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Abstract

Genes vary in their likelihood to undergo adaptive evolution. The genomic factors that determine adaptability, however, remain

poorlyunderstood.Genes function in the contextofmolecular networks,with some occupyingmore importantpositions thanothers

and thus being likely to be under stronger selective pressures. However, how positive selection distributes across the different parts of

molecular networks is still not fully understood. Here, we inferred positive selection using comparative genomics and population

genetics approaches through the comparison of 10 mammalian and 270 human genomes, respectively. In agreement with previous

results, we found that genes with lower network centralities are more likely to evolve under positive selection (as inferred from

divergence data). Surprisingly, polymorphism data yield results in the opposite direction than divergence data: Genes with higher

centralities are more likely to have been targeted by recent positive selection during recent human evolution. Our results indicate that

the relationship between centrality and the impact of adaptive evolution highly depends on the mode of positive selection and/or the

evolutionary time-scale.
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Introduction

In recent years, the availability of large-scale network and ge-

nomic data sets has allowed researchers to study the relation-

ship between the position of proteins within molecular

networks and their patterns of molecular evolution (Cork

and Purugganan 2004; Wagner 2012; Alvarez-Ponce 2014;

Montanucci et al. 2014). These studies have shown that the

strength of purifying selection acting on individual genes is

affected by the position that their encoded products occupy

in molecular networks. Indeed, genes acting at the centre of

protein–protein interaction networks (PINs) and metabolic

networks (i.e., genes coding for proteins with many interac-

tions or connections) evolve under higher levels of purifying

selection than those acting at the network periphery (Fraser

et al. 2002; Hahn and Kern 2005; Vitkup et al. 2006; Alvarez-

Ponce 2012; Alvarez-Ponce and Fares 2012) (but see Jordan

et al. 2003; Hahn et al. 2004). Furthermore, interacting pro-

teins evolve at similar rates, probably as a result of molecular

coevolution (Fraser et al. 2002; Agrafioti et al. 2005; Codoñer

and Fares 2008; Cui et al. 2009; Lovell and Robertson 2010;

Pérez-Bercoff et al. 2013).

Less well understood, however, is how adaptive events dis-

tribute across molecular pathways and networks. Some evi-

dence supports that adaptive events tend to occur in less

centrally located regions of gene networks. In an early study

using two genomes, the human and chimpanzee genomes,
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Kim et al. (2007) found that positive selection often targeted

genes acting at the periphery of the PIN. Powerful detection of

positive selection requires, nevertheless, comparing many ge-

nomes (Anisimova et al. 2002; Kosiol et al. 2008), making it

appropriate to reevaluate this trend in light of the currently

available mammalian genomes.

In addition, recent population genetics studies of certain

metabolic and signaling pathways appear to contradict the

notion that positive selection targets preferentially the periph-

ery of molecular networks. Indeed, positive selection often

targets genes acting at the most “influential” positions of

these pathways, including the most central genes in the

human insulin/mammalian Target of Rapamycin pathway

(Luisi et al. 2012), genes acting at bifurcation points of the

human N-glycosylation pathway (Dall’Olio et al. 2012) and the

Drosophila pathways involved in glucose metabolism (Flowers

et al. 2007), and the gene encoding the first enzyme of the

Arabidopsis glucosinolate pathway (Olson-Manning et al.

2013). Simulation studies also indicate that adaptation pref-

erentially targets genes acting at the upstream and branch-

point parts of pathways, at least when the system is far from

the fitness optimum (Wright and Rausher 2010; Rausher

2012). Proteins occupying these key network positions are

expected to exert strong influence over the pathway function,

and thus on the associated phenotypes and organism’s fitness

(Wright and Rausher 2010; Rausher 2012; Olson-Manning

et al. 2013). Therefore, positive selection on genes encoding

such proteins may lead to rapid adaptation.

Here, we make use of the unprecedented wealth of geno-

mic (1000 Genomes Project Consortium 2012; Kersey et al.

2012) and interactomic data (Stark et al. 2011) to ascertain

what parts of the human PIN were affected by positive selec-

tion, using both comparative genomics and population genet-

ics approaches. We found that positive selection, as inferred

from divergence data, preferentially targets genes acting at

more peripheral positions in the network, in agreement with

previous observations (Kim et al. 2007). Conversely, genes

with signatures of recent positive selection, identified consid-

ering polymorphism data, occupy more central parts of the

network. We discuss on the apparently contradictory results

from divergence and polymorphism data and propose an

evolutionary scenario reconciling both patterns.

Materials and Methods

Reconstructing the Human PIN

The human PIN was reconstructed from the interactions avail-

able from the BioGRID database version 3.1.81 (Stark et al.

2011). Only nonredundant physical interactions were consid-

ered to calculate centrality measures. We removed from our

analysis proteins without an Ensembl ID as well as Ubiquitin C

(encoded by the gene with Ensembl ID ENSG00000150991),

which has an outlier degree centrality. For each protein,

degree was computed as the total number of interactions in

which it is involved, and betweenness and closeness central-

ities were computed using the NetworkX Python library

(https://networkx.github.io/).

Inferring Natural Selection from Ten Mammalian
Genomes

In order to infer events of positive selection that have occurred

during the evolution of mammals we used sequence data for

a set of mammals, enriched in primates. The analysis was re-

stricted to ten high-coverage genomes: Human, chimpanzee,

gorilla, orangutan, macaque, mouse, rat, cow, dog, and opos-

sum. The platypus genome was not included in the analysis, as

the currently available assembly is highly fragmented, making

gene annotation difficult. Also excluded were nonmammalian

genomes, in order to avoid the problem of saturation of syn-

onymous sites (Smith JM and Smith NH 1996), and to maxi-

mize the number of genes with 1:1 orthologs in all studied

genomes.

All protein and coding sequences (CDSs) for the selected

genomes were obtained from Ensembl release 62 (Kersey

et al. 2012). For each of the 9,041 human protein-coding

genes represented in the PIN, we searched the nine nonhu-

man genomes for 1:1 orthologs using the best reciprocal

BLAST (Basic Local Alignment Search Tool) approach. First,

we selected the longest protein (or, in the case of multiple

proteins sharing the maximal length, that classified as the ca-

nonical isoform), and used it as query in a BLASTP search

against each of the nonhuman proteomes. Second, for the

best hit in each proteome, we performed a BLASTP search

against the human proteome. If the hit obtained in the

second search was the original human protein, then it was

considered to be a 1:1 ortholog. Only human genes with 1:1

orthologs in all nine nonhuman genomes were used in sub-

sequent analyses (in total, 5,916 genes met this criterion).

