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Abstract 

Mammography has been shown to improve outcomes of women with breast cancer, but it is subject to inter-reader 
variability. One well-documented source of such variability is in the content of mammography reports. The 
mammography report is of crucial importance, since it documents the radiologist’s imaging observations, 
interpretation of those observations in terms of likelihood of malignancy, and suggested patient management. In this 
paper, we define an incompleteness score to measure how incomplete the information content is in the 
mammography report and provide an algorithm to calculate this metric. We then show that the incompleteness score 
can be used to predict errors in interpretation. This method has 82.6% accuracy at predicting errors in 
interpretation and can possibly reduce total diagnostic errors by up to 21.7%. Such a method can easily be modified 
to suit other domains that depend on quality reporting.  

Introduction  

Breast cancer affects 1 in 8 women in the United States. It is the second leading cause of cancer deaths amongst 
women. Mammography has shown to be beneficial for early detection of breast cancer1. Currently, the American 
Cancer Society recommends that women over 40 with no specific risk for breast cancer get yearly screening 
mammograms to detect malignant findings early2. However, a major issue with mammography for breast cancer 
detection and management is the inconsistency and variability in practice, particularly in terms of variations in 
sensitivity and specificity of diagnosing malignancy1,3-7.  Such variability is not limited to diagnosis. It has been 
shown that variability extends to report findings2,8-10. Variability in diagnosis and reporting hamper the utility of 
mammography: false negatives result in delayed treatment at the expense of patient health while false positives 
cause excessive additional invasive testing (e.g., biopsy), rising healthcare costs, and long-term psychosocial harm 
for women 11,12.  

Decision-support systems have been developed to improve upon mammography interpretation and diagnosis13-16, 
however most of these systems follow the Greek Oracle model of decision-support: they simply give an answer to 
the diagnostic task rather then assisting the radiologist to improve their own decision17,18. Additionally, such systems 
interrupt the traditional radiological workflow19. We posit that improving the radiologist’s report during reporting 
time mitigates both of these issues and is the ideal time to deliver effective decision-support. 

The mammography report is of crucial importance since it documents the radiologist’s imaging observations, 
interpretation of those observations in terms of likelihood of malignancy, and suggested patient management, such 
as follow-up imaging or biopsy. Studies have shown the importance of good reporting practices and identified 
several key traits of good reports: correctness of findings, completeness of the description of significant clinical 
findings, consistency of report language and findings, and timeliness of the report’s completion20-22. There are 
numerous efforts to improve the mammography report with respect to these traits. The Breast Imaging-Reporting 
and Data System (BI-RADS) provides a standard lexicon of descriptors and interpretation guidelines to improve 
consistency in language and correctness of findings3. Furthermore, structured reporting systems have been designed 
to improve clarity of presentation and reduce variability of reports between readers23. Despite these benefits, 
structured reporting is generally more time-intensive and can impair the traditional radiological workflow, directly 
interfering with timeliness20. Moreover, current approaches aim mainly to improve upon reporting language and 
clarity rather than report content and decision-making.  

In this study, we propose a system that evaluates the content of the report and links it to errors in diagnosis. We do 
this by quantifying and measuring the incompleteness of the report findings with respect to abnormalities seen in 
images. We define incompleteness to be the sensitivity of the radiologist’s decision to new information. Should 
gathering more data about a mammographic abnormality potentially change the radiologist’s decision about clinical 
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management, a report is considered incomplete, and the radiologist can be alerted to provide more information to 
disambiguate report elements found to be inconsistent.. 

 

Mammography Diagnosis Problem 

Radiologists presented with mammograms are tasked with two problems: detection and interpretation. Detection is 
the task of visually inspecting the mammogram and identifying abnormalities. Interpretation is evaluating whether 
detected abnormalities are suspicious for breast cancer. We will focus on the interpretation problem in this paper. 

Formally, the interpretation problem is defined as follows: A radiologist is presented with a lesion in a mammogram, 
patient history and demographics, and possibly prior mammograms. The radiologist must decide whether this lesion 
warrants no action or follow-up (either imaging or biopsy) based on their suspicion of malignancy. This suspicion of 
malignancy is quantified as the BI-RADS assessment category, which is an ordinal value ranging from 1 to 6. An 
additional assessment category of 0 is used to indicate there is not enough information in the mammogram to make a 
decision. These assessment categories were designed to have probabilistic interpretations, where each value has a 
range of posterior probabilities of malignancy as shown in Table 1. A BI-RADS assessment of 1, 2, or 3 indicates 
the recommendation is no immediate follow-up (a negative assessment). A BI-RADS assessment of 4 or 5 indicates 
a recommendation for follow-up imaging or biopsy should be considered (a positive assessment). An assessment of 
0 should not count as either positive or negative, but the fact that it necessitates immediate follow-up imaging means 
that it is treated as a positive finding 24. BI-RADS 6 is a non-diagnositc category used to indicate that the images 
reflect a known cancer diagnosis being evaluated for treatment planning. These assessment categories implicitly 
mean that any lesion with a posterior probability of greater than 2% should be considered as a positive finding. 
Recent work has shown that this 2% threshold rule is justified via epidemiological risk analysis25. In addition to 
providing an assessment, radiologists must provide a report that justifies their decision. This report has a set of 
categorical descriptors standardized by BI-RADS, which can be interpreted as evidence for their decision. 

