
 
 

  

Development and validation of an electronic phenotyping algorithm for chronic kidney disease 
 

Girish N Nadkarni, MD, MPH, CPH1, Omri Gottesman, MD1, James G Linneman, MS3, Herbert 
Chase, MD3, Richard L Berg, MS3, Samira Farouk, MD1, Rajiv Nadukuru, MSc1, Vaneet Lotay, 
MSc1, Steve Ellis, MS1, George Hripcsak, MD2, Peggy Peissig, PhD3, Chunhua Weng, PhD2 and 

Erwin P Bottinger, MD1 
1. Icahn School Of Medicine at Mount Sinai, New York, NY; 2. Columbia University Medical 

Center, New York, NY; 3. Marshfield Clinic Research Foundation, Marshfield, WI 
 

Abstract 
Twenty-six million Americans are estimated to have chronic kidney disease (CKD) with increased risk for 
cardiovascular disease and end stage renal disease. CKD is frequently undiagnosed and patients are unaware, 
hampering intervention. A tool for accurate and timely identification of CKD from electronic medical records 
(EMR) could improve healthcare quality and identify patients for research. As members of eMERGE (electronic 
medical records and genomics) Network, we developed an automated phenotyping algorithm that can be deployed 
to identify rapidly diabetic and/or hypertensive CKD cases and controls in health systems with EMRs It uses 
diagnostic codes, laboratory results, medication and blood pressure records, and textual information culled from 
notes. Validation statistics demonstrated positive predictive values of 96% and negative predictive values of 93.3. 
Similar results were obtained on implementation by two independent eMERGE member institutions. The algorithm 
dramatically outperformed identification by ICD-9-CM codes with 63% positive and 54% negative predictive 
values, respectively. 
 
Introduction: Chronic kidney disease (CKD) affects an estimated 10% to 15% of individuals in the United States, 
Europe and Asia. (1) CKD is a largely asymptomatic (‘silent’) yet serious condition associated with premature 
mortality, decreased quality of life, and increased health care expenditure. Approximately two thirds of CKD are 
attributable to diabetes (40% of CKD cases) and hypertension (28% of cases). (2) CKD is defined in most cases 
clinically by loss of kidney function as estimated by glomerular filtration rate (eGFR) below a threshold of 60 
ml/min/1.73m2 (normal eGFR range 90 to 120 ml/min/1.73m2) and/or persistent increased urinary albumin excretion 
lasting more than 90 days. (2)Thus, identification of the vast majority of cases of diabetes- and/or hypertension-
attributable CKD rests on appropriate and timely ordering and interpretation of eGFR and/or urinary albumin 
excretion laboratory results. 
Untreated CKD can result in end-stage renal disease (ESRD) and necessitate dialysis or kidney transplantation in 
2% of cases. (3) CKD is also a major independent risk factor for cardiovascular disease, all-cause mortality 
including cardiovascular mortality. (2) Current practice guidelines recommend tight control of blood pressure and/or 
hyperglycemia in particular in the presence of albuminuria to reduce ESRD and CVD risks in CKD patients. (4) 
However, CKD is alarmingly under diagnosed in affected primary care patients, even those with diabetes and/or 
hypertension. For example, among 122,502 adults enrolled in Kidney Early Evaluation KEEP, only 20% of 
participants with CKD stage 3 and 50% with stage 4-5 were aware of their disease. (5) Alarmingly, 43% or patients 
with newly diagnosed ESRD had not received specialist nephrology care and of those who did, only 25% had done 
so for more than one year. (5) As a result of the systematic and widespread failure to establish the diagnosis of CKD 
with inexpensive routine laboratory tests in primary care, affected yet unaware patient populations may not benefit 
from preventive measures to reduce major outcomes. The Electronic Medical Records and Genomics (eMERGE) 
Network is a National Human Genome Research Institute (NHGRI)-funded consortium tasked with developing 
methods and best-practices for the utilization of the Electronic Medical Record (EMR) as a tool for genomic 
research. (6) The Network’s phenotyping workgroup established best practices to develop and use phenotyping 
algorithms processing EMR data from disparate sources such as diagnosis and procedure codes, laboratory data, 
medication use, and imaging studies in order to identify cases and controls with a high degree of accuracy and 
confidence.  The Network’s PheKB is a repository for phenotype algorithms. Phenotype algorithms on PheKB are 
validated at the creating site as well as at least 2 other Network institutions.  