Each group of orthologous proteins was aligned using

ProbCons 1.12 (Do et al. 2005). Because tests of positive se-

lection are sensitive to sequencing, annotation and alignment

errors (Talavera and Castresana 2007; Scheinfeldt et al. 2009),

we used highly stringent criteria to filter our alignments. First,

unreliably aligned regions were removed using Gblocks ver-

sion 0.91 b (Talavera and Castresana 2007), with default pa-

rameters. Additionally, we used an ad-hoc filtering procedure

in order to remove annotation errors, including the following

steps: 1) Identification of unique amino acid replacement (i.e.,

amino acids that are unique to a given species in a certain

alignment column); 2) identification of alignment regions with

a very high incidence of unique substitutions in the same spe-

cies; in particular, we used a sliding window approach to

identify regions of 15 amino acids containing ten or more

unique substitutions in the same sequence, as well as regions

of five amino acids containing five unique substitutions in the

same sequence; these patterns are unlikely to represent true
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divergence between species, provided that the species in-

cluded in the current analysis are relatively closely related;

and 3) removal of these alignment regions. These procedures

resulted in the removal of 35.5% of amino acid positions. The

resulting filtered protein alignments were used to guide the

alignment of the corresponding CDSs using an in-house

BioPerl script.

We evaluated the impact of both purifying and positive

selection on each orthologous group using the program

codeml from the package PAML 4.4 (Yang et al. 2005). For

each CDS alignment, three different evolutionary models (M0,

M7, and M8) were fitted. First, for each gene, an overall

nonsynonymous to synonymous divergence ratio (o= dN/dS)

estimate was obtained from the M0 model, which assumes a

homogeneous o for all branches in the tree and all codons in

the alignment. This ratio was used as a proxy of the impact of

purifying selection, with values of o close to 0 indicating

strong purifying selection, and values close to 1 indicating

weak purifying selection. Second, in order to infer the action

of positive selection, we applied the M7 versus M8 test

(Nielsen and Yang 1998). The M7 model assumes that co-

dons’o values follow a beta distribution, limited to the interval

(0, 1), whereas model M8 allows for an additional class of

codons with o> 1. The likelihood ratio test was used to con-

trast whether model M8 fits the data significantly better than

model M7. Twice the difference between the log-likelihoods

of both nested models, [2�‘= 2� (‘M8� ‘M7), where ‘i is the

log-likelihood of the observed data under model i ], is assumed

to follow a �2 distribution with 2 degrees of freedom. In order

to avoid the problem of local optima, for each gene each

model was fitted three times, using different starting o
values (0.04, 0.4, and 4), and the computation with the high-

est likelihood was retained. The commonly accepted tree to-

pology was used.

In order to discard potential alignment errors, not detected

by our stringent filtering, the alignments corresponding to

genes with P< 0.1 in the likelihood ratio test for positive se-

lection were inspected visually. Alignment regions containing

evident errors were manually removed using BioEdit v7.0.5.2

(Hall 1999), and analyses of positive selection were rerun. We

obtained a list of 554 genes with putative signatures of pos-

itive selection (divPSGs; P<0.05).

We also repeated the analysis of positive selection by con-

sidering two alternative alignment sets: 1) A set of human

genes with 1:1 orthologs in three to nine nonhuman genomes

(8,697 genes met this criterion) to which we applied the fil-

tering process described above and 2) the set of 5,916 human

genes with 1:1 orthologs in all nine nonhuman genomes with-

out applying any alignment filtering.

Inferring Natural Selection from 270 Human Genomes

We obtained phased genotypes from low-coverage data of

the phase I of the 1000 Genomes Project (1000 Genomes

Project Consortium 2012), which makes available data for

over 36 million Single Nucleotide Variants (SNVs) for 1,092

individuals sampled from 14 populations worldwide. We

used a subset of 270 individuals from YRI, CEU, and CHB

populations. We focused on those three populations because

they are representative of the human genetic diversity in three

main geographic regions (Africa, West Eurasia, and East Asia)

and signals of positive selection have been described to be

extensively shared in related populations (Coop et al. 2009).

Samples from American populations present a high level of

admixture (1000 Genomes Project Consortium 2012), making

difficult an accurate study of natural selection in these

populations.

For each of the 9,041 genes contained in the PIN, we

analyzed the genomic region corresponding to the transcript

spanning the longest chromosome region. Gene coordinates

were obtained from the release 37 of the human genome at

NCBI (Flicek et al. 2010). We removed 365 genes located at

sex chromosomes because some of the methods used to

detect signals of positive selection have been devised for au-

tosomal regions, or provide results that cannot be compared

between genes located at autosomal and sex chromosomes.

In order to increase the statistical power in the detection of

positive selection, we removed from the analyses 96 genes

with less than ten SNVs annotated in the 1000 Genomes

Project.

We used the genetic map provided by the 1000 Genomes

Consortium. Ancestral states inferred from comparison with

orthologous sequences in the chimpanzee and rhesus ma-

caque genomes were obtained from the UCSC Genome

Bioinformatics Site (Karolchik et al. 2009) (http://genome.

ucsc.edu/; table “snp128OrthoPanTro2RheMac2”).

Retained genes (a total of 8,580) have a length ranging

from 0.414 to 2,305 kb (mean = 61.70 kb; median = 25.95 kb)

and are covered by a total of 6,815,879 SNVs. The number of

SNVs located in a gene ranges from 10 (28 genes) to 45,577,

with a mean of 794.4 and a median of 312.

To identify the genes belonging to the PIN that have

evolved under positive selection during human evolution, we

applied three different tests: 1) The integrated Haplotype

Score (Voight et al. 2006) (iHS), which aims to detect extended

haplotype homozygosity (EHH) from the local haplotype struc-

ture; 2) the Cross-Population Composite Likelihood Ratio

(Chen et al. 2010) (XP-CLR) method, based on the multilocus

allele frequency differentiation between two populations; and

3) DH (Zeng et al. 2007), based on the excess of rare variants,

which combines Tajima’s D (Tajima 1989) and Fay and Wu’s H

(Fay and Wu 2000). These tests are designed assuming the

hard sweep model which states that a new advantageous

mutation arises in the population and rapidly increases in fre-

quency hitchhiking the surrounding neutral variants located

on the same haplotype.

