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Abstract

Disease risk prediction has been a central topic of medical informatics. Although various risk prediction models have
been studied in the literature, the vast majority were designed to be single-task, i.e. they only consider one target
disease at a time. This becomes a limitation when in practice we are dealing with two or more diseases that are
related to each other in terms of sharing common comorbidities, symptoms, risk factors, etc., because single-task
prediction models are not equipped to identify these associations across different tasks. In this paper we address this
limitation by exploring the application of multi-task learning framework to joint disease risk prediction. Specifically,
we characterize the disease relatedness by assuming that the risk predictors underlying these diseases have overlap. We
develop an optimization-based formulation that can simultaneously predict the risk for all diseases and learn the shared
predictors. Our model is applied to a real Electronic Health Record (EHR) database with 7,839 patients, among which
1,127 developed Congestive Heart Failure (CHF) and 477 developed Chronic Obstructive Pulmonary Disease (COPD).
We demonstrate that a properly designed multi-task learning algorithm is viable for joint disease risk prediction and it
can discover clinical insights that single-task models would overlook.

1 Introduction

Disease risk prediction [1] has been extensively studied in the literature. The latest trends include building risk predic-
tion models based on a large amount of features from Electronic Health Record (EHR) databases and adopting state-
of-the-art machine learning algorithms, such as Generalized Linear Regression, Support Vector Machine, Bayesian
Networks, etc. [2, 3, 4]. What many existing risk prediction models have in common is that they are designed to
be single-task, i.e. they only predict the risk of a single disease at a time. With a given target disease, a single-task
risk model would select features that are most informative for this particular target, and then train the model using the
training data set.

However, in practice we often have training data for multiple different yet related target diseases at the same time,
e.g. hypertension and heart diseases, diabetes and cataract, depression and obesity, etc. In these application scenarios,
single-task risk models have two significant limitations. First, by treating different target diseases separately, they fail
to identify the underlying correlation between these diseases such as their common causes, similar symptoms, comor-
bid conditions, and distinguishing factors. These information are sometimes more important to clinical practitioners
than risk prediction itself because they lead to insights on the underlying mechanisms of diseases. Second, applying
a single-task model limits us to the training data that have been labeled for that particular disease, even though the
training data from other related diseases can also be helpful. For instance, a single-task model will not be able to
augment a small training data set labeled for heart failure with another large training data set labeled for hypertension,
even though it is common knowledge that hypertension is closely related to heart failure and share many important
risk predicators.

In the machine learning literature multi-task learning has been extensively studied [5, 6, 7]. However, existing multi-
task learning techniques cannot be directly applied to the problem of EHR-based risk prediction because the validity
of each algorithm relies on the specific assumption it makes about task relatedness and these assumptions often fail
to hold for many clinical applications. For example, some models assume different tasks are close to each other as if
they are derived from the same underlying distribution [7, 8], or alternatively, assume the tasks have group structure
and are similar within each group [9, 10, 11]. Other models formalize task relatedness by assuming all tasks share a
latent feature space [6, 5, 12]. Our proposed framework falls into this category.

In this paper we explore the viability of designing a multi-task framework for EHR-based risk prediction. In order to
do this, we first need to define the relatedness between multiple diseases. In particular, we make the assumption that

1180



Cognitive Dysfunction

""" [ Arthritis
466.0 Acute Bronchitis
486 Pneumonia . CHF
...... Lung Infection
461.9 Acute Sinusitis
477.9 Allergic Rhinitis [ Sleep Apnea )\
...... R
[ Sinusitis/Rhinitis
COPD

clinical —— risk e target
evidence predictors diseases
grouping features making predictions

Figure 1: An intuitive example to demonstrate the problem setting for multi-task risk prediction. The lines between
target diseases and risk predictors indicate strong connection. The arrows show the mapping from the raw clinical
evidence (diagnosis code in this case) to the high-level risk predictors. We want to learn both the lines and the arrows.

if two (or more) diseases are related then they must share some common risk predictors and these risk predictors can
be characterized by groups of the clinical evidence from the EHR database.

