral triangle. The tripod was placed onto the

center of the plate, where the distance of the individual contacts

to the center was less than 3 mm. The three points of contact

experience the same normal force and the same amplitude of

motion. The weight of the tripod alone was 0.5 g. Additional

weights between 0.5 and 2.5 g were added onto the backing

plate, thereby increasing the normal force. There was a frame

with a cylindrical hole around the backing plate, which

prevented its lateral movement. With this frame in place, the

sample did not shift laterally when the weight was added. The

frame was essential for obtaining reproducible results.

Figure 3: Left: Sketch of the experimental geometry. The contacts are
formed between a tripod (center top) and the resonator plate. The
three spheres (in grey) carry an equal normal load and experience
equal amplitudes of oscillation. The normal force is changed by adding
weight on the top. A fixed frame around the tripod ensures that the
tripod does not shift when weight is added or removed at the top.
Right: Image of a Tripod.

Shifts of frequency and bandwidth were acquired with imped-

ance analysis. One frequency sweep took about 1 s. Each ampli-

tude ramp consisted of 10–15 steps. All ramps were repeated

four times (two increasing and two decreasing ramps). The first

ramp often gave results different from the following three

ramps. This type of running-in behavior was not further investi-

gated. Most of the time, the data from ramps 2– 4 agreed with

each other within the experimental error. In particular, there

were no systematic differences between increasing and
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decreasing ramps. Occasionally, a slow drift was superimposed

onto the ramps. Quartz resonators respond to changes in

temperature and static stress with slow drifts. Drifts can be

reduced by mounting the crystals in the holder one day before

the experiment and by controlling temperature, but they cannot

be avoided altogether. Experiments were undertaken in ambient

air with no additional control of temperature or humidity. For

further details on the experiment (on the processing of raw data

and on the calculation of the amplitudes, in particular) see [10].

Experiments were carried out with either SiO2-coated

resonators (purchased from Inficon) or PMMA-coated

resonators. The thickness of the spin-cast PMMA layer was

250 nm. Previous experiments did not find evidence of an influ-

ence of the thickness of a glassy polymer on the contact stiff-

ness.

All experiments were carried out in both air and water. Deion-

ized water was used throughout, but the water was not

degassed. A sample, which had been previously studied in air,

was flooded with water. The water level was about 3 mm;

however, the exact height was not an important parameter

because the QCM only senses the conditions inside the first

micron of a liquid sample.

Results and Discussion
Figure 4 shows a number of amplitude sweeps. The four graphs

at the top and the four graphs at the bottom display data

acquired in air and in water, respectively. Because water damps

the crystal’s resonance, the maximum amplitude achieved was

6 nm (compared to an amplitude of ≈20 nm in air). Δf (u0) is

always a decreasing function of amplitude, u0 (panels on the

left-hand side), while ΔΓ increases with u0 (on the right).

Figure 4A,B,E,F displays what was observed most of the time

(in >80% of the experiments): Most of the time, Δf and ΔΓ were

linear functions of u0. Occasionally, the data show a plateau at

small amplitudes. These plateaus have been discussed in detail

in [39]. They can be associated with a critical minimum ampli-

tude for partial slip. A plateau occurred often for the small

spheres (diameters <500 µm) examined in [10]. Further discus-

sion is outside the scope of this work. Large spheres were

chosen here in order to achieve a linear dependence of Δf and

ΔΓ on u0. If linear behavior is observed, the complex spring

constant in the low-amplitude limit is readily extracted from the

data by extrapolation (see Figure 5 and Figure 7 below). Like-

wise, the friction coefficient as derived from the slopes of

Δf(u0) and ΔΓ(u0) is a robust parameter (see Figure 8 below).

Very rarely, we see an increase of Δf with amplitude (data not

shown). This behavior might tentatively be associated with

junction growth [12]. Most of the time Δf and ΔΓ decrease and

increase with amplitude, characteristic for partial slip.

Figure 4: Data traces of frequency shift, Δf, and bandwidth shift, ΔΓ,
versus amplitude of oscillation. All data sets contain four amplitude
sweeps. Data shown in the four panels at the top and the four panels
at the bottom were acquired in air and in water, respectively. In liquids,
the maximum achievable amplitude is lower than in air because of
damping. Δf and ΔΓ decrease and increase with amplitude, respective-
ly, as is characteristic for partial slip. Panels A, B, E, and F show
typical data traces. In these cases, the amplitude dependence is linear.
Occasionally, one also finds plateaus at small amplitudes (dashed
ellipses in panels C, D, G, and H). In these cases, the edge of the con-
tact sticks at small amplitudes, where the exact conditions, under
which such a stick occurs, are unclear. Even in these cases, the
frequency–amplitude traces are clearly not parabolic (which should
result if the Savkoor model was applicable).