We computed a raw iHS for each SNV with ancestral state

information following the method proposed by Voight et al.
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(2006). We used the script available at http://hgdp.uchicago.

edu/Software/, which we slightly modified in order to speed

up computation times; thresholds for EHH decay were mod-

ified from 0.25 to 0.15 and we used a size for the analyzed

region of 0.2 Mb (original size: 2.5 Mb). We validated that

these changes were previously described not to affect the

sensitivity and specificity of the method through coalescent

simulations (Pybus et al. 2014). Standardized iHS scores were

obtained by grouping SNVs into 20 bins separated by a de-

rived allele frequency (DAF) of 0.05, subtracting the mean,

and dividing by the standard deviation for all SNVs in the

same bin as in Voight et al. (2006). Extreme positive or neg-

ative values indicate high EHH of haplotypes carrying the an-

cestral or derived allele, respectively. Hence, we consider both

extreme positive or negative iHS as potential signatures of

positive selection. We integrated the jiHSj scores observed

at each gene of interest into a gene-level summary statistic

using the mean.

The XP-CLR method aims at detecting important genetic

differentiation in an extended genomic region in comparison

with a reference population. This method provides a good

localization of the position of the selected variant (Chen

et al. 2010). XP-CLR scores were computed at regularly

spaced grid points (every 2 kb) using the information from

SNVs within a flanking window of 0.2 cM. To account for

different SNV densities among genomic regions, we restricted

to 200 the maximal number of SNVs used to calculate XP-CLR

scores within each window, by randomly removing SNVs in

excess. We integrated the XP-CLR scores observed at each

gene of interest into a gene-level summary statistic using

the mean.

Extreme iHS and XP-CLR scores could also be attributable

to the action of nonselective events, such as demographic

changes and genetic drift. However, these selectively neutral

events act randomly on the genome, in contrast with positive

selection, which targets specific genes. Therefore, we adopted

an outlier approach to infer the action of positive selection on

PIN genes (Kelley et al. 2006; Teshima et al. 2006): We eval-

uated the significance of the scores for each gene by taking

into account the whole genome context. For that purpose, we

used a genomic gene-level background containing all anno-

tated genes that were distant one from each other and from

the 8,580 genes included in the analysis, by at least 5 kb and

contained at least ten SNVs. The complete background gene

set obtained thus includes 13,388 genomic regions and

8,431,716 SNVs. For each of these background genomic re-

gions, we computed the mean summary statistics based on

iHS and XP-CLR and then obtained gene-level empirical distri-

butions. Empirical P values associated with iHS and XP-CLR for

PIN genes were obtained using the gene-level score distribu-

tions obtained from the 13,388 genes in the background

genome set.

For each gene, using the SNVs with ancestral state infor-

mation, we also computed Tajima’s D, Fay and Wu’s H and

DH, using a program kindly provided by Kai Zeng. For each

gene, the DH P value was obtained as in Zeng et al. (2007)

from Tajima’s D and Fay and Wu’s H by a bivariate comparison

to their neutral distributions. However, instead of using

10,000 replicates of coalescent simulations to build these neu-

tral distributions as in the original article, we used the 13,388

genomic regions described above in order to better take into

account the demographic forces that acted on the studied

populations.

In order to summarize the results of the three different

tests, we combined the gene-level empirical P values obtained

as described above using the Fisher combination test:

ZF ¼ �2 log
Xi¼3

i¼1

Pi:

where Pi are the empirical P values obtained from the three

tests. Thus, for each gene we obtained a unique ZF score,

which follows a �2 distribution with 6 degrees of freedom.

This combination requires independence of the three com-

bined P values. We confirmed that deviation from this as-

sumption would not affect our results (supplementary fig.

S1, Supplementary Material online). We invoked positive se-

lection if the P value associated with the ZF score was below

5%. Therefore, we obtained four lists of genes with putative

signatures of positive selection inferred from polymorphism

data (polyPSGs): 3 populations + global level.

The major limitation of the methods implemented to detect

positive selection using polymorphism data is that demo-

graphic events, such as population growth, bottleneck, and/

or subdivision, can mimic patterns similar to those produced

by selection. However, the outlier approach framework that

we implemented and that combines three tests that consider

three different molecular patterns (namely genetic differenti-

ation, site frequency spectrum, and linkage disequilibrium) is

very likely to overcome this issue.

In order to estimate the strength of purifying selection

acting on the genes involved in the PIN, we calculated the

average DAF among the 270 individuals belonging to YRI,

CEU, and CHB populations (1000 Genomes Project

Consortium 2012).

Inferring Natural Selection using the McDonald and
Kreitman Test

For each gene, we computed the polarized McDonald–

Kreitman test (MK test; McDonald and Kreitman 1991) in

order to infer the impact of natural selection in the human

lineage, that is, since the split with chimpanzee. For that pur-

pose, we defined nonsynonymous and synonymous sites as

the 0- and 4-fold degenerated sites using the longest tran-

script for each of the 9,041 genes in the PIN. We then calcu-

lated the number of polymorphic nonsynonymous and

synonymous sites (PN and PS, respectively) in any of the

three studied human populations (YRI, CEU, and CHB).
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We also estimated the number of nonsynonymous and syn-

onymous substitutions (DN and DS, respectively) that occurred

in the human lineage by comparing the human and chimpan-

zee reference genomes using as outgroup the gorilla species:

A substitution was assumed to have occurred in the human

lineage when a site was different in the human sequence

as compared with both chimpanzee and gorilla. We then

estimated the Neutrality Index (NI) as

NI ¼ PN=PS
�

DN=DS
:

We applied the Haldane’s correction for the NI whenever

one of the four numbers (PN, PS, DN, or DS) was equal to 0 as

follows:

NIcorrected ¼
ðPNþ0:5Þ=ðPSþ0:5Þ

�
ðDNþ0:5Þ=ðDSþ0:5Þ

:

We also tested for positive selection using a Fisher exact test

performed on the contingency table containing the number of

fixed substitutions and polymorphic sites for both nonsynon-

ymous and synonymous positions.

We finally obtained an NI score and a P value from the

Fisher’s exact test for 3,381 genes (those with more than

three nonsynonymous and synonymous polymorphic sites

and more than three nonsynonymous and synonymous

substitutions).

Analyzing DAF Patterns for Three Site Classes Nearby
Genes under Positive Selection

In order to gain some insight into the functional nature of the

variants targeted by recent positive selection in humans, we

analyzed how extreme was the DAF observed at three site

classes nearby polyPSGs: cis-eQTLs, nonsynonymous and syn-

onymous variants. We retrieved expression Quantitative Trait

Loci (eQTLs) annotations from two data sets which report

eQTLs detected in different lymphoblastoid cell line samples:

1) “GEUVADIS” for 373 European samples from the 1000

Genomes Consortium (Lappalainen et al. 2013); and 2)

“Liang et al.” for two British sample sets: MRCE (Morar

et al. 2007) and MRCA (Dixon et al. 2007) analyzed together

(Liang et al. 2013). We restricted our analyses to cis-eQTLs

located within 100 kb of the associated gene. We then iden-

tified the 0- and 4-fold degenerated sites for all transcripts of

the PIN genes using Ensembl release 65. We removed all sites

whose classification as 0- or 4-fold degenerated depended on

the transcript considered. The remaining 0- and 4-fold degen-

erated sites were considered as nonsynonymous and synony-

mous sites, respectively.

