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Abstract 

In response to the high cost and high risk associated with traditional de novo drug discovery, investigation of 
potential additional uses for existing drugs, also known as drug repositioning, has attracted increasing attention 
from both the pharmaceutical industry and the research community. In this paper, we propose a unified 
computational framework, called DDR, to predict novel drug-disease associations. DDR formulates the task of 
hypothesis generation for drug repositioning as a constrained nonlinear optimization problem. It utilizes multiple 
drug similarity networks, multiple disease similarity networks, and known drug-disease associations to explore 
potential new associations among drugs and diseases with no known links. A large-scale study was conducted using 
799 drugs against 719 diseases. Experimental results demonstrated the effectiveness of the approach. In addition, 
DDR ranked drug and disease information sources based on their contributions to the prediction, thus paving the 
way for prioritizing multiple data sources and building more reliable drug repositioning models. Particularly, some 
of our novel predictions of drug-disease associations were supported by clinical trials databases, showing that DDR 
could serve as a useful tool in drug discovery to efficiently identify potential novel uses for existing drugs. 

Introduction 

The inefficiency of pharmaceutical drug development with high expenditure but low productivity has been widely 
discussed1, 2. Drug repositioning, the process of finding additional indications (i.e., diseases) for existing drugs, 
presents a promising avenue for identifying better and safer treatments without the full cost or time required for de 
novo drug development. Candidates for repositioning are usually either market drugs or drugs that have been 
discontinued in clinical trials for reasons other than safety concerns. Because the safety profiles of these drugs are 
known, clinical trials for alternative indications are cheaper, potentially faster and carry less risk than de novo drug 
development. Any newly identified indications can be quickly evaluated from phase II clinical trials. Drug 
repositioning can reduce drug discovery and development time from 10-17 years to potentially 3-12 years3. 
Therefore, it is not surprising that in recent years, new indications, new formulations, and new combinations of 
previously marketed products accounted for more than 30% of the new medicines that reach their first markets4. 
Drug repositioning has drawn widespread attention from the pharmaceutical industry, government agencies, and 
academic institutes. However, current successes in drug repositioning have primarily been the result of serendipitous 
events based on ad hoc clinical observation, unfocused screening, and “happy accidents”. Comprehensive and 
rational approaches are urgently needed to explore repositioning opportunities. 

A reasonable systematic method for drug repositioning is the application of phenotypic screens by testing 
compounds with biomedical and cellular assays. However, this method also requires additional wet bench work of 
developing appropriate screening assays for each disease being investigated, and it thus remains challenging in 
terms of cost and efficiency. Big data analytics for both drugs and diseases provide an unprecedented opportunity to 
uncover novel statistical associations between drugs and diseases in a scalable manner. Many computational 
methods have been developed in this direction, including: (1) matching drug indications by their disease-specific 
response profiles based on the Connectivity Map (CMap) data5, 6; (2) predicting novel associations between drugs 
and diseases by the “Guilt by Association” (GBA) approach7; (3) utilizing structural features of compounds/proteins 
to predict new targets or indications, such as molecular docking8, 9, and quantitative structure-activity relationship 
(QSAR) modelling10; (4) identifying associations between drugs and diseases in genetic activities, such as genome-
wide association study (GWAS)11, pathway profiles12, and transcriptional responses13; (5) constructing drug network 
and using network neighbors to infer novel drug uses based on phenotypic profiles, such as side effects14-16, and 
gene expression17, 18. All of these methods only focus on different aspects of drug/disease activities and therefore 
result in biases in their predictions. Also, these methods suffer from the noise in the given information source. 
Recently, several integrative methods which combine chemical, genetic, or phenotypic features were proposed to 
predict drug indications, for example, PREDICT19, SLAMS20, PreDR21, Li and Lu22, Huang et al23, and Napolitano 
et al24. 
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In this paper, we propose a unified computational framework for drug repositioning hypothesis generation, by 
integrating multiple Drug information sources and multiple Disease information sources to facilitate drug 
Repositioning tasks (DDR). DDR utilizes drug similarity network, disease similarity network, and known drug-
disease associations to explore the potential associations among other unlinked drugs and diseases. In the 
experiment, we investigate three types of drug information (i.e., chemical structure, target protein, and side effect) 
and three types of disease information (i.e., phenotype, ontology, and disease gene). The proposed framework is also 
extensible, and thus DDR can incorporate additional types of drug/disease information sources. 

