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Abstract  

Stochastic Gradient Descent (SGD) has gained popularity for solving large scale supervised machine learning 

problems. It provides a rapid method for minimizing a number of loss functions and is applicable to Support Vector 

Machine (SVM) and Logistic optimizations. However SGD does not provide a convenient stopping criterion. 

Generally an optimal number of iterations over the data may be determined using held out data. Here we compare 

stopping predictions based on held out data with simply stopping at a fixed number of iterations and show that the 

latter works as well as the former for a number of commonly studied text classification problems. In particular fixed 

stopping works well for MeSH
®
 predictions on PubMed

®
 records. We also surveyed the published algorithms for 

SVM learning on large data sets, and chose three for comparison: PROBE, SVMperf, and Liblinear and compared 

them with SGD with a fixed number of iterations.  We find SGD with a fixed number of iterations performs as well 

as these alternative methods and is much faster to compute. As an application we made SGD-SVM predictions for 

all MeSH terms and used the Pool Adjacent Violators (PAV)  algorithm to convert these predictions to probabilities.  

Such probabilistic predictions lead to ranked MeSH term predictions superior to previously published results on two 

test sets.  

Introduction 

The National Library of Medicine (NLM) produces the PubMed database of biomedical journal article citation 

records consisting of title, abstract (where available) and appropriate metadata. This data base currently contains 

over 23 million records and is growing at about 60,000 records per month. Most of these records have 

approximately a dozen key terms assigned to them from a controlled vocabulary known as Medical Subject 

Headings (MeSH). There are over 27,000 MeSH terms from which these key terms or index terms are assigned by 

humans. This involves significant human effort and expense. It is then natural that efforts would be made to 

mechanize some of this work. Such efforts have been of two types.  First, there has been an ongoing effort to 

develop a system called the Medical Text Indexer (MTI) to predict MeSH assignments as suggestions for MeSH 

indexers at the NLM
1-9

. Second, there have been a number of investigations of machine learning methods and how 

they might be applied to the MeSH indexing problem in a more abstract setting with the purpose of understanding 

and comparing different approaches to this problem
6, 10-15

. The work we report here is of this latter type. We examine 

the Stochastic Gradient Descent (SGD) method for solving Support Vector Machines (SVMs)
16, 17

 and develop an 

approach which we believe has broad applicability but is especially attractive for solving very large SVM problems. 

We show how to use this approach to improve MeSH suggestions over prior published work.  

SGD has proved to be a very effective method of training machine learning algorithms
16, 17

. It has generally been 

found to confer a significant decrease in training time without sacrificing accuracy
17-19

. SGD can be applied to 

standard convex loss functions with regularization terms with good effect, but Zhang
17

 suggested using SGD 

without the usual regularization term and performing the regularization with early stopping. This has become a 

widely practiced approach
20-22

 and is implemented by dividing the training set into disjoint pieces consisting of a 

new training set and a validation set. Then on each training pass through the new training set one tests on the 

validation set and that number of iterations over the training data which is found to be optimal is recorded. One then 

trains on the original training set with this number of iterations and evaluates the results on the test set to rate the 

method. One of our contributions in this work is to show that on a number of text classification problems one can 

implement early stopping by just using a constant number of iterations and obtain the same performance as one 

obtains using the validation set approach.  

In particular we find that SGD with a fixed number of eight iterations over the training data provides MeSH 

classification results as good as early stopping based on held out data and as good as several other popular methods 

which take much longer to train. Given the efficiency of the method we are able to apply it to each MeSH heading to 

make predictions. It would then be possible to use the SVM scores of all the MeSH terms for a given document to 
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rank the predictions for that document. However, different MeSH terms have different frequencies in the training 

data and this leads to classifier scores that are not directly comparable, i.e., one does not obtain the best result with 

such a ranking approach based on raw scores. This leads us to take a slightly different approach. We first divide the 

training data into two equal halves. For a given MeSH term we train a classifier on each half. We then apply the 

Pool Adjacent Violators (PAV) algorithm
23-26

 to each classifier’s scoring of the half of the training data on which it 

was not trained. The PAV algorithm converts raw scores to probabilities. As a consequence, for any previously 

unseen test document, we can apply the classifiers to obtain two raw scores and use the PAV models to convert 

these raw scores to probabilities. We average the two probabilities to obtain a single probability estimate for that 

MeSH term for the test document. Since probabilities are optimally comparable we use the resulting probabilities 

over all MeSH terms to make ranked MeSH term predictions. We find such predictions superior to predictions 

obtained by raw score ranking and also superior to previous published predictions.  