For each gene and site class, we calculated the maximum

DAF observed in the CEU population. Genes for which the

DAF score was missing for at least one of the three site classes

were removed from the analysis. We obtained a maximum

DAF score for the three site classes for 358 and 198 PIN genes

when using the “GEUVADIS” and “Liang et al.” eQTL anno-

tations. Among them, 29 and 14 genes exhibit a signal of

recent positive selection as inferred from polymorphism data

(polyPSGs).

For each site class, we contrasted whether polyPSGs show

a higher median of the maximum DAF scores through 10,000

random permutations from the PIN genes.

We obtained a maximum DAF score for all three site classes

for only two and six polyPSGs when using eQTLs detected in

YRI samples in the studies performed by Lappalainen et al.

(2013) and Pickrell et al. (2010), respectively, limiting the

power of this analysis in the YRI population.

Determining Fitness Effects of Genes

Using data from the Mouse Genome Database (Bult et al.

2008) (“MRK_Ensembl_Pheno.rpt” file downloaded on

October 7, 2010), we classified genes as essential and nones-

sential when described to be lethal and viable when knocked

out in mice, respectively. We retrieved such information for

3,994 genes represented in the PIN. However, given that es-

sentiality may evolve relatively fast (Zhang and He 2005), es-

sential genes in mouse may not be essential in humans.

Therefore, we also used the functional indispensability

score (Khurana et al. 2013) estimated from functional and

evolutionary properties. This score accurately distinguishes be-

tween essential genes (those showing clinical features of

death before puberty or infertility when Loss-of-Function—

LoF—mutations occur; Liao and Zhang 2008) and LoF-tolerant

genes (those observed to contain homozygous LoF mutations

in at least one individual in the 1000 Genomes Pilot Data;

MacArthur et al. 2012). We obtained the functional indispens-

ability score for 8,816 genes involved in the PIN.

Results

Positive selection inferred from divergence data and gene
centrality in the human PIN.

We used ten mammalian genomes (Kersey et al. 2012) to infer

events of positive selection that took place within the last ap-

proximately 165 Myr. Only genes with 1:1 orthologs in all ten

species were used, and sequence alignments were stringently

filtered prior to our analyses (see Materials and Methods). The

test used in this study looks for a nonsynonymous to synony-

mous divergence ratio (o= dN/dS) higher than 1 at a subset of

codons (Nielsen and Yang 1998). It is based on a positive

selection likelihood score, termed 2�‘ (see Materials and

Methods), that is proportional to the likelihood of positive

selection. We identified a total of 554 putative positively

selected genes (divPSGs; those with P<0.05).

We measured the difference in the mean degree (number

of protein–protein interactions, or number of proteins with

which a protein interacts) between divPSGs and the other

genes in the network (non-divPSGs), and tested whether

this difference was expected at random through 10,000

random permutations of the two groups containing divPSGs
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and non-divPSGs. We observed that divPSGs encode proteins

with a significantly lower degree than non-divPSGs (permuta-

tion test: P = 0.0067; fig. 1A; supplementary table S1,

Supplementary Material online). Indeed, divPSGs and non-

divPSGs encode proteins with, on average, 7.587 and 9.122

interactions, respectively, that is, the degree for divPSGs is

17% lower than the one observed for non-divPSGs. The mag-

nitude of this difference is similar to that previously described

(Kim et al. 2007).

We next observed that log-likelihood increments (2�‘

scores) from the positive selection test exhibit a significant

negative correlation with proteins’ degrees (Spearman’s rank

correlation coefficient, �=�0.0841; P<0.0001; table 1), in-

dicating that central genes are less likely to be under positive

selection. Finally, when proteins were binned into four degree

classes (low, medium-low, medium-high, and high degree)

according to the first, second, and third quartiles, we observed

a continuous decrease in their positive selection likelihood

scores (2�‘) (fig. 2D; table 1). Indeed, the nonparametric

analysis of variance (ANOVA) F-test is significant

(P< 0.0001), and there is a trend toward higher 2�‘ scores

in the lower degree groups (linear trend test on ranks;

P<0.0001). We validated those results using two alternative

alignment sets: One using unfiltered alignments for genes

present in all ten species, and another using filtered genes

with 1:1 orthologs in 4–10 species (supplementary note, fig.

S2, and table S2, Supplementary Material online).

Taken together, our observations indicate that adaptation

(as inferred from divergence data) more frequently occurs at

the less connected proteins of the human interactome, con-

sistent with previous observations (Kim et al. 2007).

Positive selection inferred from polymorphism data and
gene centrality in the human PIN.

We inferred recent events of positive selection in humans

using genomic data from three different populations:

Yoruba in Nigeria (YRI), Northern European ancestry sampled

in Utah (CEU) and Han Chinese in Beijing (CHB). We used a

Fisher’s combination (ZF score) of three tests of positive selec-

tion assuming the hard sweep model: XP-CLR (Chen et al.

2010), iHS (Voight et al. 2006), and DH (Zeng et al. 2007)

(see Materials and Methods). Assuming that ZF follows a �2

distribution with 6 degrees of freedom, we identified putative

positively selected genes (polyPSGs).

We measured the difference in the mean degree between

these genes and genes without evidences of having evolved

under positive selection (non-polyPSGs) (fig. 1A and supple-

mentary table S1, Supplementary Material online). When all

populations were analyzed together (global analysis), we ob-

served a statistically significant higher degree for genes with

signatures of positive selection (permutation test: P = 0.0254).

Indeed, polyPSGs and non-polyPSGs encode proteins with, on

average, 9.637 and 8.107 interactions, respectively, that is,

the degree for polyPSGs is 19% higher than that observed

for non-polyPSGs. The magnitude of this difference is similar

to that observed at the interspecific level, yet in the opposite

direction. When the three populations were considered

separately, polyPSGs were always more connected than

non-polyPSGs, although the test was significant only for YRI

(supplementary table S1, Supplementary Material online).