Here we describe the development of an automated algorithm as part of the eMERGE phenotyping framework that 
combines data from various EMR sources to identify diabetic and/or hypertensive patients with CKD. To the best of 
our knowledge, there have been no previous attempts to combine disparate sources of EMR data to identify CKD 
cases/controls. Positive and negative predictive values of the algorithm were validated extensively at the primary 
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development site, Mount Sinai Medical Center, and significantly outperformed common recorded International 
Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes associated with CKD. Finally, 
the CKD algorithm was successfully implemented and validated at two additional eMERGE member institutions. 
Thus, our novel phenotyping tool can be readily deployed by modern health systems to identify undiagnosed cases 
together with established cases of CKD associated with diabetes and/or hypertension for population management, 
quality improvement or research initiatives.    

Materials and Methods 

Participating Site Overview: Three institutions participated in the validation of this algorithm. Each institution uses 
an EMR and the key features of this are presented in Table 1. All participants represent the population receiving 
routine clinical care at the study institutions.  

Table 1. Overview of participating institutions’ EMR and recruitment models 

Institution EMR Overview Recruitment 
Model 

Icahn School Of Medicine at Mount 
Sinai (New York, NY, USA) 

Comprehensive vendor-based inpatient and 
outpatient EMR (Epic Systems, Verona, Wisconsin, 

USA) since 2003 with 10+ years ICD-9 data 

Clinical 
population based 

Marshfield Clinic Research 

Foundation (Marshfield, Wisconsin, 
USA) 

Comprehensive internally developed EMR since 
1985 75% participants have 20+ years medical 

history 

Clinical 
population based 

Columbia University Medical Center 

(New York, NY, USA) 

Comprehensive vendor-based and self-developed 
inpatient and outpatient EMRs (Allscripts and 

iNYP) since 1990s with 22+ years of structured and 
unstructured data 

Clinical 
population based 

 

Algorithm development: We used the 2012 Kidney Disease: Improving Global Outcomes (KDIGO) criteria for 
defining CKD stage 3 or higher (eGFR<60 ml/min/1.73m2 for duration ≥3 months, based on documentation or 
inference. The approach utilized common EMR data including diagnostic codes, medications and laboratory results.  
All sites utilized the International Classification of Diseases, 9th revision, clinical modification (ICD9-CM) 
diagnostic codes. Table 2 shows the ICD9 diagnosis and procedure codes applied in the algorithm along with the 
stages in the algorithm where they were used. ICD9 codes for diabetic/hypertensive kidney disease (A1, B2); kidney 
transplant (B1); dialysis (B3) were used for inclusion while codes for acute kidney failure (B5) and other causes of 
kidney disease including HIV, immunologic and developmental causes (B9) were used for exclusion criteria. We 
also implemented text searches to identify terms in physician observation reports for exclusion criteria. These text 
searches were picked by GNN and EPB using professional expertise as nephrologists and are listed at the end of 
Table 2.  We chose to utilize a rule-based methodology because this approach has been deployed at eMERGE 
member institutions collaborating on phenotype development and has proven to be replicable across institutions and 
to produce strong predictive values. 
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Table 2. ICD-9 Diagnosis, procedure codes and text searches applied in algorithm 

A1: 585.xx Chronic kidney disease 

B1: 55.6x Transplant of kidney (procedure) 