To intuitively understand what our assumption implies in practice, consider a group of individuals who are at risk of
two diseases: Congestive Heart Failure (CHF) and Chronic Obstructive Pulmonary Disease (COPD). Traditional risk
models attribute the risks directly to the raw medical features from the EHR database, such as individual diagnosis
codes, lab results, vitals, etc., which are often noisy and sparse [13]. Under our framework, we attribute the risks to
some higher-level latent risk predictors, which are modeled as groups of the raw medical features. As show in Figure 1,
our two target diseases, CHF and COPD, share some common risk predictors such as sleep apnea, hypertension,
respiratory system infection [14, 15, 16, 17]. Therefore, studying them jointly will help us more accurately pinpoint
these underlying predictors and consequently facilitate the risk prediction. In addition, these two diseases also have
their own risk predictors, such as Rhinitis for COPD and Arthritis for CHFE. It will be beneficial to identify such
predictors because they can help us better distinguish these two diseases with very similar symptoms and comorbidities
[18].

Given our mild assumption, which will hold for a wide range of diseases and EHR data, our goal becomes how to
jointly identify these common predictors across different diseases. To do so, we develop an optimization based for-
mulation that simultaneously learns the feature groups and predicts the risk for all diseases based on the identified
predictors. We show how to solve our objective function efficiently using an alternating minimization algorithm. To
validate our proposed framework, we apply it to a real EHR database with 7,839 patients, among which 1,127 devel-
oped Congestive Heart Failure and 477 developed Chronic Obstructive Pulmonary Disease. By using diagnosis codes
as underlying features, we demonstrate that our model is able to identify a meaningful set of shared risk predictors for
CHF and COPD and good prediction accuracy ensues.

2 Study Design

We chose two tasks for joint prediction: CHF onset and COPD onset. CHF and COPD are well known to have
significant overlap in terms of common comorbidities, risk factors, and symptoms [14, 15, 16]. In fact they are so
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similar that in practice they are often misdiagnosed for each other [18]. Thus it is highly desirable if we could risk
stratify them jointly and identify not only the common predictors that they share but also the unique predictors that
distinguish them.

Our study is on a real-world EHR data warehouse including the records of 319,650 patients over 4 years. We identified
1,127 CHF case patients with 3,850 control match, and 477 COPD case patients with 2,385 control match. We
extracted the same features for both cohorts, namely ICD-9 diagnosis codes.

2.1 CHF Cohort Construction

We defined CHF diagnosis using the following criteria (which are similar to the criteria used in [3]): (1) ICD-9 diag-
nosis of heart failure appeared in the EHR for two outpatient encounters, indicating consistency in clinical assessment;
(2) at least one medication were prescribed with an associated ICD-9 diagnosis of heart failure. The diagnosis date
was defined as the first appearance in the EHR of the heart failure diagnosis. These criteria have also been previously
validated as part of Geisinger Clinical involvement in a Centers for Medicare & Medicaid Services (CMS) pay-for-
performance pilot [19]. With this criteria, we extracted from the database 1,127 CHF case patients. Following the
case-control match strategy in [3], a primary care patient was eligible as a control patient if they are not in the case
list, and had the same PCP as the case patient. Approximately 10 eligible clinic-, sex-, and age-matched (in five-year
age intervals) controls were selected for each heart failure case. In situations where 10 matches were not available, all
available matches were selected. Following this strategy, we got CHF 3,850 control patients, so on average each case
patient was matched with approximately 3 controls.

2.2 COPD Cohort Construction

We defined COPD diagnosis also using two criteria: (1) the occurrence of at least one COPD-related ICD-9 diagnosis
code; (2) the prescription of at least one COPD-related medication. The diagnosis date was defined as the date when
both criteria were met. In the end we identified 477 COPD case patients. We matched these case patients by identifying
control patients were similar in age, sex, and PCP. An eligible control patient should also have a valid ICD-9 outpatient
diagnosis which is not (a) a symptom code (b) a screening diagnosis, or (c) a COPD-related diagnosis. In the end we
identified 2,385 control patients, which gave us a 1:5 case-control match.