ZF scores and network degrees exhibit a significant positive

correlation for all three populations (table 1). Finally, compar-

ison of ZF scores for the four degree groups based on degree

FIG. 1.—Distribution of genes with putative signatures of positive selection within the PIN. ZF and 2�‘ were used to estimate the likelihood of having

evolved under positive selection in human populations and in mammals, respectively. (A) Average degrees (number of interactions) for genes with and

without signatures of positive selection. We represent the mean of centrality measure± 1 SE for the genes with a putative signal of positive selection (in red)

and the other genes (in blue). The significance of the differences between the mean of both groups was assessed through 10,000 permutations. Asterisks

represent significant differences. *P< 0.05; **P< 0.01. (B) Human PIN with genes with signatures of positive selection according to divergence data

(P< 0.05 estimated from 2�‘) represented in red. (C) Human PIN with genes with signatures of positive selection according to polymorphism data

represented in red.
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FIG. 2.—Impact of natural selection among groups of genes divided according to degree quartiles. Genes were divided into four groups according to the

degree quartiles. The median selection score± 1 median absolute deviation for each group is represented in the y axis. ZF and 2�‘ scores were used to

estimate the likelihood of positive selection in human populations and in mammals, respectively. DAF, NI, and o were used to estimate the impact of

purifying selection in recent human populations, in the human lineage, and in mammals, respectively. Lower DAF and o indicate higher evolutionary

constraint estimated from polymorphism and divergence data, respectively, whereas higher NI scores indicate higher evolutionary constraint estimated from

Table 1

Relationship between Degree and the Impact of Natural Selection

Positive Selection Purifying Selection

YRI (ZF) CEU (ZF) CHB (ZF) Mammals

(2"‘)

Recent Humans

(DAF)

Humans (NI) Mammals (u)

Spearman

correlationa

Q 0.0501 0.0409 0.0471 �0.0841 �0.0879 0.0770 �0.2039

P value 1.11�10�5*** 0.0004*** 3.48�10�5*** 9.29�10�11*** 4.51� 10�16*** 7.29� 10�06*** 6.91�10�56***

Partial Spearman

correlationb

� 0.0451 0.0326 0.0374 �0.0340 �0.0668 0.0314 �0.1698

P value 0.0001*** 0.0059** 0.0015** 0.0107* 2.35� 10�09*** 0.0742 2.79�10�37***

Nonparametric

ANOVAc

F 5.324 5.844 5.074 11.90 18.03 9.084 77.85

P value 0.0012** 0.0006*** 0.0017** 9.18�10�08*** 1.16� 10�11*** 5.49� 10�06*** 2.26�10�49***

Trend test on

ranksc

F 15.88 12.14 14.12 33.51 52.60 20.66 229.4

P value 6.79�10�5*** 0.0005** 0.0002*** 7.45�10�09*** 4.43� 10�13*** 5.67� 10�06*** 7.30�10�51***

Partial nonparametric

ANOVAb,c

F 2.731 3.149 2.080 2.537 6.353 2.343 51.93

P value 0.0423* 0.0240* 0.1006 0.0548 0.0003*** 0.0713 4.27�10�33***

Partial trend test

on ranksb,c

F 7.794 2.360 5.107 6.281 16.48 2.964 153.6

P value 0.0053** 0.1246 0.0239* 0.0122* 4.97� 10�5*** 0.0852 8.05�10�35***

aSpearman correlation between degree and selection scores (ZF for positive selection in YRI, CEU, and CHB populations; 2�‘ for positive selection in mammals; DAF for
purifying selection during recent human evolution; NI for purifying selection in the human lineage; and o for purifying selection in mammals). High ZF and 2�‘ scores
indicate a higher probability of having evolved under positive selection as inferred from polymorphism and divergence data, respectively. Low DAF and o scores indicate
higher evolutionary constraint estimated from polymorphism and divergence data, respectively, whereas high NI scores indicate higher evolutionary constraint estimated
from both polymorphism and divergence data.

bIn order to test for an association between degree and natural selection scores while controlling for putatively confounding factors, we applied a linear regression
between the selection scores and protein length, expression level and breadth. The linear regression residuals were then used to perform the Spearman’s correlation analysis,
the nonparametric ANOVA, and the linear trend on ranks test.

cNonparametric ANOVA and linear trend tests on ranks performed to contrast whether the score used as a proxy of natural selection are equal across the degree
groups.

*P < 0.05; **P < 0.01; ***P < 0.001.
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quartiles (low, medium-low, medium-high, and high degree)

using a nonparametric ANOVA showed significant differences

in all three populations, as a result of higher ZF scores at the

highest degree groups, according to a linear trend test on

ranks (fig. 2A–C; table 1). These results were reproduced

using the three positive selection statistics separately (DH,

iHS and XP-CLR in all populations, except XP-CLR in CEU

and CHB), and also using the Composite of Multiple Signals

method (Grossman et al. 2013, 2010) (supplementary note,

fig. S3, and table S3, Supplementary Material online).

Furthermore, the observed trends remain significant when

removing the putative effect of linkage disequilibrium

among genes by using a subset of unlinked genes (see sup-

plementary note, fig. S4, and table S4, Supplementary

Material online).

These analyses indicate that genes encoding proteins with

a greater number of interactions in the human PIN are more

likely to present signals of recent selective sweeps than those

acting at more peripheral positions.

Positive selection inferred from polymorphism and
divergence data in the human PIN

We inferred positive selection in the human lineage applying

the polarized MK test (McDonald and Kreitman 1991) on ge-

nomic data from three different populations (YRI, CEU, and

CHB) along with three reference genomes (human, chimpan-

zee, and gorilla). As the genetic diversity in the human lineage

and the human–chimp divergence are reduced, the MK test is

not sensitive enough to detect selective events that occurred

during the evolution of the human lineage (Zhai et al. 2009).

Indeed, we obtained significant P values (at a significance level

of 5%) for only four genes in the PIN, making difficult an

accurate network-level analysis for positive selection at this

evolutionary time-scale. A more powerful alternative to the

Fisher’s exact test on the proportion of synonymous and

nonsynonymous variants that are fixed between species or

segregating in the lineage of interest is to contrast whether

the parameter g of the Poisson random field model is negative

using a maximum-likelihood framework (Sawyer and Hartl

1992). We therefore downloaded the results from a previous

implementation of the MK test between human and chim-

panzee following this framework (Bustamante et al. 2005). In

this study, however, the authors did not polarize the test

(using an outgroup species), which would have allowed de-

tecting putative selective events in specific lineages. We ob-

tained a P value for 3,077 genes in the PIN, of which 210

genes exhibited a signal of selection (P<0.05). Genes under

positive selection exhibit a higher degree centrality (average:

8.162 interactions) than the other genes (average degree:

7.481). However, the difference is not significant according

to 10,000 permutations (P = 0.232).

As the data set obtained from Bustamante et al. (2005)

does not allow to study positive selection specifically in

the human lineage, we decided not to use it for further

analyses described below. We rather used the Neutral Index

from our own implementation of the polarized-MK test as an

estimate of the strength of purifying selection during human

evolution.