Figure 5 shows the low-amplitude limits of Δf for the three

different configurations studied. Full and open symbols corres-

pond to data taken in air and in water, respectively. The fact that

Δf0 increases with normal load is easy to understand. With

increasing load, the contact radius increases and the contact

stiffness increases correspondingly. The dotted lines show an

attempt to bring this understanding in line with the known

models of contact mechanics. We fitted the data with the JKR

model. (The Tabor parameter of the geometry under study is 10,

which says that the JKR model should be applied, rather than

the DMT model.)

Table 1 shows the derived values of the interfacial energy, γ,

and the effective Young’s modulus, E. While the values are rea-

sonable, they scatter quite significantly between the different

experiments and the different configurations. As far as the inter-

facial energy, γ, is concerned, part of the problem is that the
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Table 1: Fit Parameters for the data in Figure 5.

air, γ [mN/m] air, E [GPa] water, γ [mN/m] water, E [GPa]

SiO2, 2.2 mm 190 ± 20 100 ± 3 50 ± 40 63 ± 6
SiO2, 1.2 mm 30 ± 10 61 ± 2 20 ± 30 47 ± 5
PMMA, 2.2 mm 10 ± 10 70 ± 2 0 45 ± 3

Figure 5: Frequency shifts in the low-amplitude limit obtained on silica
surfaces (A and B) and on a PMMA surface (C). All data shown are
averages from 9 experiments. Error bars are standard deviations.
Dotted lines show JKR fits with parameters as given in Table 1.

loads are rather high. A more reliable determination of γ would

require more data points close to the point of zero added weight.

Clearly, the numbers must be interpreted with some caution.

Possible sources of artifacts are roughness, contamination, and

of course the idealized assumptions of the model. The high

excitation frequency may also play a role. A systematic com-

parison with the tangential contact stiffness determined at low

frequencies would certainly be worthwhile. Unfortunately, such

experiments are difficult.

The contact stiffness increased when the sample was immersed

in water. Note: The contacts were not broken between the two

experiments. Water was admitted to the sample compartment

without removing the spheres from the resonator. An increased

stiffness in water contradicts intuition insofar, as one would

expect the liquid to lower the effective van der Waals attraction.

With lowered adhesive forces, the contact area should decrease

and the contact stiffness should decrease, in consequence.

However, this was not observed. The contact stiffness increased

by about 10% in all cases.

At this point, the high frequency of the measurement presum-

ably comes into play in the sense that the small compressibility

of the liquid contributes to the contact stiffness. Figure 6

provides a sketch. When the resonator surface oscillates tangen-

tially, the material close to the contact responds with a tangen-

tial movement, mostly, but one can also expect a small amount

of rotation. The rotational component changes the width of the

liquid wedge close to the contact, thereby inducing a squeeze

flow of liquid. However, the mass involved in this movement is

so large that inertia strongly resists the flow. (The sphere itself

is clamped in space for the same reason). Because of inertial

clamping, the sphere’s rocking motion compresses the liquid

and the liquid responds elastically to compression. The liquid’s

high bulk modulus in this way stiffens the contact. Again, this

effect is genuinely linked to the experiment occurring at MHz

frequency. It will be important when applying this method-

ology to biomaterials (which are usually studied in the liquid

phase). The above interpretation clearly is tentative. Roughness

may also play role. When water fills the micro-voids between

the two surfaces, this may also increase the elastic stiffness of

the contact.

Figure 6: A sketch of an explanation for the increase in MHz contact
stiffness when an experiment is undertaken in liquid rather than in air.
A rocking motion of the sphere couples to a squeeze flow of liquid in
the wedge next to the edge of the contact. Since inertia immobilizes
the liquid, there is a significant amount of volume compression. The
liquid responds elastically to compression.

Figure 7 addresses the linear components of the dissipative

processes, quantified by the low-amplitude limit of ΔΓ, termed
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ΔΓ0. In Figure 7B, Γ0 was converted to a loss tangent by taking

the ratio of ΔΓ0 and Δf0. Interestingly, ΔΓ does not increase

with normal load in the same way as Δf. It stays approximately

constant. For that reason the loss tangent is a decreasing func-

tion of normal load. This result implies that the finite values of

ΔΓ0 should not be viewed as a consequence of viscous dissipa-

tion inside the materials involved. If ΔΓ/Δf were a materials

parameter, it should not depend on the normal load. Also, a loss

tangent of 0.1 would be unreasonably high for fused silica.

