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Abstract 

Statistical text mining and natural language processing have been shown to be effective for extracting useful 

information from medical documents.  However, neither technique is effective at extracting the information stored in 

semi-structure text elements.  A prototype system (TagLine) was developed to extract information from the semi-

structured text using machine learning and a rule based annotator.  Features for the learning machine were 

suggested by prior work, and by examining text, and selecting attributes that help distinguish classes of text lines.  

Classes were derived empirically from text and guided by an ontology developed by the VHA’s Consortium for 

Health Informatics Research (CHIR).  Decision trees were evaluated for class predictions on 15,103 lines of text 

achieved an overall accuracy of 98.5 percent.  The class labels applied to the lines were then used for annotating 

semi-structured text elements.  TagLine achieved F-measure over 0.9 for each of the structures, which included 

tables, slots and fillers. 

Introduction 

The analysis of text from the electronic health record (EHR) is an important research activity in medical informatics 

and particularly in the Veterans Healthcare Administration (VHA) because of its large integrated EHR.  A wide 

variety of methods have been employed to extract information from text.  Information retrieval (IR) and information 

extraction (IE) have been shown to be useful for detecting patterns in patient care
1
, patient treatment patterns

2
 and 

outcomes.  IR has been used to identify co-morbidities,
3
 smoking status,

4
 as well as detecting fall-related injuries.

5
  

Regular expressions have been used to extract blood pressure values from progress notes.
6
  Natural language 

processing (NLP) has been used to extract medical information such as principal diagnosis
4
 and medication use

7
 

from clinical narratives.  This work has led to a better understanding of the conditions patients face and how to treat 

them.
8
 

Raw medical text passages are voluminous and heterogeneous as is their structure.
9
  Some of the information is in 

free-text form, written as full sentences or phrases, but much of it is in the form of semi-structured data, or 

templates.
10

  Semi-structured data is defined as data that has some structure but is inconsistent or does not adhere to 

any rigorous format.
11

  While some work has been done extracting information from semi-structured data, most of 

that research focused on extracting data from web pages or research articles and is not easily adapted to the medical 

domain.
12-15

  Part-of-speech parsers in off-the-shelf NLP programs do not perform well on semi-structured data 

because it does not adhere to grammatical rules.  If the structures within documents could first be accurately 

identified, then extraction methods that do not depend on English grammar could be developed to extract the 

information in these structures.  

The goal of this study was to evaluate a method of processing information in semi-structured text in medical 

progress notes by first, classifying each line of text using machine learning, then using the line classifications in a 

rules-based parser, annotate the semi-structured text elements.  This will allow the information in these structures to 

be further processed or stored in structured form.  To achieve this goal, a prototype system “TagLine” was 

developed.  We exploit non-grammatical features derived from the text in progress notes to apply a class label to 

each line of text and use these labels in a rule-based annotator to identify semi-structure text elements in the text.  

Our system combines methods already familiar in IE, such as concept look-ups, regular expressions, rules, and 

machine learning on features from the text to accurately identify information contained in semi-structured text 

elements.  

 

Background 

Information Extraction.  IE is defined as the extraction of predefined types of information from text.
16

  There are 

four primary methods available to implement an information extraction system, including NLP, pattern matching, 
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rules, and machine learning.  The primary means of performing IE is NLP.  NLP research focuses on developing 

computational models for understanding natural language.
17

  The use of rules and pattern-matching exploits basic 

patterns over a variety of structures, such as text strings, part-of-speech tags, semantic pairs, and dictionary entries.
18

  

Regular expressions are effective when the structure of the text and the tokens are consistent, but tend to be one-off 

methods tailored to the extraction task.  Hand coding of complex regular expressions can be a very time consuming 

effort that requires a priori knowledge of all possible patterns that represent the concept being sought.  Machine 

learning techniques can be an effective method for IE through automated knowledge acquisition.
19

  Features 

extracted from the text, such as parts of speech and sentence length, are fed into a learning machine to assist in tasks 

downstream like word sense disambiguation.  The primary disadvantage of using machine learning is that it requires 

a labeled dataset for training a model.   

Semi-Structured Data. Well-structured data, as found in a typical database, conforms to a schema or data model and 

can be queried using a structured query language to 

answer questions.  Semi-structured data is data that 

has some structure but is inconsistent or does not 

adhere to any rigorous format,
36

 and is very 

difficult to query.  In semi-structured data, 

information normally associated with a schema is 

contained within the data, which is sometimes 

called “self-describing."
11

  Semi-structured data 

can break the conventions for structured data in a 

number of ways.  The structure is often irregular, 

implicit, or partial.   

Efforts to perform IE on semi-structured data are 

well developed for web pages but less so on 

research articles from peer-reviewed journals and notes for the electronic medical record.  Table 1 shows a summary 

of the published methods previously used for extracting semi-structured data.  Pages on the World Wide Web are 

written in HTML, which is a standard and provides a healthy measure of reliable structure that these studies used in 

developing extraction routines.  Research papers also adhere to a certain amount of structure.  There is an order to 

the flow of the paper and very specific formatting conventions with journals for section headers, graph labels and 

tables.  For IE on semi-structured data in the electronic medical record, the work is limited and it has been noted that 

locating the data is difficult, since no standard way to enter the data in the EHR system is reinforced. Furthermore, 

there are no built-in edit checks available to facilitate data entry.   