B1: V42.0 Organ or tissue replaced by kidney transplant 

B2: 250.4x Diabetes with renal manifestations 

B2: 403.xx Hypertensive chronic kidney disease 

B2: 404.xx Hypertensive heart and chronic kidney disease 

B3: V45.1 Renal dialysis status 

B3: V56.xx Encounter for dialysis and dialysis catheter care 

B3: 996.73 Complications of renal dialysis 

B3: 38.95 Venous catheter for renal dialysis 

B5: 584.xx Acute kidney failure 

B9:042.xx-044.xx Human immunodeficiency virus (HIV) infection 

B9: 282.6 Sickle cell disease 

B9: 581.xx Nephrotic syndrome 

B9: 582.xx Chronic glomerulonephritis 

B9: 583.xx Nephritic and nephropathy 

B9: 446.xx Polyarteritis nodosa and allied conditions 

B9: 447.6 Vasculitis 

B9: 753.xx Renal agenesis and dysgenesis 

Text search terms used in exclusion 
criteria 

HIVAN/HIV associated nephropathy; Congenital [within 2 words of) 
kidney(s)]; APKD [adult polycystic kidney disease]; Sickle Cell 

Disease; IgA Nephropathy; Nephrotic Syndrome; Nephritic 
Syndrome; Glomerulonephritis; Glomerulosclerosis; Lupus 

Nephritis; Wegener's granulomatosis; Goodpasture's syndrome 

With respect to laboratory results, since various formulae are used to estimate the GFR leading to non-uniformity of 
eGFR results reported by clinical laboratories to the EMR. We overcome the apparent non-uniformity of eGFR lab 
results calculation and reporting in EHR by recalculating eGFR de novo with the CKD-EPI formula. (7) The CKD-
EPI creatinine equation is based on the same four variables as the MDRD Study equation, but uses a 2-slope 
“spline” to model the relationship between estimated GFR and serum creatinine, and a different relationship for age, 
sex and race. The equation was reported to perform better and with less bias than the Modification of Diet in Renal 
Disease (MDRD) Study equation. We did not allow patients that had serum creatinine tests on consecutive days or 
within the same day as we assumed these were inpatient encounters. This was done to exclude acute kidney injury 
(AKI) events from the laboratory tests used for the algorithm. For patients that had duplicate serum creatinine tests 
meaning they had two tests at the same date/time but different values we kept the test with the maximum value in 
the algorithm. The patients fulfilling the criteria were then filtered through eMERGE Network’s type 2 diabetes (8) 
and a hypertension algorithm that was developed at Icahn School of Medicine at Mount Sinai. These validated 
algorithms are shown in Figure 1 and 2. The patients then were classified into diabetic CKD (DCKD), hypertensive 
CKD (HCKD) or diabetic/hypertensive CKD (DHCKD) cases. The complete algorithm for cases is shown in Figure 
3. 
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Figure 1. Type 2 Diabetes case algorithm from the eMERGE Network 
 

Figure 2. Hypertension case algorithm developed at Icahn School of Medicine 
at Mount Sinai  
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A similar approach was also adopted for the CKD controls algorithm with identical diagnostic codes, laboratory 
tests and text searches for exclusion criteria. Participants with 2 eGFR values from 60-89 ml/min/1.73m2 (reduced 
kidney function) and at least one eGFR>120 ml/min/1.73m2 (hyperfiltration) were also identified during this 
process. Since both reduced kidney function and hyperfiltration indicate an unrecognized early stage of kidney 
disease, including diabetic and hypertensive CKD they were excluded from all control sets. Once controls were 
identified, they were then filtered through eMERGE networks type 2 diabetes and hypertension algorithms and then 
classified as diabetic, hypertensive or diabetic/hypertensive controls. The algorithm for CKD controls is shown in 
Figure 4. 