Rather, these dissipative processes should be attributed to the

interface. Linear contributions to the dissipation in contact reso-

nance experiments are well known [8,40]. While the exact

nature of these processes would be interesting, the present

experiments do not allow for a statement other than that they

must be connected to interfacial friction in one way or another.

Figure 7: Shift in bandwidth, ΔΓ (top) and loss tangent, ΔΓ/Δf, (bottom)
in the low-amplitude limit. Full and open symbols denote measure-
ments in air and water, respectively. The fact that ΔΓ is a constant
independent of the normal load, suggests interfacial processes as the
source of dissipation. If the dissipation were to occur in the material,
one would expect the loss tangent to be constant, rather than ΔΓ itself,
because a materials parameter should not depend on the normal load.

So far, the discussion has been concerned with linear contact

mechanics. The experiment is easy and there are few other tech-

niques that give access to the same data (mostly the AFM and

ultrasonic reflectometry). Importantly, the QCM also accesses

the (weakly) nonlinear regime and it does so rather easily, as

well. As shown in Figure 4, most data sets show a linear

dependence of Δf and ΔΓ on u0. In the following, we use these

data to derive the apparent friction coefficient from the slopes,

following Equation 12.

Figure 8 displays these apparent friction coefficients. Firstly,

the two ways to derive the friction coefficient (from Δf(u0) and

ΔΓ(u0)) give reasonable agreement with each other. Secondly,

the friction coefficients that result are in the range known from

macroscopic mechanics (that is, on the order of unity). Thirdly,

and importantly, the friction coefficients all decrease with

normal load. The larger the contact area, the more pronounced

is the partial slip. This finding is in line with the treatment of

the pulling problem by Gao and Yao referred to in the Introduc-

tion. Partial slip occurs if the stress singularity at the edge is

strong. The peak stress depends on the ratio of the contact

radius to the radius of the crack tip and therefore increases as

the normal force becomes larger. A different (but related) ex-

planation builds on nanoscale roughness. Nanoroughness

rounds off the stress profile at the edge, which avoids the stress

singularity similarly to a finite radius of a crack tip. The load

dependence of µ points to yet another benefit of “contact split-

ting” [40,41]. A large number of small contacts will experience

less partial slip (less fretting wear) than a small number of

correspondingly larger contacts.

Figure 8: Friction coefficients, µ, obtained by analyzing the slopes in
plots of Δf versus u0 (left) and ΔΓ versus u0 (right), following
Equation 12. The two ways to derive µ should lead to the same values,
ideally. Further, µ should be of the order of unity. The decrease of µ
with increasing normal force can be explained with an increased con-
tact area and a concomitant increase in the stress concentration at the
edge of the contact.

A side remark: The agreement between the two friction coeffi-

cients (determined from Δf(u0) and ΔΓ(u0)) is better in water

than in air. We suspect that capillary forces affect ΔΓ(u0)

stronger than Δf(u0). A more detailed discussion of the matter

would require an extension of the Cattaneo–Mindlin model by

specific contributions from different forces. Such an extension

is outside the scope of this work, but it is possible. It is even
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worthwhile, if the role contact mechanics in acoustic sensing

shall be expanded.

Conclusion
Using a QCM-based contact resonance method, the stiffness of

sphere–plate contacts was studied at MHz frequencies. The

linearcontact stiffness increases with normal load. A fit using

JKR theory is possible. The fit parameters are in the expected

range, but there is a significant amount of scatter between

experiments. A quantitative interpretation must be undertaken

with some care. The contact stiffness increases in the presence

of a liquid. Possibly, this increase is rooted in a squeeze flow

close to the edge of the contact. The loss tangent is of the order

of 0.1 and decreases with normal force, FN. The FN-depend-

ence suggests that the dissipation is connected to interfacial

processes. At elevated amplitudes, it was also observed that

there is partial slip. The amplitude dependence of frequency and

bandwidth can be fitted with the Cattaneo–Mindlin model,

which suggests that the frictional forces are proportional to the

normal pressure as in macroscopic friction. The friction coeffi-

cients were found to be on the order of unity. The friction coef-

ficients as derived from Δf(u0) and ΔΓ(u0) agree with each other

reasonably well. The agreement is better in water than in air.

Finally, the friction coefficients were found to decrease slightly

with increasing normal force (that is, with increasing contact

area). This can explained by the finite radius of the crack tip at

the edge of the contact or by nanoscale roughness. These effects

are most pronounced for the smallest contacts. Contact splitting

can lower the amount of partial slip and fretting wear.
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