Methods 

The SGD Algorithm with Early Stopping Assume we are given N  training points  
1

( , )
N

i i i
x y


 randomly and 

independently sampled from the same source distribution, where for each i , 
n

i
x R  and  1,1

i
y   . The 

objective is to learn a weight vector 
n

w R  so that the function 

 ( ) sgn( )
w

f x w x   (1) 

has a high probability of agreeing with y  if ( , )x y  is randomly sampled from the same source as the training data.  

Here the function sgn is known as the sign function and has the definition 
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





. (2) 

Then pseudocode for the SGD algorithm without regularization, but with early stopping is as follows. 

 SGD without regularization 

 Input: training data  
1

( , )
N

i i i
x y


; learning rate 0  . 

Initialize:
0

0w  ; 0.t   

 A. Randomly sample ,  1j j N   

 B. If ( ) 1
j t j

y w x   set  
1t t j j

w w y x

   and 1t t  . 

 C. if stopping criterion satisfied return 
tw  else return to A. 

Several issues require comment here. First, we do not deal with a threshold independent of the vectors 
ix  but 

assume that all vectors have a common added dimension which is also present in w  and functions as threshold. 

Second, we do not randomly sample integers from the interval  1, N  as in step A of the algorithm. Instead we do 

the training in rounds or  passes over the training data and before each pass we re-randomize the order in which the 

integers in  1, N  are visited. Third, we use a learning rate 0.002  .  On all three of these points we are simply 

following
17

.  Our pseudocode does not define the stopping criterion. Generally cross validation or held out data is 

used to determine a stopping point, but our purpose is to compare that approach to simply stopping at a fixed 

number of passes over the data without doing any cross validation. 

Method of SGD Experiments By holding out training data, we may experimentally determine the optimal number 

of iterations of SGD for SVM with early stopping (L1 loss Minimization without regularization, hereafter we call it 

SGD-SVM)
20-22

.   Let   , , 1, ,
n n

D x y n N   be our data set, where  
nx  is a vector representing the 
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attributes of the thn  instance and 
ny  is the binary class value of

nx . We randomly split the data into J  equal parts

1 2
,   

J
D D D . Let  

j
D  and 

( )j

j
D D D


   be the test and training sets for the j th fold of a J  fold cross 

validation. For the j th fold we again randomly split the training set 
( )j

D


 into K  equal parts
   
1

 
j j

K
D D

 
 . 

Defining 
 j
K

D


 to be the held out or validation set, we may determine the optimal number of iterations of SVM-

SGD.  We train SGD-SVM on 
 ( ) jj

K
D D


  and let 

j
Iter  be the optimal iteration number for SGD-SVM evaluated 

on  
 j
K

D


.  We then apply SVM-SGD learning with  
j

Iter  iterations on 
 j

D


, and measure the success of this 

learning  on 
j

D . Note that random splits are done in such a way as to keep the number of negative records and the 

number of positive records the same or as close to the same as possible over all splits.  The J different test results 

from the J  different folds are combined by macro-averaging , which we believe is appropriate when all J  

experiments are very similar. We report mean average precision (MAP) and break even (BE) values
27

 and macro-

averaging means we compute the measure for each fold and then take a simple average over all folds for the final 

value reported.  The break even value is sometimes also known as R-precision
27

. 

When we do the experiment without using held out data the protocol is simpler. As before, we randomly split the 

data into J  equal parts
1 2
,   

J
D D D  and let  

j
D  and 

( )j

j
D D D


   be the test and training sets for the j th 

fold of a J  fold cross validation. But now 
j

Iter  is a fixed number for all j . One may ask how do we decide what 

this number should be. Our answer is empirical. We have observed what works well on the data from much 

experience based on cross validations and other experiments where we simply run the learning algorithm for a 

number of iterations and watch the performance. Our conclusions are surprisingly simple. For all the MeSH 

experiments we use 8 iterations and for all the other classification problems we study in this work we find 9 

iterations give good results. We suspect this difference is due to the much larger size of the training data for MeSH 

than for any of the other problems we study.  