   
Implementation:  Data elements needed for identification of cases or controls were extracted from the EMR and 
stored in a shadow relational database.  Deidentificaton, pruning (elimination of redundant data points), 
transformations (for example, separating units from numeric values when they come from the EMR as a single 
string) and data cleansing were performed as needed.  SQL queries were developed and unit-tested for each object in 
the cases and controls algorithms.    The queries were then combined to implement the logic of the algorithms.  In 
the Mount Sinai implementation, the subjects and observations qualifying at each step of the algorithm were saved, 

Figure 3. Phenotyping algorithm for chronic kidney disease cases 
 

Figure 4. Phenotyping algorithm for chronic kidney disease controls 
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facilitating subsequent validation reconciliation and algorithm refinements.  A similar process of extracting EMR 
data to a shadow database and developing standalone queries was used at the validating sites.  The decision logic for 
this algorithm and the use of specific terms extracted from textual clinical documentation (Table 2) exceed the 
clinical decision support capabilities embedded in commercial EMR’s.  However Mount Sinai has developed an 
external CDS engine that is capable of executing complex coded decision support logic and is integrated with the 
Epic EMR, thereby enabling the automated CKD algorithm to be integrated into clinical workflows to provide alerts 
to clinicians of patients at risk for CKD. (9)The validating sites have internally developed EMR’s into which they 
can embed complex CDS code to provide alerts within existing clinical workflows.  Sites using commercial EMR’s 
would most likely not be able to implement the CKD algorithm with the available technology. 

Data collection: The algorithm was deployed to randomly select 600 each of CKD cases and controls from the 
EMR. Two independent physician reviewers (GNN and SF) at Mount Sinai Hospital manually reviewed each 
medical record. The gold standard for a case or a control was considered to be manual review by the physician 
reviewers. Any differences in agreement were arbitrated after discussion between the two reviewers. Identification 
of CKD in the EMR was ascertained using the CKD hierarchy of ICD9 codes (Table 3). A control was considered as 
correctly identified by ICD-9 codes if there was a diagnostic code identifying hypertension and/or diabetes as shown 
without an accompanying code for CKD (Table 3). While reviewing the charts, urine protein measurements as 
microalbumin/creatinine ratio and/or urine protein/creatinine ratios were also abstracted. When multiple 
measurements were available, the most recent measurement was recorded. In addition, documented referral to a 
nephrologist was abstracted. The algorithm was then deployed at Marshfield Clinic and Columbia University for 
secondary validation. Chart review by physician reviewers was used to validate 50 cases and 50 controls at each 
secondary site  

Table 3. ICD-9 codes used for identifying cases and controls  

Disease ICD-9 code 

End stage renal disease 585.1 to 585.9 

Hypertensive chronic kidney disease, unspecified, with chronic kidney disease 
stage I through stage IV, or unspecified 

403.90 

Hypertensive nephropathy 403.10 

Hypertensive renal disease 403 

Hypertensive heart and renal disease 404 

Diabetic nephropathy 583.81 

Diabetic nephrosis 581.81 

Diabetes with renal manifestations, type II or unspecified type, not stated as 
uncontrolled 

250.40 

Diabetes with renal manifestations, type II or unspecified type, uncontrolled 250.42 

Diabetes with other specified manifestations, type II or unspecified type, not 
stated as uncontrolled 

250.80 

Diabetes with other specified manifestations, type II or unspecified type, 
uncontrolled 

250.82 

Intercapillary glomerulosclerosis 581.81 

Kimmelstiel-Wilson syndrome 581.81 

Hypertension 401-405 excluding 403 and 404 

Diabetes Mellitus Type 2 250.00 to 250.93 excluding 
250.40, 250.42,250.80 and 

250.82) 
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Data analysis: After manually reviewing the cases, the inter-rater agreement/kappa statistic was calculated. 
Summary statistics (positive and negative predictive values) for identification of cases and controls with the 
algorithm and ICD-9 codes with manual as the gold standard were estimated. Medians and interquartile ranges and 
proportion of missing values for the urine protein measurements and the percentage of patients that had been 
referred to a nephrologist were also calculated for the primary site. Positive and negative predictive values were then 
calculated individually for both secondary sites. All analyses were performed using STATA SE version 12, College 
Station, TX. 