Compared to prior integrative drug repositioning methods, it is worthwhile to highlight the following novel aspects 
that DDR can achieve simultaneously: (1) DDR can predict additional drug-disease associations by considering both 
drug information and disease information. With the exception of PREDICT19, which integrates drug similarity 
scores and disease similarity scores using unweighted geometric mean, other integrative methods only consider 
either some drug information sources or some disease information sources. (2) DDR can determine interpretable 
importance of different information sources during the prediction. To our knowledge ours is the first study to do so. 
(3) As by-products, DDR can also discover the drug and disease groups, such that the drugs or diseases within the 
same group are highly correlated with each other, thus providing additional insights for targeted downstream 
investigations including clinical trials. 

Construction of Drug Similarity and Disease Similarity Measures 

In this section we introduce drug/disease similarities to quantify the degree of sharing common characteristics 
between pairs of drugs/diseases. A drug/disease similarity provided for a pair of drugs/diseases is a score that ranges 
from 0 to 1, with 0 representing the lowest similarity and 1 standing for the highest similarity. For each drug pair, 
we calculated three types of similarities based on chemical structures, target proteins, and side effects. For each 
disease pair, we calculated three types of similarities based on disease phenotypes, disease ontology, and disease 
genes. 

Drug Similarity of Chemical Structures Dchem. It is generally believed that drugs with similar chemical structures 
would carry out common therapeutic function, thus likely treat common diseases. We calculated the first drug 
pairwise similarity based on a chemical structure fingerprint corresponding to the 881 chemical substructures25 
defined in PubChem database26. Each drug d was represented by an 881-dimensional binary profile h(d) whose 
elements encode for the presence or absence of each PubChem substructure by 1 or 0, respectively. Then the 
pairwise chemical similarity between two drugs d and d’ is computed as the Tanimoto coefficient of their chemical 
fingerprints: 

 
Dd ,d '

chem = h(d) i h(d ')
| h(d) | + | h(d ') | −h(d) i h(d ')

             (1) 

where |h(d)| and |h(d’)| are the counts of substructure fragments in drugs d and d’ respectively. The dot product 
h(d) i h(d’) represents the number of substructure fragments shared by two drugs. 

Drug Similarity of Target Proteins Dtarget. A drug target is the protein in the human body whose activity is 
modified by a drug resulting in a desirable therapeutic effect. Drugs sharing common targets often possess similar 
therapeutic function. We collected all target proteins for each drug from DrugBank27. Then we calculated the 
pairwise drug target similarity between drugs d and d’ based on the average of sequence similarities of their target 
protein sets: 

Dd ,d '
target = 1

| P(d) || P(d ') |
SW (Pi (d),Pj (d '))

j=1

|P(d ')|

∑
i=1

|P(d )|

∑             (2) 

where given a drug d, we presented its target protein set as P(d); then |P(d)| is the size of the target protein set of 
drug d. The sequence similarity function of two proteins SW was calculated as a Smith-Waterman sequence 
alignment score28. 

Drug Similarity of Side Effects Dse. Drug side effects, or adverse drug reactions, indicate the malfunction by off-
targets. Thus side effects are useful to infer whether two drugs share similar target proteins and treat similar 
diseases. We obtained side effect keywords from SIDER29, an online database containing drug side effect 
information extracted from package inserts using text mining methods. Each drug d was represented by 4192-
dimensional binary side effect profile e(d) whose elements encode for the presence or absence of each of the side 
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effect key words by 1 or 0 respectively. Then the pairwise side effect similarity between two drugs d and d’ is 
computed as the Tanimoto coefficient of their side effect profiles: 

 
Dd ,d '

se = e(d) i e(d ')
| e(d) | + | e(d ') | −e(d) i e(d ')

              (3) 

where |e(d)| and |e(d’)| are the counts of side effect keywords for drugs d and d’ respectively. The dot product 
e(d) i e(d’) represents the number of side effects shared by two drugs. 