2.3 Feature Extraction

For all patients we extracted their ICD-9 codes from the EHR database. We only considered the medical records
that occurred from 540 days prior to the diagnosis date till 180 days prior to the diagnosis date. In other words, we
used about a year worth of data to make prediction at least half a year before the disease onset. Patients who had
insufficient amount of records were not included. For control patients, we set the last day of their available records as
the diagnosis date and followed the same rule. In total there were 4,784 unique ICD-9 codes from all patients. After
removing infrequent features, i.e. ICD-9 codes that occurred to fewer than 100 different patients (case and control
combined), we had 267 distinct features left. In total 80,472 medical records were considered, which indicates our
input data was extremely sparse. After features were extracted, we discarded the temporal order within the observation
window and used binary encoding to record wether or not a certain feature was assigned to a certain patient during
that time.

3 Model Derivation

Objective: Suppose we have T target diseases (tasks), D features from the EHR database, and N, patients for the ¢-th
task. For each task we have an observation matrix X; € RP*Nt_ The (4, 4)-th entry of X; denotes the occurrence of
feature j to patient . xy, is the i-th column of X;. y; € {—1, 1}N ¢ is the response vector for task ¢: y;, = 1 means
patient i is diagnosed disease t, -1 otherwise. U € {0,1}P*¥ is a mapping from the D medical features to K groups.
The rows of U sum up to one, which means each feature belongs to one group. w; € R¥ is the regression coefficients
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Figure 2: An illustration of our multi-task learning framework. The clinical features from the EHR database are
assigned into feature groups, as defined by the assignment matrix U that is shared across all diseases. {X;,y:} are
input and we want to learn U and {w }. In this illustration, D = 8, K = 4,T = 3.

over the K feature groups for the ¢-th disease. A positive entry in w; means that feature group contributes positively
to the risk of disease ¢ and vice versa. Figure 2 is an illustration of our framework.

Our objective is to learn the feature grouping U and the regression coefficients {w;} simultaneously and jointly over
T diseases. Formally it can be written as:

T

N K
. 1 — xI Uw
argmin > (—§ log(1 + e Y44 f)+/\||wt||1) st.Y Up=1Yd=1,....D (1)
{wieRK}Ue{o,130xK = NN = Pt

where || - ||1 is element-wise £1 norm ||A|l; =), . |4

i | , A > 0 is a user-specified parameter.

Interpretation: The first term inside the summation of Eq.(1) is the empirical loss. Here we choose the logistic loss,
one that is mostly commonly used for clinical risk models. The second term is a regularizer that enforces sparsity on
the regression coefficients w,. Intuitively this term wants each disease to be explained by a smaller number of groups
(thus a simpler explanation). Additional regularizers can be added according to the practical needs. The constraint
term in Eq.(1) says the rows of U should sum up to 1, which implies the K feature groups are a disjoint partition of
the D medical features. This is to make the feature groups semantically distinct.

Eq.(1) is intractable due to the combinatorial nature of U. To overcome this, we relax the constraint on U by allowing
the entries in U to take real values. After the relaxation, our objective becomes:

T N
1
argmin > (_ > log(1+ e VuXLUWey | /\||wt||1) st.UTU = Iy 2)
{wierK},Uef0,130xx = Nt

Note that the orthogonality constraint now replaces the original constraint in Eq.(1) to enforce distinction among
different groups. Eq.(2) now allows an efficient solution.

Optimization: To solve the objective function in Eq.(2), we alternate between U and {w;} by fixing one and updating
the other to minimize Eq.(2) until a local optimum is reached. When U is fixed, Eq.(2) becomes:

T Nt
1 _ =T
argmin E (— E log(14e Y% :™) + /\”Wt”l) S
{weRF} N i=1

where QNc;‘F = x;-CU . This is a set of 7" standard ¢1-regularized logistic regression problems [20] and can be solved

independently using a variety of ready-to-use solvers.

1183



Table 1: Feature groups identified by our model with top-5 features with highest weights (K = 3).