Results: A total of 1200 medical records were reviewed. Out of these, 14(1.16%) were excluded due to confidential 
status or missing data, leaving 1186 patients included in the final analysis. The inter-rater agreement/kappa statistic 
between the two independent reviewers (SF and GNN) was 92%. After arbitration of disagreements there were a 
total of 609 cases (202 for Diabetic CKD [DCKD], 207 for Hypertensive CKD [HCKD] and 200 for Diabetic and 
Hypertensive [DHCKD]) and 577 controls (190 for DCKD, 190 for HCKD and 197 for DHCKD) by manual review. 
The summary of the comparison between the algorithm and ICD9 codes are presented in Table 4 for the primary 
site. The comprehensive algorithm correctly identified 569/609(93.43%) of cases and 553/577(95.84%) of controls. 
In contrast, conventional screening with ICD9 codes only identified 244/609(40.06%) of cases and 
433/577(75.04%) of controls. The positive predictive value (PPV) for the algorithm was 95.95% and the negative 
predictive value (NPV) was 93.25% compared to a PPV of 62.89% and a NPV of 54.26% compared to identification 
using ICD9-CM diagnostic codes. The algorithm performed similarly at secondary sites with a PPV of 92% and a 
NPV of 100%[Table 5].   

Table 4. Comparison of phenotyping algorithm and ICD-9 codes at primary site (Mount Sinai Hospital) 

 Manual chart review Manual chart review 
Phenotyping 
Algorithm 

Case Control Total ICD-9 
Codes 

Case Control Total 

Case 569 24 593 Case 244 144 593 
Control 40 553 593 Control 365 433 593 
Total 609 577 1186 Total 609 577 1186 

Positive Predictive Value 
(95% Confidence Interval) 

95.95 
(93.95 -97.33) 

Positive Predictive Value 
(95% Confidence Interval) 

62.89 
(57.84-67.67) 

Negative Predictive Value 
(95% Confidence Interval) 

93.25 
(90.85-95.08) 

Negative Predictive Value 
(95% Confidence Interval) 

54.26 
(50.73-57.75) 

 

Table 5. Performance of phenotyping algorithm at secondary sites (Marshfield Clinic and Columbia University 
Medical Center 

 Marshfield 
Clinic 

Columbia University 
Medical Center 

 Manual chart review Manual chart review 
 Case Control Total Case Control Total 

Phenotyping 
Algorithm 

      

Case 46 4 50 46 4 50 
Control 0 50 50 0 50 50 
Total 46 54 100 46 54 100 

Negative Predictive Value 
(95% Confidence Interval) 

92 
(79.89-97.41) 

92 
(79.89-97.41) 

Negative Predictive Value 
(95% Confidence Interval) 

100 
(91.11-100) 

100 
(91.11-100) 

As part of secondary analysis the urine protein/creatinine or the urine microalbumin/creatinine values for DCKD, 
HCKD and DHCKD cases (Table 6). For DCKD, the median microalbumin/creatinine ratio was 39 microgram/mg 
of creatinine. Similarly for HCKD the median microalbumin/creatinine ratio was 5.5 microgram/mg of creatinine 
and the protein/creatinine ratio and for DHCKD, the median microalbumin/creatinine and protein/creatinine ratios 
were 35 microgram/mg of creatinine and 15 mg/mg of creatinine, with 37% and 61% of patients respectively 
lacking measurements at any point of time. However, there was no record of a urine albumin or protein excretion for 
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a significant proportion of patients (ranging from 30-98%) depending on the subcategory of CKD. (Table 6) We also 
determined the proportion of participants that were referred to a nephrologist during any point of their clinical 
course in the EMR. Out of a total of 599 cases, only 112(18.7%) were referred to a nephrologist at any point during 
their course. 