Disease Similarity of Phenotypes Spheno. Disease phenotypes indicate phenotypic abnormalities encountered in 
human diseases. We used the phenotypic similarity constructed by van Driel et al30. The disease phenotypic 
similarity was constructed by identifying similarity between the MeSH terms31 appearing in the medical description 
(“full text” and “clinical synopsis” fields) of diseases from OMIM database32. To be specific, each disease s in 
OMIM was represented by K-dimensional (K is the number of the MeSH terms) MeSH term feature vector m(s): 
each entry in the feature vector represents an MeSH term, and the counts of the term found for disease s are the 
corresponding feature value. Then the pairwise disease phenotype similarity between two diseases s and s’ is 
computed as the cosine of the angle between their feature vectors: 

Sss '
pheno =

m(s)i m(s ')ii=1

K∑
m2 (s)ii=1

K∑ m2 (s ')ii=1

K∑
             (4) 

where m(s)i denotes the i-th entry of the feature vector m(s). 

Disease Similarity of Disease Ontology Sdo. The Disease Ontology (DO)33 is an open source ontological 
description of human disease, organized from a clinical perspective of disease etiology and location. The terms in 
DO are disease names or disease-related concepts and are organized in a directed acyclic graph (DAG). Two linked 
diseases in DO are in an “is-a” relationship, which means one disease is a subtype of the other linked disease. And 
the lower a disease is in the DO hierarchy, the more specific the disease term is. We calculated the semantic 
similarity between any pair of the diseases using the tool DOSim34. For a disease term s in DO, the probability that 
the term is used in disease annotations is estimated as ps, which is the number of disease term s or its descendants in 
DO divided by the total number of disease terms in DO. Then the semantic similarity of two diseases s and s’ is 
defined as the information content of their lowest common ancestor by: 

Sss '
do = − log min

x∈C (s,s ')
px               (5) 

where C(s,s’) is the set of all common ancestors of diseases s and s’. 

Disease Similarity of Disease Genes Sgene. Disease-causing aberrations in the normal function of a gene define that 
gene as a disease gene. We collected all disease genes for each disease from “phenotype-gene relationships” field 
from OMIM database. Then we calculated the pairwise disease similarity between diseases s and s’ based on the 
average of sequence similarities of their disease gene sets: 

Sss '
gene = 1

| G(s) || G(s ') |
SW (Gi (s),Gj (s '))

j=1

|G (s ')|

∑
i=1

|G (s )|

∑             (6) 

where given a disease s, we presented its disease gene set as G(s); then |G(s)| is the size of the disease gene set of 
disease s. The sequence similarity function of two disease genes SW was calculated as a Smith-Waterman sequence 
alignment score. 

Methodology 

In this section we present the details of the proposed DDR approach. Suppose we have n information sources to 
measure drug similarity and m information sources to measure disease similarity. Let Dk∈ℝn×n be the drug similarity 
matrix measured on the k-th information source, and suppose there are in total Kd information sources to measure the 
drug similarities. Similarly, let Sl∈ℝm×m be the disease similarity matrix measured on the l-th information source 
and suppose there are Ks sources to measure the disease similarities. Let U∈ℝn×C

D be the latent drug grouping 
matrix with CD the number of drug groups, and Uij indicates the possibility that the i-th drug belonging to the j-th 
drug cluster. V∈ℝm×C

S be the latent disease grouping matrix with CS the number of disease groups, and Vij 
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indicating the possibility that the i-th disease belonging to the j-th disease cluster. R∈ℝn×m be the observed (i.e., 
known) drug-disease association matrix with Rij=1 if the association between the i-th drug and j-th disease is 
observed, and Rij=0 otherwise. Then we aim to analyze the drug-disease network by minimizing the following 
objective: 

J = J0 + λ1J1 + λ2J2               (7) 

where the three parts in the objective are: 

• The reconstruction loss of observed drug-disease associations: 

J0 =||Θ−UΛV T ||F
2               (8) 

Here Θ∈ℝn×m is the estimated dense version of R, and Λ∈ℝC
D
×C

S encodes the relationship between drug 
clusters and disease clusters.  

• The reconstruction loss of drug similarities: 

J1 = ω k || Dk −U
k=1

Kd∑ UT ||F
2 +δ1 ||ω ||2

2             (9) 

Here the estimated drug similarity matrix is UUT, and ω∈ℝK
d
×1 is the nonnegative weight vector when 

aggregating the reconstruction loss on different drug information sources. The L2 norm regularization is 
added to avoid trivial solution35 and δ1≥0 is the tradeoff parameter. 