Data Sets In addition to studying classification for MeSH assignment, we also study six smaller textual databases, 

each of which is associated with one or more classification problems. The databases and their sizes are listed in 

Table 1. Other than the PubMed database these sources were prepared previously by the authors and documented 

in
28

 and to save space we refer the reader to this source for details.   The PubMed database used is a March 2013 

copy.  

 Table 1. Corpora used in this study. Given for each corpus is the number of defined sub-problems, the number of 

examples, and the number of features. 

Database classes Examples  Features 

REBASE 2 102,997 2,032,075 

MDRDataset 3 620,119 738,104 

Newsgroups 20 20,000 98,587 

IndustrySectors 104 9,555 55,056 

WebKB 7 8,280 69,911 

Reuters 10 27,578 46,623 

PubMed 27 22,411,501 77,040,540 

 

PubMed We study a March 2013 version of the PubMed database. As noted above, there are over 23 million 

records in PubMed representing as many journal articles mostly on diverse biomedical topics. More detail can be 

obtained online
29

.  Each record in the database is represented by features consisting of the words and two word 

colocations contained in the title and abstract. A stoplist of function words are not allowed in these features, but no 

stemming is done. We divide this corpus into two thirds for training (14,941,100) and one third for testing 

(7,470,501). Most records in PubMed are manually assigned one or more MeSH headings. There are over 27 

thousand terms in the MeSH vocabulary, giving rise to as many possible classification problems on this corpus. In a 

previous work
14

, we studied 20 MeSH terms representing a range of frequencies. Each of these MeSH terms is listed 
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in Table 2 along with its frequency in the studied version of PubMed.  Also shown in Table 2 are seven additional 

higher frequency MeSH terms that were selected for algorithm timing.  

Table 2. MeSH terms used in this study of SGD-SVM on the PubMed corpus. Given for each MeSH term is the 

number of records indexed with that MeSH term and the percent this is of the total. 

Set MeSH Terms Freq Percent 

M1 rats, wistar 180,179 0.80% 

M2 myocardial infarction 131,491 0.59% 

M3 blood platelets 63,061 0.28% 

M4 serotonin 60,164 0.27% 

M5 state medicine 43,787 0.20% 

M6 urinary bladder 39,795 0.18% 

M7 drosophila melanogaster 31,502 0.14% 

M8
 

tryptophan 25,803 0.12% 

M9
 

laparotomy 14,554 0.06% 

M10
 

crowns 12,862 0.06% 

M11
 

streptococcus mutans 6,623 0.03% 

M12
 

infectious mononucleosis 6,593 0.03% 

M13
 

mentors 6,425 0.03% 

M14
 

blood banks 5,753 0.03% 

M15
 

humeral fractures 5,447 0.02% 

M16
 

tuberculosis, lymphnode 4,471 0.02% 

M17
 

tooth discoloration 2,570 0.01% 

M18
 

pentazocine 2,128 0.01% 

M19
 

hepatitis e 1,845 0.01% 

M20
 

genes, p16 1,782 0.01% 

M21 pathological condition, signs and symptoms 3,819,888 17.04% 

M22 therapeutics 2,898,880 12.93% 

M23 pharmacologic actions 2,404,751 10.73% 

M24 enzymes 2,167,158 9.67% 

M25 population characteristics 1,242,430 5.54 % 

M26 reproductive physiological phenomena 1,019,313 4.55% 

M27 terpenes 217,959 0.97% 

 

Results  
 
SGD-SVM Experiments Three folds were used in all cross-validation experiments so that we set  3J   and, 

where used, 3K  . Cross validation was used for all databases except WebKB and 20 Newsgroups which are 

already partitioned into training and test sets. In these latter two cases we still did the learning with an optimal 

number of iterations based on holding out a third of the training set to determine it versus doing the learning based 

on a fixed number of nine iterations over the training data.  
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Table 3. Results on small corpora for SGD-SVM with  cross-validation  and SGD-SVM with a fixed 9 iterations. 