Table 6. Microalbuminuria and proteinuria measurements in CKD cases and controls 

 Diabetic CKD 

 Median (IQR) N (%) of missing values 

Microalbumin/Creatinine 39(10-215) 59/200(30) 

 Hypertensive CKD 

 Median (IQR) N (%) of missing values 

Urine microalbumin/creatinine 5.5(3-28) 196/200(98) 

Urine protein/creatinine in mg/gm 30(30-300) 173/200(87) 

 Diabetic and hypertensive CKD 

 Median (IQR) N (%) of missing values 

Urine microalbumin/creatinine 35(8-127) 74(37) 

 

Discussion: In the near future, EMRs will become one of the most important sources of data for both clinical and 
genomic association studies. Since data are present longitudinally, it may facilitate studying natural history of a 
disease process as well as the response to treatment in a “real world” scenario. However, identification of particular 
phenotypes, especially chronic, complex diseases, is challenging because of the complexity of data itself and the 
way in which it is recorded in EMR. However, with government interest driving the widespread use and adoption of 
EMR’s, this provides a vast and as-yet relatively untapped resource. (10) If robust phenotypes were constructed 
using meaningful information from various EMR sources, it would provide significant value for identifying patient 
cohorts that satisfy complex criteria. There has been significant debate about the optimal way to identify phenotypes 
in the EMR. (11) Automated approaches using electronic phenotyping and statistical analyses are popular as 
compared to simpler rule based systems. The utility of such phenotyping algorithms is manifold, including 
discovering novel genetic associations of complex diseases, tracking their natural history, isolating patients for 
clinical trials, and ensuring quality control in large institutions by ensuring that standard of care guidelines are met 
in these patients.  

Kidney disease is a complex, common problem challenging modern healthcare. It is a major independent risk factor 
for all-cause mortality including cardiovascular mortality and adjusted rates of all-cause mortality are seven times 
greater for dialysis patients than for individuals in the general population. (3,12,13)As CKD is a significant health 
problem, accurate identification of diabetic and/or hypertensive CKD cases and controls for both research and 
clinical purposes is imperative. Accurate identification of individuals satisfying specific criteria from a large 
institutional population allows us to enroll for randomized trials, predict/track outcomes/progression, and perform 
retrospective cohort studies. (14,15) Studying the progression of complex diseases such as CKD is difficult as the 
recruitment of cohorts is a laborious process that creates a bottleneck in both clinical and translational research. In 
order to streamline this process, there has been an impetus to create EMR linked biobanks to enroll individuals in 
routine clinical care settings. The push from healthcare regulatory agencies for electronic medical records (EMRs) 
that provide a large amount of information available for research purposes has also been integral in improving the 
formation of research cohorts. (16) With appropriate patient consent and de-identifying data, the EMRs of patients 
are available and allow the studying of evolution and progression of disease. (17,18) In clinical care settings, a 
wealth of data is available through ICD-9 codes, discrete laboratory results, test reports, patient demographics, and 
notes written by the treating physicians. All of these data are available in a longitudinal form with multiple patient 
visits over several years. If matched to biobanks, the EMR can be used to identify traits/phenotypes in a large 
number of patients for biomarker/genomics research, thereby substantially reducing the effort and time needed to 
identify markers or variants that influence disease development, progression, or medication response. (18–20) 
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Although there are novel genetic associations including UMOD, APOL1 and SHROOM3, there are other potential 
genetic associations that explain the differential rates of CKD in different ethnic populations. (21,22) Clinical 
decision making is challenging due to variability in the rates of progression and lack of widely-accepted guidelines 
to identify patients most at risk of progression to ESRD. (23,24) For studies to assess progression over the course of 
the patient’s history in the EMR, accurate identification of large numbers of patients is needed. Currently the only 
way of identifying CKD cases/controls is by manually reviewing laboratory values, which is cumbersome, or 
through ICD9 codes. To accomplish these goals, researchers need robust phenotyping algorithms to effectively 
leverage disparate data sources in the EMR. To the best of our knowledge, this algorithm is one of the first 
automated phenotyping algorithms for diabetic/hypertensive CKD. It significantly outperformed conventional 
screening with ICD9 codes and could be deployed to different EMRs in various healthcare institutions. Thus, an 
integrated approach using diagnostic codes, medications, and laboratory tests yielded significant improvement over 
non-integrated approaches.                            
Although there are no recommended guidelines for nephrologist referral in CKD stage 3, there are studies 
suggesting that such referrals may improve prognosis. (25,26) However, we demonstrated that only 18.7% of 
confirmed CKD cases were referred to a nephrologist at any point during their EMR course. Thus, identifying 
appropriate patients for referral to a nephrologist is one of the many clinical applications of this algorithm.  