 

BI-RADS Assessment Probability of Malignancy Description 

0 N/A Additional Imaging Needed 

1 0% No Abnormality 

2 0% Benign Finding 

3 < 2% Probably Benign Finding 

4 2-95% Suspicious Abnormality 

5 > 95% Highly Suggestive of Malignancy 

6 100% Biopsy Proven 

Table 1: The BI-RADS assessment categories and their probabilistic interpretations. 

 

Though BI-RADS assessments have objective probabilistic underpinnings, mammography interpretation is 
inherently subjective. Modern practice traditionally does not include quantitative estimates of these probabilities. 
Rather, radiologists provide the assessment categories based on training and experience. The use of BI-RADS 
assessment categories allows us to evaluate radiological performance as if radiologists are binary classifiers. We can 
measure their true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) as well as all 
associated statistics (e.g. positive predictive value, sensitivity, specificity). Moreover, the use of categorical 
descriptors allows us to build joint models of their decision given evidence. 

 

Measuring Incompleteness 

Missing descriptors in mammography reports do not necessarily mean that the report does not have all the 
information to make a correct and justified diagnosis. Conversely, there are cases when most of the descriptors are 
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reported, but the report still reaches an ambiguous diagnosis. Incompleteness of reports needs to be sensitive to the 
context of the information already given as well as the effect of missing information on the diagnosis.  

Given that the final result of a mammogram is a decision whether to follow-up on patients with mammographic 
lesions, this decision should be the primary driver of determining whether enough information has been provided in 
the report. Early approaches to measuring whether medical diagnostic tests were necessary involved calculating 
thresholds for posterior probabilities that would warrant more testing or treatment 26. Such methods required that the 
practicing physician provide the posterior probability. The Pathfinder system used a value of information calculation 
to repeatedly request more information for diagnosis until there was only one possible diagnosis left 27. This did not 
provide a flexible framework for stopping if there was more than one possible diagnosis outside of physician 
judgment. The STOP criteria provide a quantitative algorithm for when to stop requesting information and make a 
decision, but this is formulated only to measure whether the probability of an event exceeds a certain threshold 28.  

In response to these shortcomings for decision support systems, the same-decision probability (SDP) has been 
proposed 29. This is defined to be the probability that a diagnostician will make the same decision they are currently 
considering given the unobserved information in a system. This metric has a nice intuitive meaning; only collect 
more information if it will change a decision. The SDP is defined for systems that make binary decisions based upon 
a posterior probability of an event being above a threshold. Formally, given a system with a decision function D, 
observed variables O, unobserved variables U, and a decision threshold T the SDP is defined as: 

   

 
 

Where I[•] is an indicator function that outputs 1 if true and 0 if false.  

In the context of mammography, D(•) = diagnosis, O= report data, U = Unobserved descriptors, and T = BI-RADS 
2% threshold. 

Though this is a well-defined metric, it is intractable to compute 30. The summation requires iterating over all 
possible combinations of missing data which is an exponentially large search space. Despite this challenge, there are 
algorithms to approximate it based on statistical bounds on its value 29. The drawback here is that such bounds can 
be weak under a variety of non-trivial cases. There is also an exact algorithm that can take advantage of certain 
Bayesian network structures to compute it in tractable time 30, but this method may break down for extreme value 
thresholds and Bayesian networks that do not have highly independent sets of unobserved nodes. 

Here we propose a new method to compute an approximation of the SDP based on monte-carlo simulations. The 
difference between our approximation method and previous ones29 is that they compute and exact value for an 
approximate bound on the SDP whereas we compute an approximation to the exact value of the SDP. This follows 
the advice of John Tukey, “It is far better an approximate answer to the right question, which is often vague, than the 
exact anwer to the wrong questions, which can always be made precise.” 31 Moreover, our approximation can be 
made arbitrarily accurate given more monte-carlo sampling steps. 