Weights ICD-9 Description

Feature Group 1: Predictors shared by CHF and COPD (wopgr = 2.176, woopp = 1.390)
0.329 715 Osteoarthrosis and Allied Disorders

0.257 729 Disorders of Soft Tissues

0.246 724 Disorders of Back

0.229 V72 Special Investigations and Examinations

0.227 719 Cardiac Dysrhythmias

Feature Group 2: Predictors mainly associated with CHF (wopr = 1.739, weopp = 0.767)
0.248 427 Cardiac Dysrhythmias

0.224 250 Diabetes Mellitus

0.196 414 Chronic Ischemic Heart Disease

0.120 429 [1l-Defined Descriptions of Heart Disease

0.109 411 Acute Ischemic Heart Disease

Feature Group 3: Predictors mainly associated with COPD (worr = 0.082, woopp = 5.084)
0.318 493 Asthma

0.171 592 Kidney Stones

0.162 388 Disorders of Ear

0.148 461 Acute Sinusitis

0.144 305 Tobacco Use Disorder

When {w;} is fixed, Eq.(2) becomes

1 &
argmin Z

T
- t~x$U t —
UERD XK ﬁtzlog(1+e VX TV st UTU = Ix “)
t=1

= i=1

We solve this subproblem by using the Augmented Lagrange Multipliers method, which minimizes the following
Lagrangian of Eq.(4):

T Ny
1 — XT W
FUA) =) A D log(l+e VXL L w(A(UTU - Ix)) + gHUTU — Il (5)

t=1 "'t =1
where A € RE*X is the Lagrange multipliers and p > 0 is a given constant.
4 Results

4.1 Identified Feature Groups

The key difference between our multi-task model and the single-task models is that our model uses feature groups
instead of individual raw features as predictors. Therefore we first examine the feature groups identified from the real
patient cohort for their clinical validity. An important parameter of our model is K, the number of the feature groups
we want to project the raw features into. Generally speaking, K should increase with the number of tasks 7" to ensure
enough descriptive power. Here since we only have two tasks, we set K = 3 for the clarity of presentation. Also for
the sake of clarity, we pre-grouped ICD-9 codes into ICD-9 group codes, i.e. the first 3 digits. For each feature group
we display in Table 1 the top ICD-9 group codes according to their weights, Uy;. A larger weight indicates this ICD-9
group code is associated more strongly with the feature group. For each feature group we also display its regression
coefficients w; for both tasks, from which we can tell how much this feature group as a predictor contributes to the
risk of respective diseases.

The first group in Table 1 consists of ICD-9 codes that are associated with both CHF and COPD. We can see that they
are mainly musculoskeletal disorders. These are common problems that can be caused either by CHF or COPD. The
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second group consists of diagnosis that are mainly associated with CHF, such as heart arrhythmia, diabetes, ischemic
heart diseases, and so on. These are all known risk factors for CHF. As a contrast, the third feature group shows
diagnosis that are mainly associated with COPD, where we can find tobacco use, a leading risk factor for COPD, as
well as asthma, a major comorbid condition for COPD.

Table 1 suggests that our model is indeed able to identify significant risk predictors across different tasks and group
them based on whether they are shared by different tasks or only belongs to a specific task. However, we observe that
there are still overlapping between the feature groups (e.g. 427 Cardiac Dysrhythmias in Group 1 and 2). This calls
for more detailed investigation by physicians because the same ICD-9 (group) code can have different implications
in different medical contexts. Therefore there is no simple “ground truth” on whether a specific feature should be
associated with a specific target disease.

Note that after our relaxation from exclusive grouping to orthogonality constraint, every feature will appear not only in
one feature group but in all feature groups with different weights (and the weights can be either positive or negative).
Therefore, for each feature we need to consider the sum of its weights across all groups before we can interpret its
overall contribution to the risk of task ¢.

4.2 Prediction Accuracy

Next we evaluate the performance of our approach in terms of prediction accuracy. The measurement we used was
Area Under Receiver Operating Characteristic Curve (AUC) [21], which is a commonly used evaluation metric for risk
prediction models. An AUC score of 1 means the prediction perfectly matches the ground truth whereas 0.5 means
the prediction is no better than a random guess. We used 10-fold cross validation and report the median, the 25th, and
the 75th percentiles as boxplot in Figure 3. For each fold we sampled 60% of the entire dataset for training and used
the rest for validation.