Limitations: This algorithm does not include proteinuria or albuminuria measurements that are used to diagnose 
and stage CKD in addition to eGFR. This decision was based on the observation that in many instances urine 
albumin or protein excretion results are not recorded in the EMR. This approach was developed to classify co-
existing prevalent CKD and T2D and/or HTN because in the vast majority of cases, T2D and/or HTN precede CKD, 
especially when other etiologies of kidney dysfunction are excluded (as they are in the algorithm). In a sub-analysis, 
we found that > 95% of patients had a prior diagnosis of HTN and/or T2D before CKD, thus validating that the 
number of patients that might have CKD due to other etiologies are likely minimal. There was also a consideration 
of overfitting due to the high dimensionality of this problem under consideration. However, since the algorithm was 
replicated at multiple sites with near-identical results, this is likely to be negligible. Also, considering the low 
referral rate, it is possible that patients without EMR documented referral may have been referred to nephrologists 
outside the EMR.  

Conclusions: In summary, we describe the development and validation of an automated algorithm for identifying 
diabetic/hypertensive CKD cases and controls and also demonstrate its superiority over traditional identification 
using ICD-9 diagnostic codes. We believe that this algorithm could be used to accurately and rapidly identify a 
specific target cohort within the EMR for both research and clinical purposes.  

Acknowledgments/Funding: The eMERGE Network is funded by NHGRI, with additional funding from NIGMS 
through the following grants: U01HG004438 to Johns Hopkins University; U01HG004424 to The Broad Institute; 
U01HG004438 to CIDR; U01HG004610 and U01HG006375 to Group Health Cooperative; U01HG004608 to 
Marshfield Clinic; U01HG006389 to Essentia Institute of Rural Health; U01HG04599 and U01HG006379 to Mayo 
Clinic; U01HG004609 and U01HG006388 to Northwestern University; U01HG04603 and U01HG006378 to 
Vanderbilt University; U01HG006385 to the Coordinating Center; U01HG006382 to Geisinger Clinic; 
U01HG006380 to Icahn School of Medicine at Mount Sinai; U01HG006830 to The Children’s Hospital of 
Philadelphia; and U01HG006828 to Cincinnati Children’s Hospital and Boston Children’s Hospital. 

References:  

1. Levey AS, Stevens LA, Coresh J. Conceptual model of CKD: applications and implications. Am J Kidney Dis 
Off J Natl Kidney Found. 2009 Mar;53(3 Suppl 3):S4–16.  

2. Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012 Jan 14;379(9811):165–80.  
3. USRDS 2011 Annual Data Report. in Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the 

United States (ed. National Institutes of Health) (National Institute of Diabetes and Digestive and Kidney 
Diseases, Bethesda, MD, 2011).  

4. Appel LJ, Wright JT, Greene T, Agodoa LY, Astor BC, Bakris GL, et al. Intensive blood-pressure control in 
hypertensive chronic kidney disease. N Engl J Med. 2010 Sep 2;363(10):918–29.  

5. Agrawal V, Jaar BG, Frisby XY, Chen S-C, Qiu Y, Li S, et al. Access to health care among adults evaluated for 
CKD: findings from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis Off J Natl Kidney 
Found. 2012 Mar;59(3 Suppl 2):S5–15.  

915



 
 

  

6. Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The Electronic Medical Records 
and Genomics (eMERGE) Network: past, present, and future. Genet Med Off J Am Coll Med Genet. 2013 
Oct;15(10):761–71.  

7. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate 
glomerular filtration rate. Ann Intern Med. 2009 May 5;150(9):604–12.  

8. Kho AN, Hayes MG, Rasmussen-Torvik L, Pacheco JA, Thompson WK, Armstrong LL, et al. Use of diverse 
electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide 
association study. J Am Med Inform Assoc JAMIA. 2012 Apr;19(2):212–8.  