Each row in the table contains the averages over all classification problems defined in that corpus. The last row 

averages over the corpora. 

 

 

 

 

 

 

Table 4. Results on the PubMed corpus for SGD-SVM with cross-validation and SGD-SVM with a fixed 8 

iterations. The last row averages over the twenty MeSH terms. 

MeSH Set SVM SGD  Cross Validation SVM SGD with 8 iterations 

AP BE 
optIter  AP BE 

M1 0.502 0.510 11 0.495 0.508 

M2 0.714 0.716 5 0.720 0.715 

M3 0.662 0.691 5 0.659 0.690 

M4 0.670 0.682 6 0.666 0.682 

M5 0.284 0.358 10 0.284 0.356 

M6 0.549 0.584 6 0.544 0.585 

M7 0.667 0.659 8 0.667 0.659 

M8
 

0.603 0.612 9 0.602 0.613 

M9
 

0.253 0.330 13 0.250 0.332 

M10
 

0.593 0.603 18 0.591 0.597 

M11
 

0.794 0.805 4 0.787 0.799 

M12
 

0.711 0.734 3 0.701 0.724 

M13
 

0.410 0.477 8 0.410 0.477 

M14
 

0.372 0.432 5 0.381 0.433 

M15
 

0.585 0.613 11 0.592 0.620 

M16
 

0.462 0.496 9 0.464 0.499 

M17
 

0.465 0.508 12 0.469 0.516 

M18
 

0.702 0.718 13 0.701 0.714 

M19
 

0.737 0.772 15 0.735 0.784 

M20
 

0.316 0.421 3 0.304 0.414 

Ave 0.552 0.586 8.7 0.551 0.586 

 

The results in Table 3 and Table 4 strongly support our contention that a fixed number of iterations gives as good 

performance for SGD-SVM as using held out data to determine an optimal number of iterations. We also compared 

SGD-SVM with three published SVM algorithms  designed to work well on large training sets. These algorithms are 

PROBE
30

, SVMPerf
31

 and LibLinear
32

. Results for all algorithms are in Table 5.  No single algorithm is superior to 

the others on all MeSH terms and SGD-SVM with a fixed 8 iterations is competitive with the others. 

  

Set SVM-SGD  Cross Validation SVM-SGD with Fixed 9  iterations 

AP BE 
opt

Iter  AP BE 

Rebase 0.84 0.80 5.3 0.85 0.80 

MDR 0.95 0.92 20 0.94 0.91 

20News 0.84 0.80 12.2 0.85 0.81 

Reuters 0.93 0.89 14  0.93 0.90 

WebKB 0.77 0.73 3.8 0.77 0.72 

Industry 0.86 0.82 9.7 0.92 0.88 

Ave 0.87 0.83 10.8 0.88 0.84 
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Table 5. Results on the PubMed corpus for the four algorithms: SGD-SVM with a fixed 8 iterations,  PROBE, 

SVMperf and LibLinear. For each of the MeSH terms the MAP and BE are reported for a three-fold cross validation 

and the same folds were used for all the algorithms. The last row averages over the twenty MeSH terms. 