• The reconstruction loss of disease similarities: 

J2 = π ll=1

Ks∑ || Sl −VV T ||F
2 +δ 2 ||π ||2

2           (10) 

Here the estimated disease similarity matrix is VVT, and π∈ℝK
s
×1 is the nonnegative weight vector when 

aggregating the reconstruction loss on different disease information sources. The L2 norm regularization is 
added for the same reasons in equation (9). 

Putting everything together, we obtained the optimization problem to be resolved: 

                                                                            minU,V,Λ,Θ,ω,πJ                                                                                  (11)   

subject to U≥0, V≥0, Λ≥0, ω≥0, ωT1=1, πT1=1, PΩ(Θ)= PΩ(R) 

where Ω is the set of indices of the observed associations, and PΩ is the projection operator on obtaining the entries 
of a matrix indexed by the indices in Ω . Thus the constraint PΩ(Θ)= PΩ(R) restricts the estimated drug-disease 
associations should include the ones that are already observed. Note that to enhance the interpretability of the 
learned model, we require U, V, and Λ to be nonnegative, ω and π to be in simplexes. As there are lots of symbols 
and notations involved in problem (11), we summarize them in Table 1. To further help understanding those 
symbols as well as their roles in problem (11), we also provide a graphical illustration of the main idea of DDR in 
Figure 1. 

Table 1. Notations and symbols of the methodology 

Notation Size Meaning 
Dk n×n The k-th drug similarity matrix 
S l m×m The l-th disease similarity matrix 
U n×CD Drug cluster assignment matrix 
V m×CS Disease cluster assignment matrix 
Λ CD×CS Drug-disease cluster relationship matrix 
R n×m Observed drug-disease association matrix 
Θ n×m Densified estimation of R 
ω Kd×1 Drug similarity weight vector 
π Ks×1 Disease similarity weight vector 
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Figure 1. A graphical illustration of the main idea of DDR. There are multiple information sources that we can 
utilize to construct drug/disease similarities, and the constructed drug/disease similarity matrices are denoted by 
{Dk}k=1

Kd  or {Sl}l=1
Ks . There is also an observed drug-disease association matrix R. Then DDR can learn the 

drug/disease grouping matrix U or V, the estimated drug-disease association matrix Θ and the importance of 
different drug/disease information sources ω or π. 

 

Our proposed DDR method integrates multiple drug similarities, multiple disease similarities, and known drug-
disease associations to achieve a global estimation on the entire drug-disease network including the intrinsic drug 
similarity, intrinsic disease similarity, as well as drug-disease associations. DDR formulates such a network 
estimation problem as a constrained nonlinear optimization problem. Since there are multiple groups of variables 
involved in the optimization problem (11), we adopt an efficient solution based on the Block Coordinate Descent 
(BCD) strategy36. The BCD approach works by solving the different groups of variables alternatively until 
convergence. At each iteration, it solves the optimization problem with respect to one group of variables with all 
other groups of variables fixed. Due to lack of space, details of the BCD solution procedure and its complexity 
analysis is provided at http://astro.temple.edu/~tua87106/ddr_bcd.pdf. 

Results and Discussion 

In this section we present experimental evaluation results of the proposed DDR algorithm on a drug repositioning 
task. 

Data Description. The benchmark dataset, which is used to test the performance of DDR using a community 
standard, was extracted from NDF-RT37 by Li and Lu22. It spans 3,250 treatment associations between 799 drugs 
and 719 diseases. We considered drug information from three data sources: chemical structure, target protein, and 
side effect. Thus, three 799×799 matrices were used to represent drug similarities between 799 drugs from different 
perspectives. Similarly, we considered disease information from three data sources: disease phenotype, disease 
ontology, and disease gene. Thus, three 719×719 matrices were used to represent disease similarities between 719 
human diseases from different perspectives. The presence or absence of known associations between drug and 
disease was denoted by 1 or 0 respectively. Thus, a 799×719 matrix R used to represent the known drug-disease 
associations. We plotted the statistic of the known drug-disease associations in Figure 2. In that dataset, most of 
drugs (75%) treat <5 diseases; 18% of drugs treat 5 to 10 diseases; only 7% of drugs treat >10 diseases (Figure 2(a)). 
Although the disease hypertension has 78 related drugs, 80% of diseases have only <5 drugs; 10% of diseases have 
5-10 drugs; and remaining 10% of diseases have >10 drugs. 
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Figure 2. Statistics of the known drug-disease association dataset. (a) The number of indicated diseases per drug. (b) 
The number of drugs per disease. 