We compare our approach (Multi-Risk) to two baseline methods. The first one is denoted Single-PCA. Instead of
learning U jointly from all diseases, Single-PCA used a fixed U derived from the top-K principal components of all
observed. Single-PCA represents the result we get in the single-task setting where the feature groupings are learned
without supervision. The second baseline is denoted Single-Raw, which means U is set to be an identity matrix Ip.
This is an extreme case of our framework where K = D and all the raw features are used directly for logistic regression
(without grouping). For all methods we used the same parameter settings for logistic regression. For Single-PCA and
our model (Multi-Risk) we set K = 3.

From Figure 3 we observe that our model significantly outperformed Single-PCA after joint feature grouping. This
is expected because the groupings are learned with supervision to maximize the discriminative power. On the other
hand, the AUCs of our model and Single-Raw were comparable (no significant difference). However, we would like
to point out that Single-Raw is designed to achieve the highest prediction accuracy possible without considering the
potential association between different diseases, whereas our model can capture common predictors across different
diseases without sacrificing prediction accuracy.

5 Discussion

This work is a first step towards multi-task clinical risk prediction. Our main purpose is to demonstrate that a properly
designed multi-task learning objective can indeed capture the latent relatedness between different target diseases. It
provides a principled way of identifying the common predictors and the discriminative predictors, both of which
are clinically interesting. We also show that the identified feature groups can achieve the state-of-the-art prediction
accuracy.

In our experiment, the two tasks shared a same training set. Namely, we have only one patient cohort and each patient
was labeled for both tasks. This setting does not fully demonstrate the advantage of a multi-task risk model, which can
combine disjoint patient cohorts from different tasks. For example, the CHF task can have one patient cohort labeled
only for CHF from one database and the COPD task can have a different patient cohort (with different patients) labeled
only for COPD. The only requirement is that these two cohorts must share the same feature space. Such augmentation
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Figure 3: Accuracy of our model (Multi-Risk) for both tasks with comparison to two baseline methods. Showing the
median, 25th, and 75th percentiles over 10-fold cross validation.

of the training data can potential further improve the risk prediction accuracy of our multi-task model and gives it
advantage over the state-of-the-art single-task models. We leave this to future investigation.

Our multi-task learning framework can be extended in many aspects. For instance, it will be very interesting to jointly
study multiple tasks from different problem domains. In our experiments, we used two similar tasks (disease onset
prediction) that share the same feature set (ICD-9 codes). However, our framework can be extended to incorporate
tasks from different domains, e.g. disease onset vs. hospitalization vs. need for social assistance, by grouping
heterogeneous features together (diagnosis codes, medications, social behaviors, and so on). This will be a big step
forward because we will be able introduce predictors from different domains for more comprehensive risk analysis.

A second direction to extend our model is to incorporate prior knowledge from domain experts. Currently our model
only groups features based on how they contribute to the respective outcomes. It is not aware the clinical meaning
of each feature, therefore the groups are not coherent in terms of clinical interpretation. This can be overcome if we
incorporate prior knowledge into the model, which specifies the semantics of each group. For instance, domain experts
can assign a few ICD-9 codes related to cardiovascular diseases to a certain group and let our model automatically
identify the remaining ICD-9 codes that should also belong to the same group. Such integration can be achieved by
carefully initializing U and/or introducing an additional term to regularize key entries in U.

In order to make our objective function tractable, we used the orthogonality constraint as a surrogate for exclusive
group partition. The side effect of this relaxation was that U will have negative weights, which are not clinically
interpretable. To overcome this, we can replace the orthogonality constraint with non-negativity constraint, i.e. U > 0.
This change calls for a different optimization algorithm but produces more interpretable results.

6 Conclusion

In this work we explore a multi-task framework for joint disease risk prediction. Our framework exploits the assump-
tion that related diseases share some common risk predictors that can be represented by groups of clinical evidence.
We use the proposed model to simultaneously predict the onset risk of a CHF cohort and a COPD cohort. Preliminary
results suggest that our model can identify both common and discriminative risk predictors for both diseases while
pertaining good prediction accuracy. We discussed the potential of using our model to integrate patient cohorts from
multiple sources and problem domains. We also discussed future improvements that can be made to enhance the
interpretability of our model.
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