 SGD-SVM PROBE SVMPerf LibLinear 

 MAP BE MAP BE MAP BE MAP BE 

M1 0.495 0.508 0.482 0.495 0.472 0.495 0.512 0.507 

M2 0.720 0.715 0.723 0.711 0.707 0.697 0.753 0.711 

M3 0.659 0.690 0.671 0.689 0.648 0.673 0.693 0.683 

M4 0.666 0.682 0.680 0.684 0.651 0.664 0.688 0.671 

M5 0.284 0.356 0.308 0.375 0.285 0.350 0.291 0.338 

M6 0.544 0.585 0.536 0.570 0.521 0.562 0.553 0.548 

M7 0.667 0.659 0.665 0.645 0.633 0.635 0.693 0.642 

M8
 

0.602 0.613 0.591 0.609 0.575 0.599 0.606 0.594 

M9
 

0.250 0.332 0.276 0.340 0.255 0.326 0.308 0.355 

M10
 

0.591 0.597 0.594 0.599 0.583 0.603 0.582 0.569 

M11
 

0.787 0.799 0.777 0.790 0.751 0.773 0.791 0.791 

M12
 

0.701 0.724 0.706 0.729 0.666 0.706 0.725 0.727 

M13
 

0.410 0.477 0.418 0.484 0.389 0.451 0.425 0.486 

M14
 

0.381 0.433 0.381 0.437 0.339 0.424 0.378 0.409 

M15
 

0.592 0.620 0.577 0.606 0.557 0.590 0.568 0.586 

M16
 

0.464 0.499 0.479 0.499 0.428 0.467 0.461 0.495 

M17
 

0.469 0.516 0.443 0.502 0.399 0.463 0.400 0.452 

M18
 

0.701 0.714 0.683 0.690 0.571 0.570 0.701 0.687 

M19
 

0.735 0.784 0.714 0.764 0.717 0.772 0.716 0.737 

M20
 

0.304 0.414 0.311 0.401 0.319 0.401 0.374 0.433 

Ave 0.551 0.586 0.551 0.581 0.523 0.561 0.561 0.571 

 

In doing the computations for Table 5 it became evident that SGD-SVM was much faster than the other algorithms. 

To investigate the issue of computation time further we chose seven additional MeSH terms with high frequencies 

(thus large positive sets) where the calculation is more difficult. Statistics on these MeSH terms are listed in Table 2.  

Both performance and elapsed time (wall clock) are shown in Table 6. Two things stand out in Table 6. First, SGD-

SVM performs better than PROBE or SVMPerf on these problems and at least as good as LibLinear. Second, 

PROBE averages between 4 and 5 hours, LibLinear between 8 and 9 hours and SVMPerf may take much longer (we 

stopped any calculation over 30 hours) for these problems. This in contrast with SGD-SVM which takes 10 minutes 

or less. We conclude from these experiments that in all circumstances, particularly for large training sets with 

positive sets of significantly large size, the SGD-SVM algorithm with a fixed 8 iterations is the preferred method. 

Table 6. BE performance and elapsed time for classification of high frequency MeSH terms.  Here SGD-SVM is 

with a fixed 8 iterations. All timings were conducted using a standalone multi-core computer with Intel Xeon CPUs 

with a clock speed of 2.67 GHz and 48 gigabytes of RAM. NA=not available.  

 SVM-SGD PROBE SVMPerF LibLinear 

 BE Time BE TIME BE TIME BE TIME 

M21 0.637   9 Min 0.592 284 Min NA >30 Hr 0.636 564 Min 

M22 0.616  10 Min 0.584 283 Min NA >30 Hr 0.619 553 Min 

M23 0.616  10 Min 0.574 291 Min NA >30 Hr 0.614 547 Min 

M24 0.768  9  Min 0.722 256 Min NA >30 Hr 0.762 557 Min 

M25 0.507  9  Min 0.499 250 Min NA >30 Hr 0.521 535 Min 

M26 0.709  9  Min 0.690 290 Min 0.689 737 Min 0.702 534 Min 

M27 0.714  9  Min 0.671 308 Min 0.698 191 Min 0.689 516 Min 

Ave 0.652  9.3 Min 0.619 208 Min NA NA 0.649 543 Min 
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Application to MeSH Assignment Given the speed and accuracy of SGD-SVM, we were led to contemplate 

calculations which would have been unthinkable in the past. There are over 27 thousand MeSH terms, but it is not 

difficult to train classifiers for all of them. The question is whether such a set of classifiers will yield superior 

performance in predicting MeSH assignments for unseen documents. To answer this question we decided to perform 

an experiment.  There are two sets of PubMed documents on which experiments have been done in the past and with 

which we can compare our results. One set is known as NLM2007, is available at
33

 and consists of 200 PubMed 

records originally selected in 1999 and used as a bench mark by several studies
2, 34, 35

. The second set is L1000, a set 

of 1,000 randomly selected PubMed records, created and studied in
34

 and available at
36

.   