 

Method Comparison. We used a 10-fold cross-validation scheme to evaluate drug repositioning approaches. To 
ensure the validity of the test cases, we held out all the associations involved with 10% of the drugs in each fold, 
rather than holding out associations directly. To obtain robust results, we performed 50 independent cross-validation 
runs, in each of which a different random partition of dataset to 10 parts was used. In our comparisons, we 
considered five drug repositioning methods: (1) DDR using Simple Average. The method only considers 
reconstruction loss of observed drug-disease associations (i.e., J0 of objective formula (7) in the methodology 
section), and assumes each drug/disease source is equally informative. Thus the method uses the average of 
drug/disease similarity matrices as the integrated drug/disease similarity. (2) DDR with Weighted Drug Similarity. 
The method considers reconstruction losses of observed drug-disease associations and drug similarities (i.e., J0 and 
J1 in objective formula (7)). The method uses the average of disease similarity matrices as integrated disease 
similarity, and automatically learns drug similarity weight vector (ω) based on the contributions of drug information 
sources to the prediction. (3) DDR with Weighted Disease Similarity. The method considers reconstruction losses 
of observed drug-disease associations and disease similarities (i.e., J0 and J2 in objective formula (7)). The method 
uses the average of drug similarity matrices as integrated drug similarity, and automatically learns disease similarity 
weight vector (π) based on the contributions of disease information sources to the prediction. (4) DDR with 
Weighted Drug and Disease Similarities. The method considers all reconstruction losses proposed in the paper 
(i.e., formula (7) as a whole). The method automatically learns drug similarity weight vector (ω) and disease 
similarity weight vector (π) together based on the contributions of drug and disease information sources to the 
prediction. (5) PREDICT with All Drug and Disease Similarities. To our knowledge, PREDICT19 is the only 
other method could consider both drug and disease information sources. PREDICT uses unweighted geometric mean 
of pairs of drug-drug and disease-disease similarity measures to construct classification features and subsequently 
learns a logistic regression classifier that distinguishes between true and false drug-disease associations. PREDICT 
could not provide weight for each drug/disease information source. Figure 3 shows the averaged ROC curves of 50 
runs of the cross-validation for different methods based on the experiment. 

Figure 3 shows that our proposed DDR framework is effective for drug repositioning tasks. Without considering 
reconstruction loss of any similarity measure, DDR using Simple Average obtains an averaged AUC score of 
0.7985. When considering weighted drug similarity (i.e., reconstruction loss of drug similarities) or weighted disease 
similarity (i.e., reconstruction loss of disease similarities), DDRs obtain averaged AUC scores of 0.8508 or 0.8366 
respectively. In the experiment, drug-based optimization (i.e., DDR with Weighted Drug Similarity) obtains a higher 
AUC score than disease-based optimization (i.e., DDR with Weighted Disease Similarity). This could be partially 
explained with the following reason. The 799 drugs we studied are marketed medications, which usually have rich 
and precise pharmacological data; thus drug-based optimization might be preferred in this case. For novel drugs or 
clinical candidates, disease-based optimization might be preferred to overcome missing knowledge in the 
pharmacology of a drug38 (e.g., additional targets, unknown side effect). When considering weighted drug similarity 
and weighted disease similarity together, DDR obtain the highest averaged AUC score (0.8700). The observation 
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indicates that drug-based optimization and disease-based optimization could be complementary, and computational 
drug repositioning tasks should optimize both drug similarity and disease similarity. Another observation is 
PREDICT with All Drug and Disease Similarities obtains an averaged AUC score of 0.8301. Although PREDICT 
considers drug/disease similarity and utilizes a logistic regression to weigh classification features, the result 
indicates that their strategy of feature construction (assembles all possible combinations of drug/disease similarity 
measures together as classification features) is less accurate than DDR. 