Correcting for Several Putative Confounding Factors and
Validations

A number of factors correlate with both network centrality

and the likelihood of observing positive selection, and might

thus be confounding our observations. In order to discard this

possibility, we conducted a number of validations.

In agreement with previous results (Fraser et al. 2002; Hahn

and Kern 2005; Vitkup et al. 2006; Alvarez-Ponce 2012;

Alvarez-Ponce and Fares 2012), we observed that purifying

selection is stronger in genes acting at the centre of the

human PIN than at those acting at the periphery, regardless

of whether it was measured from the o ratio, the NI or the

DAF (fig. 2E–G and table 1). Purifying selection, through back-

ground selection (BGS), can produce signatures that can be

confounded with positive selection by tests based on DNA

polymorphism (Charlesworth et al. 1993), thus raising the

possibility that our results could be a byproduct of the distri-

bution of purifying selection across the network. This effect,

however, is unlikely to have affected our network-level anal-

yses, given that we combined the results of different positive

selection tests and Enard et al. (2014) demonstrated that iHS

was insensitive to BGS. Indeed, multivariate analyses con-

firmed that the relationship between network degree and

positive selection was independent of purifying selection (sup-

plementary note, figs. S10 and S11, and tables S7 and S8,

Supplementary Material online).

Factors such as gene expression level and breadth (tissue

specificity), and the length of the encoded proteins, correlate

with both network centralities and the likelihood of detecting

positive selection (Anisimova et al. 2002; Lemos et al. 2005;

Kim et al. 2007; Kosiol et al. 2008; Alvarez-Ponce 2012;

Alvarez-Ponce and Fares 2012) and thus could also represent

confounding factors. However, the relationship between net-

work degree and all metrics of positive selection (2�‘ and ZF)

and purifying selection (o and DAF) considered in this study

FIG. 2.—Continued

both polymorphism and divergence data. A nonparametric ANOVA analysis was performed to contrast whether the medians of the scores are equal across

the groups. A trend test on ranks was also carried out to test for a linear relationship between the four groups (encoded from 1 to 4) and natural selection

scores. A Tukey’s honestly significant difference test was further applied to test for all pairwise differences. Significantly different pairs are marked with

asterisks according to the level of significance. *P< 0.05; **P<0.01; ***P<0.001.
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remains unaltered when controlling for these parameters

(table 1 and supplementary note and fig. S5, Supplementary

Material online).

Our results might also be biased by the incompleteness or

low quality of available interactomic data. However, similar

results were obtained when a high-quality subnetwork of

BioGRID (Stark et al. 2011) or the Human Protein Reference

Database (Keshava Prasad et al. 2009) was analyzed (see sup-

plementary note, figs. S6 and S7, and table S5, Supplementary

Material online), indicating that our observations are not a

byproduct of the quality of network data.

In addition to degree, which is a local measure of network

centrality, we used two additional centrality measures that

take into account the global position of proteins within the

network: Betweenness (the number of shortest paths be-

tween other proteins passing through a protein) and closeness

(the inverse of the average distance to all other proteins in the

network). Similar trends to those observed when using degree

were observed in both cases (see supplementary note, figs. S8

and S9, and table S6, Supplementary Material online).

Assessing the Putative Target of Positive Selection during
Recent Human Evolution

In order to contrast whether positive selection had a stronger

impact on the regulatory or on the protein-coding regions of

PIN genes during recent human evolution, we compared the

DAFs observed for three site classes nearby polyPSGs: cis-

eQTLs, nonsynonymous (0-fold degenerated sites) and synon-

ymous (4-fold degenerated sites) variants (see Materials and

Methods). Following the hard sweep model, we assumed that

the variant targeted by positive selection and driving the signal

detected using polymorphism data must exhibit an important

DAF. We assessed for each site class whether the maximum

DAF was higher for polyPSGs than expected in an average PIN

gene through 10,000 random samplings (fig. 3).

Unsurprisingly, we observed that synonymous sites in

polyPSGs do not exhibit extreme DAF. On the contrary, cis-

eQTLs associated with polyPSGs present higher DAF than ex-

pected in the two studied data sets (P< 0.01; fig. 3). Thus,

signals of recent positive selection observed nearby polyPSGs

are likely to be driven by variants located in their cis-regulatory

regions. However, positive selection acting on functional var-

iants located in the protein-coding region may also have

driven some of the detected signals, as suggested by the

high DAF observed at nonsynonymous sites located in

polyPSGs (fig. 3).

Gene Essentiality and Impact of Positive Selection

To explore whether genes putatively under recent positive

selection in our data set (i.e., affected by a hard sweep

during recent human evolution) have important fitness ef-

fects, we classified the genes under study as viable or lethal

using information from The Mouse Genome Database (Bult

et al. 2008). Lethal genes present a significantly higher degree

than viable genes (Mann–Whitney test; P<0.0001; table 2),

in agreement with previous results (Jeong and Albert 2000;

Fraser et al. 2002; Iyer et al. 2013). This demonstrates that, as

expected, the phenotypic effect of a gene is highly associated

with its position within the PIN (for a review, see Olson-

Manning et al. 2012). We next compared the scores of

positive selection on the PIN genes between the two groups

(table 2; fig. 3). As expected, lethal genes have significantly

FIG. 3.—DAF for three sites classes nearby genes with signal of recent positive selection. Crosses represent the median of the maximum DAF observed

for three site classes nearby polyPSGs: cis-eQTLs, 0-fold degenerated sites and 4-fold degenerated sites. The violin plots represent the distribution of the

median of maximum DAF scores observed for a given site class in 10,000 random sets of PIN genes. The analysis was restricted to PIN genes for which the

DAF could be calculated for at least one SNP for each of the three site classes. (A) Using eQTLs reported by the GEUVADIS consortium (Lappalainen et al.

2013) and located within 100 kb from the associated gene. The polyPSGs set contained 29 genes and the permutations were performed on a set of 358 PIN

genes. (B) Using eQTLs reported by Liang et al. (2013) and located within 100 kb from the associated gene. The polyPSGs set contained 14 genes and the

permutations were performed on a set of 198 PIN genes. Significantly higher median DAF in a site class for polyPSGs as compared with the 10,000

permutations is marked with asterisks. **P< 0.01.
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lower DAF and o scores and higher NI scores (Mann–Whitney

test, P< 0.0001; table 2; fig. 3), indicating that they evolve

under higher selective constraints. Moreover, they are more

likely to be targeted by recent positive selection, as they exhibit

significantly higher positive selection scores in the three

human populations (Mann–Whitney test; P = 0.0047 in YRI,

P = 0.0009 in CEU, and P = 0.0235 in CHB; table 2; fig. 3). This

indicates that recent positive selection targets genes with the

highest effects on fitness. However, during mammal evolu-

tion, positive selection is more likely to act on viable genes:

2�‘ scores are significantly higher for viable than for lethal

genes (Mann–Whitney test; P<0.0001; table 2; fig. 3). Similar

results were obtained when using the “functional indispens-

ability” score attributed to a specific gene according to its

functional and evolutionary properties (Khurana et al. 2013)

(table 2; fig. 3).