Based on these considerations we held out the two test sets and used the remainder of the March 2013 MEDLINE as 

training data. For each MeSH term we randomly divided the training set into two disjoint sets with each half having, 

as nearly as possible, the same number of documents with the MeSH term assigned and without the MeSH term 

assigned. We then trained one SGD-SVM classifier on each half.  Once a classifier was trained we applied it to 

produce scores on the half of the documents where it had not been trained. Finally, we applied the Pool Adjacent 

Violators (PAV) algorithm to these scores to convert them to probabilities. This algorithm produces a probability 

function of scores that is non-decreasing as a function of score and gives a best fit to the actual data. Best fit here 

means if the probabilities are looked at as predictions of whether the MeSH term is assigned to a document or not, 

then the actual assignments observed in the data have maximum  probability.  No other non-decreasing probability 

function of score could assign a higher probability to the data. Since we have two trainings, one on each half of the 

training data, we have two probability functions. We then score the test documents for each training and convert 

each into a probability based on its PAV function and average these two probabilities to obtain our probability 

estimate that the MeSH term will be assigned to the test document.  Space does not allow more detail regarding 

PAV, but we refer the reader to
25

. 

Evaluation. We give four measures of performance: precision, recall, F1-score, and mean average precision (MAP) 

which evaluate success in automatic MeSH term assignment to MEDLINE citations.  We use these metrics because 

they have been used for the same task in previous studies.   These metrics are standards in the field and are described 

in
27

. For a given test document precision at rank 25 is the fraction of MeSH terms in the top ranked 25 which were 

assigned to that document by the human indexers and recall at rank 25 is the fraction of MeSH terms assigned by 

human indexers to that document which appear in the top 25 ranks of the prediction.  The F1-score at rank 25 is the 

harmonic mean of the precision and recall at rank 25. The average precision of a ranking for a document is the 

average of all precisions computed at ranks containing a correctly assigned MeSH term for that document. Finally, 

for a given set of test documents we compute these four measures for each document and average the results for 

each measure over all documents in the set and report this average. For average precisions this final average has 

been given the name of mean average precision or MAP.   

We compare our approach to five other methods which were previously published in
34

. The first one is NLM’s MTI 

system
2
. The second method is known as reflective random indexing

35
. The third and fourth are k-nearest neighbor 

methods.  For these methods the neighbors are computed using the algorithm reported in
37

. The value of k 

determined to be optimal for both frequency and similarity approaches was studied in
34

 and found to be 20. The fifth 

method is based upon a learning-to-rank algorithm which begins with the features used for ranking in the k-nearest 

neighbor methods and adds a number of other features and learns a weighting for these features that allows an 

improved ranking of the MeSH terms assigned to the k-nearest neighbors for all training documents at once. For 

more details see
34

. Table 7 and Table 8 list the results for the databases NLM2007 and L1000, respectively.  

Table 7. Precision, recall, F-score over top 25 predictions, and MAP for different methods on the set NLP2007. 

 Prec Recall F-Score MAP 

MTI  0.318 0.574 0.409 0.450 

Reflective random indexing 0.372 0.575 0.451 N/A 

Neighborhood frequency 0.369 0.674 0.476 0.598 

Neighborhood familiarly 0.376 0.677 0.483 0.604 

Learning-to-rank algorithm 0.390 0.712 0.504 0.626 

SGD-SVM 0.390 0.712 0.504 0.640 

SGD-SVM with PAV 0.405 0.740 0.524 0.681 
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Table 8. Precision, recall, F1-score over top 25 predictions, and MAP for different methods on the L1000 set.  

 Prec Recall F-Score MAP 

MTI  0.302 0.583 0.398 0.462 

Neighborhood frequency 0.329 0.679 0.443 0.584 

Neighborhood similarity 0.333 0.687 0.449 0.591 

Learning-to-rank algorithm 0.347 0.714 0.469 0.615 

SGD-SVM 0.346 0.712 0.465 0.638 

SGD-SVM with PAV 0.368 0.756 0.495 0.676 

 

In these tables all results compared with SGD-SVM are taken from
34

. Two things need to be noted regarding these 

comparisons. First, for both NLM2007 and L1000 we used the PubMed IDs to find the current forms of the 

documents and our results are based on the current indexing of these documents. This is the only reasonable thing to 

do as our training data is all based on the current indexing. This current indexing could conceivably involve some 

changes that could affect the difficulty in assigning MeSH terms to a document. Since we produced the k-nearest 

neighbor results used in
34

 and quoted in these tables, we recomputed these numbers as a check on any such possible 

change. We found the four measures to be identical to the numbers given here for the neighborhood frequency 

method for both NM2007 and L1000. For the neighborhood similarity method we found small variations. For 