For sake of convenience, we compute the complement of the SDP which is simply 1-SDP. This is the probability 
that our decision will change given new information. We will refer to this value as the incompleteness score. In this 
context, a lower value of the incompleteness score means the report is more complete. 
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Algorithm 1 Compute incompleteness score in Bayesian network 

Input: 
B: a Bayesian network 
D: a diagnosis node 
T: a decision threshold 
N: an integer number of samples to use 
O: a set of observed nodes 
U: a set of unobserved nodes 

Output: an incompleteness score value 
Main: 

d ß Pr(D=Malignant | O) > T 
s ß 0 
for i = 1:N do 

u ß  junction_tree_sample(B,U) 
dnew ß Pr(D=Malignant|O,u) > T 
if dnew != d then 

s = s + 1 
end if 

end for 
incompleteness_score ß s/N 

 

Where join_tree_sample is the standard algorithm for sampling from a Bayesian network that has been compiled 
into a join-tree. 

 

Experimental Methods 

Study Design 

Data used for this project were de-identified prior to analysis, and our work was thus not considered human subjects 
research. We acquired mammography report data from two teaching hospitals. Both of these institutions captured 
mammography findings using a structured reporting system (Mammography Information System, versions 3.4.99–
4.1.22; PenRad, Buffalo, MN). Five attending radiologists read the mammograms at Institution 1. They reviewed 
52,943 findings, of which 421 were malignant. These data were collected between April 5, 1999 and February 9, 
2004. Eight attending radiologists read the mammograms at Institution 2. They reviewed 59,490 findings, of which 
793 were malignant. These data were collected between October 3, 2005 and July 30, 2010. These datasets only 
contain 1 radiologist in common (though no interpreting radiologists were identifiable due to anonymization), the 
remainder of the radiologists in the two practices were distinct. 

Analysis was done at the “finding” level, where a finding is defined as a set of observations about an abnormality in 
a mammogram, or the record for a mammogram with no abnormalities. Each finding can include patient 
demographic risk factors, BI-RADS descriptors characterizing an abnormality, BI-RADS assessment category, and 
pathologic findings from biopsy. Pathological ground truth was determined via matching patients with state cancer 
registries. By comparing the radiologist assessment to the pathological ground truth, we assessed whether a finding 
was a false positive (FP), false negative (FN), true positive (TP), or true negative (TN). 

The structured reporting system separates masses, calcifications, and general findings. There is ambiguity in 
assessing when these three types of findings are associated with each other. In general, model builders can ignore 
the possible correlations since they do not seem to hamper performance of computer-aided diagnostic systems 
14,15,32. Unfortunately, we cannot make such relaxations of the model since we require that all descriptors provide 
meaningful information. As an example, descriptors specific to calcifications would spuriously affect 
incompleteness scores on mass findings. We chose to focus on analyzing mass findings to mitigate this issue. The 
resulting data set had 24,645 mass findings, 672 of which were malignant. 

Masses were randomly split into two sets, 85% training and 15% testing. Training and testing groups were stratified 
by malignancy and care was taken to ensure patients with multiple masses were not represented in both groups. The 
training set was used to learn a tree-augmented naïve bayes (TAN) model for mammography diagnosis as described 
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by Burnside32,33. The incompleteness score was calculated for all masses in the test set using 5,000 monte-carlo 
samples with a decision threshold of 2% in concordance with BI-RADS recommendations. All model learning and 
classification was done in Norsys Netica 5.14. 

Statistical Analysis 

We stratified resultant incompleteness scores by radiological predictive categories (FP, FN, TP, and TN) to assess 
how the incompleteness scores differentiated between correct and incorrect evaluations. We quantified this 
difference by comparing the scores for errors (FP, FN) to the scores for correctly diagnosed findings (TP, TN) with a 
one-tailed Mann-Whitney U Test (aka Wilcoxon rank-sum test) 34. The test was performed using the wilcox.test 
function in R version 3.0.2 (2013-09-25) -- "Frisbee Sailing.”   

 

Results 

We trained a Tree-Augmented Naïve Bayes network on 20,950 training cases and measured the incompleteness 
score on 3,695 test cases. The resulting incompleteness scores were heavily right-skewed distributions. 83% of the 
incompleteness scores were equal to zero, meaning no new information would have changed the follow-up decision. 
Hence, both the median and mode incompleteness scores were zero. The mean incompleteness score was 0.021, but 
this is not a good indicator of group tendency since the large tail distribution has a disproportionate effect on the 
mean.  

In order to verify that the incompleteness score can be used to predict mammographic error, we plotted its histogram 
and density estimate stratified by radiological predictive categories: true negative (TN), false negative (FN), true 
positive (TP), and false positive (FP) [Figure 1]. The graphs show that there are a large number of false positive and 
false negative cases that have non-zero incompleteness scores. Intuitively, this shows that incomplete reports have a 
higher likelihood of containing errors. The difference between error (FP,FN) and non-error (TP,TN) incompleteness 
scores was statistically significant (p < 2.2*10-16).  