Discussion

The results presented here indicate that signatures of positive

selection identified following two different methodological

frameworks concentrate on different parts of the human

PIN: When interrogating mammal divergence data, we ob-

serve that positive selection had a greater impact on genes

with a lower network centrality, whereas recent, human-

specific positive selection (as inferred from polymorphism

data) has targeted preferentially genes occupying more cen-

tral positions in the network. These patterns are independent

of several potentially confounding factors (fig. 4).

The signatures of adaptation detected in this study through

either a comparative genomics or population genetics ap-

proach might correspond to different kinds of changes at

the sequence level, a problem with no obvious solution. The

Table 2

Association between Gene Essentiality and Degree and the Impact of Natural Selection

Lethal versus Viable Genesa Indispensability Scoreb

Mean Lethal Mean Viable P Value q P Value

Degree 14.55 7.048 6.62�10�52*** 0.2311 3.03� 10�107***

Positive selection in YRIc 6.419 6.154 0.0047** 0.0473 4.34� 10�05***

Positive selection in CEUc 6.754 6.350 0.0009*** 0.0695 2.00� 10�09***

Positive selection in CHBc 6.712 6.423 0.0235* 0.0380 0.0010**

Positive selection in mammalsd 1.830 2.270 2.03�10�08*** �0.1157 3.62� 10�25***

Purifying selection in recent humanse 0.1041 0.1109 4.66�10�08*** �0.1131 5.14� 10�25***

Purifying selection in humansf 11.81 6.848 2.37�10�09*** 0.1932 3.70� 10�29***

Purifying selection in mammalsg 0.0768 0.1160 3.70�10�29*** �0.2600 6.67� 10�89***

aMann–Whitney test to compare the degree or the natural selection score between genes that are essential and genes that are not essential, that is, lethal and viable
when knocked out in mice, respectively (data from the Mouse Genome Database [Bult et al. 2008] “MRK_Ensembl_Pheno.rpt” file downloaded on October 7, 2010).

bSpearman’s correlation analysis to test for the relationship between degree or the natural selection score and the functional indispensability score (Khurana et al. 2013).
c,dHigh ZF and 2�‘ scores indicate a higher probability of having evolved under positive selection during human and mammal evolution, respectively.
eLow DAF scores indicate higher selective constraints during recent human evolution.
fHigh NI scores indicate higher selective constraints during the human lineage evolution.
gLow o scores indicate higher selective constraints during mammal evolution.

*P< 0.05; **P< 0.01; ***P< 0.001.

Z−
tra

nf
or

m
ed

 N
at

ur
al

 S
el

ec
tio

n 
S

co
re

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

** *** *

***

***

***

***

YRI CEU CHB Mammals Omega NI DAF

Essential
Non essential

FIG. 4.—Comparison of the impact of natural selection between es-

sential and nonessential genes. We performed a Mann–Whitney test to

compare the selection scores between genes that are lethal (essential, in

yellow) and viable (nonessential, in green) when knocked out in mice (data

from the Mouse Genome Database [Bult et al. 2008];

“MRK_Ensembl_Pheno.rpt” file downloaded on October 7, 2010). ZF

and 2�‘ scores were used to estimate the likelihood of positive selection

in human populations and in mammals, respectively. DAF, NI, and o were

used to estimate the impact of purifying selection in recent human pop-

ulations, in the human lineage, and in mammals, respectively. Lower DAF

and o indicate higher evolutionary constraint estimated from polymor-

phism and divergence data, respectively, whereas high NI scores indicate

higher evolutionary constraint estimated from both polymorphism and

divergence data. In order to put all the scores within the same scale, the

mean standardized scores are plotted (standardized scores were calculated

by subtracting the mean and dividing by the standard deviation).

Significant differences between lethal and viable genes pairs are marked

with asterisks. *P< 0.05; **P<0.01; ***P<0.001.
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maximum-likelihood test used to detect positive selection

using divergence data is powerful only in situations in which

the gene has experienced recurrent selection events at the

coding sequence; adaptation at regulatory sites, however,

cannot be detected using this method. Therefore, positive

selection during mammal evolution, as inferred here, should

be viewed as sequence adaptations that alter the function of

proteins recurrently across the mammalian phylogeny. Indeed,

the M7 versus M8 test (Nielsen and Yang 1998) will detect an

excess, in number, of nonsynonymous substitutions among

species; the signal is therefore driven by recurring directional

selection. As suggested before (Kim et al. 2007), the interac-

tome periphery may functionally correspond to the cellular

periphery (Mi et al. 2013). Indeed, our Gene Ontology enrich-

ment analysis demonstrated that the extracellular region is

enriched in proteins encoded by genes showing signals of

positive selection in mammals (P = 0.0164 after FDR multiple

testing correction; supplementary table S9, Supplementary

Material online). Gene products acting at the cell periphery

are likely to be more exposed to pathogens than genes within

the cell, making more likely Red Queen dynamics (Liow et al.

2011) to affect the evolution of peripheral genes.

On the other hand, signatures of selection detected in a

genomic region using resequencing data can correspond to

unique selective sweeps (not necessarily recurrent) that oc-

curred recently, either at the studied region or at a linked

one (e.g., promoters and other regulatory regions). Thus,

the putative signals of recent positive selection can be the

result of variants that alter protein sequence, but are perhaps

more likely to correspond to cis-regulatory variants, whose

role in recent human evolution seems to have been pivotal

(Enard et al. 2014). Moreover, when studying genetic diversity

in coding sequences, Hernandez et al. (2011) showed that

hard selective sweeps were rare in the human lineage. As

protein-coding genes are particularly constrained at the core

of the interactome, their regulatory regions may provide the

necessary pool of variation for adaptation. In agreement with

this hypothesis, we showed that recent positive selection

seems to have particularly targeted cis-regulatory regions

(fig. 3). However, hard sweeps are not the only way for

short-term adaptation and soft sweeps, partial sweep and

polygenic adaptation are expected to also play a crucial role

(for a review, see Pritchard et al. 2010). Such selective events

occur through a subtle shift in allele frequency and, thus, are

difficult to detect. Standing variants are good candidates for

local adaptation that are likely to affect phenotypes in a poly-

genic manner, having relatively low size effect. We found no

significant association between network topology and signals

of local adaptation discovered by looking at the correlations

between population-specific allele frequencies and environ-

mental variables across the globe (BayENV; Hancock et al.