9. Gottesman O, Scott SA, Ellis SB, Overby CL, Ludtke A, Hulot J-S, et al. The CLIPMERGE PGx Program: 
clinical implementation of personalized medicine through electronic health records and genomics-
pharmacogenomics. Clin Pharmacol Ther. 2013 Aug;94(2):214–7.  

10. Office of the National Coordinator for Health Information Technology. Electronic Health Records and 
Meaningful Use. 2011 [Internet]. Available from: http://healthit.hhs.gov/portal 

11. Shivade C, Raghavan P, Fosler-Lussier E, Embi PJ, Elhadad N, Johnson SB, et al. A review of approaches to 
identifying patient phenotype cohorts using electronic health records. J Am Med Inform Assoc JAMIA. 2014 
Apr;21(2):221–30.  

12. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, 
Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and 
cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010 Jun 
12;375(9731):2073–81.  

13. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Lower estimated 
GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of 
general and high-risk population cohorts. Kidney Int. 2011 Jul;80(1):93–104.  

14. Mathias JS, Gossett D, Baker DW. Use of electronic health record data to evaluate overuse of cervical cancer 
screening. J Am Med Inform Assoc JAMIA. 2012 Jun;19(e1):e96–101.  

15. Strom BL, Schinnar R, Jones J, Bilker WB, Weiner MG, Hennessy S, et al. Detecting pregnancy use of non-
hormonal category X medications in electronic medical records. J Am Med Inform Assoc JAMIA. 2011 
Dec;18 Suppl 1:i81–6.  

16. Blumenthal D, Tavenner M. The “meaningful use” regulation for electronic health records. N Engl J Med. 2010 
Aug 5;363(6):501–4.  

17. McCarty CA, Nair A, Austin DM, Giampietro PF. Informed consent and subject motivation to participate in a 
large, population-based genomics study: the Marshfield Clinic Personalized Medicine Research Project. 
Community Genet. 2007;10(1):2–9.  

18. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: demonstrating 
the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinforma Oxf Engl. 2010 May 
1;26(9):1205–10.  

19. Carroll RJ, Eyler AE, Denny JC. Naïve Electronic Health Record phenotype identification for Rheumatoid 
arthritis. AMIA Annu Symp Proc AMIA Symp AMIA Symp. 2011;2011:189–96.  

20. Birman-Deych E, Waterman AD, Yan Y, Nilasena DS, Radford MJ, Gage BF. Accuracy of ICD-9-CM codes for 
identifying cardiovascular and stroke risk factors. Med Care. 2005 May;43(5):480–5.  

21. Köttgen A, Glazer NL, Dehghan A, Hwang S-J, Katz R, Li M, et al. Multiple loci associated with indices of 
renal function and chronic kidney disease. Nat Genet. 2009 Jun;41(6):712–7.  

22. Parsa A, Kao WHL, Xie D, Astor BC, Li M, Hsu C, et al. APOL1 risk variants, race, and progression of chronic 
kidney disease. N Engl J Med. 2013 Dec 5;369(23):2183–96. Keane WF, Zhang Z, Lyle PA, Cooper ME, de 
Zeeuw D, Grunfeld J-P, et al. Risk scores for predicting outcomes in patients with type 2 diabetes and 
nephropathy: the RENAAL study. Clin J Am Soc Nephrol CJASN. 2006 Jul;1(4):761–7.  

24. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a 
population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004 Mar 
22;164(6):659–63.  

25. Orlando LA, Owen WF, Matchar DB. Relationship between nephrologist care and progression of chronic kidney 
disease. N C Med J. 2007 Feb;68(1):9–16.  

26. Kim DH, Kim M, Kim H, Kim Y-L, Kang S-W, Yang CW, et al. Early referral to a nephrologist improved 
patient survival: prospective cohort study for end-stage renal disease in Korea. PloS One. 2013;8(1):e55323.  

  

 

916