 
Figure 3. The averaged ROC comparison of five drug repositioning approaches generated from 50 runs of 10-fold 
cross-validation. Methods are sorted in legend of the figure according to their AUC score. 

 

One “bonus” characteristic of DDR is it provides interpretable importance of different information sources based on 
their contributions to the prediction. The i-th element of drug/disease weight vector ω/π corresponds to the i-th 
drug/disease data sources. Since we constrained ω/π to be in a simplex in problem formula (11), the sum of all 
elements of ω/π is 1. Obtained from DDR with Weighted Drug and Disease Similarities, the averaged DDR weights 
of each data source and their standard deviations during the cross-validation experiments are plotted in Figure 4. For 
drug data sources, chemical structure obtains averaged weight of 0.2744, target protein obtains averaged weight of 
0.2295, and side effect obtains a much higher averaged weight of 0.4961 (Figure 4(a)). This could be partially 
explained with the following reasons. Chemical structure and target protein sources focus on drug’s molecular 
mechanism of action (MOA) from a genotypic perspective. However, the pre-clinical outcomes based on MOA 
often do not correlate well with therapeutic efficacy in drug development. It is estimated that of all compounds 
effective in cell assays, only 30% of them could work in animals. Even worse, only 5% of them could work in 
humans39. Side effects are generated when drugs bind to off-targets, which perturb unexpected metabolic or 
signaling pathways. For marketed drugs, which have relatively complete side effect profiles, side effect information 
from clinical patients may be seen as valuable read-outs of drug effects directly on human bodies40 (i.e., with less 
translational problems). Thus, side effects could server as a promising perspective for drug repositioning. For 
disease data sources, phenotype obtains averaged weight of 0.4248, disease ontology obtains averaged weight of 
0.3958, and disease gene obtains a lower averaged weight of 0.1794 (Figure 4(b)). The lower weight of disease gene 
data source may be due to the fact that the gap between phenotype (human disease) and genotype (human gene) is 
too large41, and the known associations between diseases and genes (obtained from OMIM) are incomplete. 
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Figure 4. Distribution of averaged weights and standard deviations of the similarity weight vectors obtained by 
DDR. (a) Drug similarity weight vector ω contains weights of chemical structure, target protein, and side effect data 
sources. (b) Disease similarity weight vector π contains weights of disease phenotype, disease ontology, and disease 
gene sources. 

 

Novel Predictions and Case Studies. We performed an additional leave-disease-out experiment to demonstrate the 
capability of DDR on uncovering drug-disease associations and predicting novel drug candidates for each disease. 
To ensure the validity of the test cases, we held out all the known drug-disease associations with the tested disease. 
The validation setting mimics a real-world setting: once rare/unknown diseases without any treatment information 
arise, a computational drug repositioning method should provide potential drugs based on characteristics (e.g. 
phenotypes, related genes) of the new diseases and the existing drug/disease similarities. In the experiment, we 
alternatively leave each disease i out and ran DDR (considered weighted drug and disease similarities). More 
specifically, we set all elements in i-th column of matrix R to 0, and used this R along with drug/disease similarity 
matrices as inputs of DDR. Then we used i-th column of the densified estimated matrix Θ as the drug prediction 
scores for the disease i. In this way, we got prediction scores for all possible associations between the 799 drugs and 
719 diseases. 

As an example, treatment predictions for Alzheimer's disease (AD) were analyzed. For the six drugs which are 
known to treat AD, DDR assigned scores of 0.7091 to Selegiline, 0.6745 to Valproic Acid, 0.6348 to Galantamine, 
0.5675 to Donepezil, 0.5571 to Tacrine, and 0.5233 to Rivastigmine, which are significantly larger than those of the 
other 793 drugs (mean and standard deviation are 0.1565±0.1628). Table 2(a) shows the top 10 drugs predicted for 
AD by our DDR approach. Of the 10 drugs, only three (Selegiline, Valproic Acid, and Galantamine) appear in our 
known drug-disease association list. The remaining 7 predicted drugs (along with other high-ranked ones in the 
leave-disease-out experiment) could be considered as drug repositioning candidates for AD. Some predictions are 
explainable and supported by clinical evidence from ClinicalTrials.gov (i.e., pharmaceutical investigators have been 
aware of the associations, which are still in the experimental stages). Metformin, a drug commonly used to treat type 
II diabetes, can help trigger the pathway used to instruct stem cells in the brain to become neural cells42. Clinical 
trial NCT01965756 is under way to evaluate Metformin as a potential therapy for AD. Bexarotene, a skin cancer 
drug (for cutaneous T-cell lymphoma) that rapidly removed the damaging protein implicated in the progression of 
the illness from the brains of mice43, has been tested to treat AD in recent clinical trials (NCT01782742 and 
NCT02061878). Nilvadipine, a calcium channel blocker (CCB) for treatment of hypertension, also blocks the 
production of amyloid proteins linked to AD44. Nilvadipine has been tested in a clinical trial as a possible treatment 
for AD in Ireland (NCT02017340). 