An issue with this data is that there are a small number of false negative findings compared to false positive 
findings. This could skew results since positive findings may contain descriptors more prone to noise in the model. 
To account for this, we compared false positive to true positive results since both groups would have similar 
descriptors. The analysis showed that they were still statistically significantly different (p<0.0026). 

We then tested how well the incompleteness score could predict error in mammography reading. Figure 2 shows 
several performance metrics for different cutoffs of the incompleteness score. The maximal accuracy with respect to 
cutoffs was 0.826 at a cutoff of 0.018. This means that > 1.8% probability of changing decisions when given new 
information should warrant describing more observations. The precision associated with this cutoff was 0.713 
meaning 71.3% of cases classified as errors via the incompleteness score with cutoff 0.018 will actually be errors. 
Finally, we measured the percentage reduction in total mammography error if each error marked for revision was 
corrected. Using the given cutoff, we saw a potential 21.7% decrease in total errors. 
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Figure 1: Plots of the histogram and density of incompleteness scores, stratified by radiologist performance on their 
respective cases. True Negative (TN) findings have the lowest incompleteness scores (indicating they are most 
complete) while false positive (FP) findings have higher incompleteness scores (indicating less completely reported 
findings). Joining (TN,TP) and (FP,FN), we can compare cases that were correctly assessed to cases with errors. 
Note that the false negative density graph has a nearly uniform distribution. This is an artifact due to the small 
amount of false negatives in the data set that skew density estimation.  
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Figure 2: Improvement in radiological performance for difference incompleteness cutoffs. First row shows the 
incompleteness score accuracy in predicting radiological errors. Second row shows incompleteness score positive 
predictive value in predicting error. Third row shows the percent reduction in error if identifying error at the 
specified cutoff.  The red-dotted line shows the cutoff point that maximizes error classification accuracy (first 
panel).  

 

Discussion 

We described a method to quantify how incomplete the content is in a mammographic report. We then presented an 
algorithm to measure this value in a computationally tractable manner. Finally, we showed that this incompleteness 
score is a strong indicator of errors in mammography interpretation. Implementation of this metric during 
mammography reporting time could provide a useful real-time feedback to radiologists to indicate possible errors. 

Reporting in mammography is a labor intensive but critically important task for results communication. Though 
there is pressure for radiologists to expend their efforts efficiently, we show that poor report quality (measured by 
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our incompleteness score) is a marker for interpretation errors. This result might stem from a few different causes. 
The causal explanation is that poor interpretation leads to poor reports. In this case, a radiologist might have not seen 
a relevant descriptor in the image or neglected to highlight its importance. Another possibility is that incomplete 
reporting is a function of available time. When required to read large volumes of images, speed may decrease 
accuracy. In this case, a practitioner producing brief or incomplete reports may also be spending less time 
interpreting the image. A third possibility is that the process of reporting improves diagnosis by requiring 
radiologists to reason about their diagnosis. Thus, individuals who do not spend as much time on their reports do not 
go through the same formal thinking process. For future work, we will consult breast imaging radiologists on cases 
that were correctly classified as erroneous to see if humans can also identify when poor reporting leads to mis-
diagnosis. If this is the case, we can begin to discover reporting practices that reduce error rates. 

Though the system we present shows promising results with regards to predicting radiological errors, it does have 
some shortcomings. The use of an approximate algorithm to estimate the incompleteness score allows for some 
degree of error. We correct for this by using a large number of samples with respect to the number of hidden 
variables, but unfortunately, it is difficult to empirically evaluate our system as calculating the exact incompleteness 
score is prohibitively expensive with regards to computational time. For future work, we will evaluate alternative 
approaches for measuring incompleteness. Another issue with our system is that it does not actually correct the 
errors in interpretation or give any constructive feedback. So although the system can potentially reduce the amount 
of errors by  ~20%, we have not shown which of these reports would actually be corrected. We plan to incorporate 
this into a clinical setting to measure the true impact of this decision-support system. Finally, this study was 
designed to be descriptive rather than predictive, so we did not measure classification results with an optimal cutoff 
in a third held-out test set. Thus, the results will be overly-optimistic in terms of error-prediction. In the future, we 
plan to implement our algorithm on faster cluster computers, which will allow us to perform a thorough cross-
validation analysis to obtain better accuracy measurements.  

Though we developed this system for mammography reporting, this methodology could be extend to any domain 
that uses expensive information to make threshold-based decisions. All this system requires is a generative model 
linking descriptors to diagnosis and a method to sample from this model. It is straightforward to implement this in 
any medical domain where testing can be a costly and/or risky task. Not only can this method improve diagnostic 
accuracy, but it inherently rewards good, thorough reporting practices. This is beneficial for patients and researchers 
alike. 
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