2011; supplementary notes, Supplementary Material online).

Therefore, it seems that local adaptation events through

subtle shifts in allele frequency are uniformly distributed

across the PIN. Fraser (2013), using BayENV, demonstrated

that positive selection events driving subtle shifts in allele fre-

quency were also more likely to occur in cis-regulatory regions

than in protein-coding genes. Altogether, recent positive se-

lection events detected using polymorphism data are more

likely to correspond to adaptation through changes in expres-

sion patterns (gene expression level or regulation), whereas

selective events detected through divergence analysis may

mostly correspond to changes in protein function.

Another line of explanation for the higher impact of recent

positive selection in highly connected genes could be that the

relaxation of purifying selection in human populations—due

to their reduced effective population size (Hughes and

Friedman 2010; Subramanian 2013)—may have allowed the

spread of some deleterious mutations in genes encoding

highly connected proteins. In order to maintain the viability

of the organism, compensatory mutations in these genes or in

any gene encoding directly interacting partners would have

been adaptive (Charlesworth and Eyre-Walker 2007).

However, although purifying selection is likely to have been

relaxed in recent human evolution, we demonstrated that it

remains stronger in highly connected genes (fig. 2E and F).

The higher centrality of essential genes suggests that the

centre of the network may roughly correspond to the most

important, influential, and pleiotropic genes of the system.

Certain evolutionary mechanisms may promote a higher

adaptability at the centre of the network, where the effects

of genes on fitness are important, whereas others may pro-

mote a higher incidence of positive selection at the periphery.

On the one hand, in the 1930s, Ronald Fisher formulated the

hypothesis that mutations with large effects on phenotype,

such as those with highly pleiotropic effects, should often be

deleterious (Fisher 1930; Orr 2005). In agreement with this

hypothesis, purifying selection is stronger on genes acting at

the centre of molecular networks (Fraser et al. 2002; Hahn

and Kern 2005; Vitkup et al. 2006; Alvarez-Ponce 2012;

Alvarez-Ponce and Fares 2012) (but see Jordan et al. 2003;

Hahn and Kern 2005), a pattern that we have confirmed

analyzing both divergence and polymorphism data. As purify-

ing selection quickly removes a high fraction of new mutations

at these genes, one would expect positive selection to rarely

act on them because of their reduced variability (Olson-

Manning et al. 2012). Therefore, we may expect positive se-

lection to target more frequently the periphery of the net-

work. On the other hand, the action of positive selection at

genes occupying the centre of the network is not to be dis-

carded. Indeed, signatures of positive selection are frequent at

genes occupying relatively important positions in a number of

metabolic and signal transduction pathways (Flowers et al.

2007; Dall’Olio et al. 2012; Luisi et al. 2012; Olson-Manning

et al. 2013).

Simulation analyses of hypothetical metabolic pathways

have shown that, when pathways are far from the fitness

optimum, positive selection first targets enzymes lying at the
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upstream part, and at the branch points of the pathway,

which exert greater control over metabolic flux. In turn,

when the system approaches its optimum, positive selection

tends to concentrate on enzymes with less flux control, and

purifying selection constrains the evolution of upstream and

branch-point enzymes (Wright and Rausher 2010; Rausher

2012). These observations match the expected pattern of di-

minishing returns, first proposed by Ronald Fisher in his

Geometric Model of Adaptation (Fisher 1930) (FGM), which

states that selection tends to act progressively more often on

mutations with smaller phenotypic effects as populations ap-

proach a peak in the adaptive landscape. A mutation’s effect

is measured as a function of both its effect on a given trait and

the numbers of phenotypes that are jointly modified by the

mutation (pleiotropic effect) (Fisher 1930; Orr 2005), and the-

oretical models are currently being developed in order to

relate the FGM to information on PINs (e.g., see Martin

2014). According to the FGM, events of selection are more

likely to be observed on mutations with small phenotypic ef-

fects (following a geometric distribution), whereas positive

selection on mutations with large effects is most likely to

occur during the first steps of adaptation.

The results described in this study can be understood ac-

cording to both the FGM and the different kinds of advanta-

geous changes detected at the sequence level. Indeed, when

focusing at large evolutionary time-scale, that is, during

mammal evolution, we are studying the whole process of

adaptation acting exclusively on protein-coding genes that

made the species fit. Therefore, according to the geometric

distribution of the probability of a mutation to be favorable, it

is more likely to detect events of adaptation acting on genes

with lower effect on fitness, that is, genes encoding proteins

with less interacting partners. On the other hand, when fo-

cusing at much shorter evolutionary time-scale, that is, during

recent human evolution, we are studying the recent adapta-

tion of human populations to a wide range of new environ-

ments (e.g., the Mesolithic–Neolithic transition, the human

diaspora across the world, etc.). We speculate here that

events of strong recent positive selection, as inferred from

polymorphism data assuming the hard sweep model, mainly

targeted cis-regulatory regions of genes with important ef-

fects on fitness in order to efficiently tune some specific

phenotypes.

In summary, even though the interactome is a raw simpli-

fication of the processes that take place within the cell, it

contains valuable information on the relative role of the

many gene products that interact to sustain life. The position

occupied by a protein within an interaction network provides

useful information—albeit incomplete—on the phenotypic ef-

fects of mutations arising at the encoding gene. Interestingly,

we have shown that using this information can also help to

better understand the impact of positive selection acting on

protein-coding genes and their cis-regulatory region.

Although network centrality used alone remains a modest

predictor of the impact of positive selection, it could be in-

cluded in an integrative biology approach to shed light on

adaptive processes acting on the genome. This study also un-

derscores the fact that the relationship between positive se-

lection and network position is more complex than previously

recognized, when positive selection was suggested to mostly

act at the network periphery. Indeed, the discovery of the

rules governing network evolution may shed light on the dy-

namics of the evolutionary processes driven by selection.

Notably, the distribution of selective events in a large-scale

PIN described in this study, which relies on extensive sequence

data, can be understood in the light of the Fisher’s Geometric

Model of Adaptation. Particularly, results presented here show

that the raw material for innovation is also to be found in

genes, or in their cis-regulatory region, encoding proteins

with high network centrality, meaning that they have more

pleiotropic effects, are more indispensable and in general are

at the basis of strong changes as a result of mutations.

Supplementary Material

Supplementary data files S1–S4, notes, tables S1–S10, figures

S1–S11 are available at Genome Biology and Evolution online

(http://www.gbe.oxfordjournals.org/).
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