NLM2007 the current F1-score is 0.480 (down 0.003) and the current MAP is 0.605 (up 0.001) and for L1000 the 

current F1-score is 0.449 (unchanged) and the current MAP is 0.592 (up 0.001). We present these results as 

evidence that the indexing task for NLM2007 and L1000, as they appear in the 2013 data used for this study, is 

substantially what it was when studied in
34

 and in any case has not gotten easier.  The second point we wish to make 

is that previous studies were limited to rankings of MeSH terms coming from a short list of neighbor documents 

(generally the top 20) and this limited the number of participants in the ranking to compute the MAP values reported 

in the tables. In our approach all MeSH are ranked for each document and this allows for a slight improvement in 

the MAP numbers.   

We applied statistical tests to compare the MAP values produced by SGD-SVM with PAV with the Learning-to-

rank results. Each method gives a figure for the average precision of MeSH assignment to a document. These pairs 

over all the documents in a set are then tested.  The test methods and the corresponding p-values are given in Table 

9. 

Table 9. Comparison of SGD-SVM with PAV with Learning-to-rank. We applied the sign test, the Wilcoxon signed 

rank test, and the paired t test.  

 NLM 2007 L1000 

Sign test 1.2  x 10
-9 

1.4 X 10
-39

 

Wilcoxon 6.0 X 10
-12 

7.9 X 10
-59

 

Paired t test 2.5 X 10
-4 

<10
-4

 

 

Discussion 

From a theoretical point of view it is interesting to ask why SGD with early stopping works. In this regard it is 

useful to point out that what Zhang
17

 calls SGD with early stopping is called by Collobert and Bengio
38

 the margin 

perceptron algorithm.  The latter authors point out that the wider the margin the better the performance is likely to be 

and that the margin is preserved by a small value of   and by a small number of iterations. The small number of 

iterations is achieved by early stopping. However, as far as we can discern, it has not previously been appreciated 

that early stopping can be achieved with a fixed number of iterations for a whole class of problems.  

The practical consequence of SGD with early stopping at a fixed number of passes over the data is an approximate 

halving of the training time. The first run with held out data to determine the optimal number of passes over the data 

proves unnecessary as documented in Table 3 and Table 4. SGD with early stopping is already a very useful 

approach on problems with large training data and using fixed iterations only adds to the benefit.  With this 

approach there is no need to reduce the size of the training set to make the calculations feasible as done in
39

. We 
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used unigram and bigram features based on our own experience that this gives good performance
28

. We see that
39

 

also used unigram and bigram features, but due to our much larger training set sizes  we had to deal with a much 

larger feature set (over 70 million features as compared with their approximately 2 million). In spite of this we can 

perform a single training run in 10 minutes and perform training over all MeSH terms in a couple of days on our 

compute farm using approximately 200 cpu’s. While at this point we have not been able to directly compare our 

approach to that of
39

, given that they use the same feature types and use a standard SVM approach, we would expect 

the two methods to perform at a similar level. The results of Table 5 and Table 6 support this conclusion. 

We tested our approach on the test sets NLM2007 and L1000 because there are published results for several 

different methods on these sets
34

 and because the particular method of testing on the top 25 predicted MeSH terms is 

very relevant to the MTI system at NLM. The suggestions to the MeSH indexers by the MTI system
6
 are generally 

on the order of the top 25 terms. The precision, recall and F1 scores given in Table 7 and Table 8 are all computed 

for the top 25 predicted MeSH terms.  

Conclusions 

First, SGD with early stopping at a fixed number of iterations is an accurate and fast way to train a SVM classifier 

for large training sets. Second, when SGD-SVM is combined with the PAV algorithm the results on two previously 

studied test sets are superior to published results. We are currently collaborating with James Mork and Alan 

Aronson at the NLM testing whether results from SGD-SVM can be used to improve the MTI system. 
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