Another example we analyzed is treatment predictions for Systemic Lupus Erythematosus (SLE). For the three 
drugs which are known to treat SLE, DDR assigned scores of 0.7269 to Azathioprine, 0.6862 to Triamcinolone, and 
0.6374 to Hydroxychloroquine, which are significantly larger than those of the other 796 drugs (mean and standard 
deviation are 0.1707±0.1617). Table 2(b) shows the top 10 drugs predicted for SLE by our DDR approach. The top 
10 predictions include all the three known treatments to SLE, which shows the effectiveness of our method. The 
remaining 7 predicted drugs (along with other high-ranked ones in the leave-disease-out experiment) could be 
considered as drug repositioning candidates for SLE. Some predictions are explainable and supported by clinical 
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evidence from ClinicalTrials.gov. Leflunomide, a pyrimidine synthesis inhibitor, is used to treat moderate to severe 
rheumatoid arthritis and psoriatic arthritis. A genetic link study shows rheumatoid arthritis and SLE sufferers share a 
variant of the same STAT4 gene, and therapies developed to treat one disease may possibly be able to treat the 
other45. Therefore, it is not surprising to see Leflunomide is tested as a treatment for SLE in a clinical trial 
(NCT00637819). Nelfinavir, one of the protease inhibitors, has been approved for use in the treatment of human 
immunodeficiency virus (HIV). Protease inhibitors have been shown to interfere with binding of anti-double 
stranded DNA antibodies to their targets (some bindings may lead to organ damage) and may decrease inflammation 
in SLE46. Recently, a clinical trial (NCT02066311) has been proposed to evaluate Nelfinavir as a potential therapy 
for SLE. 

 

Table 2. Top 10 drugs for diseases Alzheimer's Disease (AD) and Systemic Lupus Erythematosus (SLE) based on 
DDR predictions 

(a) Top 10 drugs predicted for AD 
 

(b) Top 10 drugs predicted for SLE 

Drug Prediction Score Clinical Evidence? 
 

Drug Prediction Score Clinical Evidence? 

Selegiline* 0.7091 — 
 

Desoximetasone 0.7409 No 

Carbidopa 0.6924 No 
 

Azathioprine* 0.7269 — 

Amantadine 0.6897 No 
 

Leflunomide 0.7078 Yes 

Procyclidine 0.6826 No 
 

Fluorometholone 0.7054 No 

Valproic Acid* 0.6745 — 
 

Triamcinolone* 0.6862 — 

Metformin 0.6543 Yes 
 

Beclomethasone 0.6522 No 

Bexarotene 0.6426 Yes 
 

Etodolac 0.6445 No 

Neostigmine 0.6385 No 
 

Hydroxychloroquine* 0.6374 — 

Galantamine* 0.6348 — 
 

Nelfinavir 0.6371 Yes 

Nilvadipine 0.6159 Yes 
 

Mercaptopurine 0.6150 No 

* denotes the drug is known and approved to treat the disease 

 

Conclusion 

We have proposed a general computational framework, called DDR, to explore drug-disease association for drug 
repurposing hypothesis generation. Our method takes into consideration multiple drug similarities, multiple disease 
similarities, and known drug-disease associations, to uncover the potential additional associations among other 
unlinked drugs and diseases. Experimental results demonstrate the effectiveness of the proposed method, and 
suggest that our method could help identify drug repositioning opportunities, which will benefit patients by offering 
more effective and safer treatments. 
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