The Electronic Health Record at the VA.  The VHA EHR, VistA, records information regarding a patient’s clinical 

encounters, in both structured data tables and text.  Each line of 80 characters or less is stored as a string associated 

with a specific document, such as a medical progress note.  This preserves the formatting of the document to make it 

easier to read in the Computerized Patient Record System (CPRS),
37

 the user interface for VistA.  It also provides an 

artifact useful in text processing.   Each note can be separated into a group of individual lines of text.  Because 

progress notes are written for a variety of purposes, notes are assigned descriptive names.   Users can create their 

own custom designed notes using the Progress Notes Construction Set
38

 and design their own templates for the 

notes.  This causes tremendous variation in the way notes are structured, which means developing extraction 

routines using techniques like regular expressions and handcrafted rules are typically useful only as one-off 

solutions.   

 

Document element ontology.  This study is guided by an ontology developed by investigators in the Consortium for 

Health Informatics Research (CHIR) to define the text elements to be targeted.  The ontology described here is the 

result of an error analysis from the 2010 i2b2 challenge submission and a CHIR Information Extraction Methods 

(IEM) initiative.
39

  A document is made up from a set of document elements.  Sections, slot-value pairs, paragraphs, 

sentences, phrases, content, questions, lists, tables, and address blocks are examples of document elements.  Figure 1 

graphically depicts a sample of the structures and their component parts.  For purposes of this study, we selected the 

text elements tables and slot-values.  Table 2 presents a sample of the line-of-text classifications being used, along 

with the parent “is-a” class from the text element ontology and the larger structural (part-of) class.  It gives the 

relationship of the line type to structure type in “is a” or “is part of” relationships.  There were a total of 75 distinct 

class labels derived from the text and ontology.   

 

Table 1.  Previous work on semi-structured data 
Method Used Document Type 

Finite state machines
20

 HTML 
Rule generation within specified constraints

21
 HTML 

Example guided object decomposition
22

 HTML 
Example guided structure induction

23
 HTML 

Machine learning on object exchange models
24

 HTML 
Schemas and wrappers on document structures

25
 HTML 

Path expressions
26

 HTML 
Labeled ordered trees on tag structure

27
 HTML 

Ontology and graph based modeling
28,29

 HTML 
Descriptive logics

30
 Journal 

Graph modeling on schemas
31-33

 Journal 
Link grammars connect features with numbers EHR 
ID3 trees on NLP features

34
 EHR 

Standard data cleansing techniques
35

 EHR 
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Table 3.  Sample line classes and their relationships to 

document elements. 

 

Figure 1.  Document element ontology 
 

Line Class Is-A Part-Of 

Double Xed Items CheckBox Question 

Multiple Xed Items CheckBox Question 

Xed item CheckBox Question 

Line list with Header List List 

Comma separated list on a line List List 

List Header ListHead List 

Numbered Item ListItem List 

Medication Footer MedFooter Table 

Medication List Directions TableRow Table 

Med List Item (not numbered) TableRow Table 

 

The Line of Text as the Unit of Analysis.  Progress notes in VistA are stored as a series of strings at a length of 80 

characters or less.  These text strings can be assigned recognizable roles as defined in the text element ontology.  

Some of these elements stand on their own as atomic text elements, while others are part of larger more complex 

text element structures.  Both tables and slot values can be defined by their constituent parts.  Slot values consist of a 

content heading and content separated by a delimiter and can be contained within a single line of text.   Slot value 

content is a short value, typically a word, numeric value or phrase.  The elements of a table can be identified by their 

parts at the line level.  A table, as defined by the document element ontology, is a collection of related items 

arranged in columns and rows.  Tables may have column labels and row labels as well as a caption for the subject of 

the table.  The first line in Table 5, "---- CBC PROFILE ----" stands complete as the table header (THE).  

The second and third lines are used to label the information in the columns (CLA).  The remaining lines are each 

identifiable table items (TBI) in the table.   

 

Table 4.  Table Example 
Class Line of Text 

THE ---- CBC PROFILE ---- 

CLA BLOOD     01/19           Reference 
CLA           14:20     Units    Ranges 

TBI WBC        5.7       G/L   4.2-10.3 

TBI RBC        4.8       T/L   4.2-5.8 
TBI HGB       14.2       g/dL   14-17 

TBI HCT       43.3        %     39-50 
 

 

Table 5.  Slot Filler Examples 
Class Line of Text 

SLF CURRENT LEVEL OF PAIN: 5 

DSV LMP:11-26-06    PMP:221 

TSV Grava: 2   Para: 2    Abortion: 0 

SLT Indicate HOW YOUR PAIN FEELS: 

FRT      Aching 

 

The basic slot-filler consists of a label and a value separated by a delimiter, usually a colon (see Table 6).  In its 

simplest form the slot-filler appears as shown on a single line.  This line would be given the label "SLV" for slot-

filler or slot-value pair.  However, slot-fillers do not always appear in this form; there may be two or three sets of 

slot-fillers on the same line.  These two examples are then labeled "DSV" and "TSV" respectively, for double slot-

filler and triple slot-filler.   The two elements, the label and the value may also appear on separate lines.  The values 

that fill the slot are not always present, so there may only be a slot.  Since each 

line tends to stand as a unit, we chose this as our unit of analysis in machine 

learning.  Each of these variations must be handled by a specific set of parsing 

rules, and the class labels identify which set of rules to employ.   

Feature selection.  The selection of features that were used in machine 

learning to assign classes to each line was crucial to success.  We reviewed the 

work of other studies in this area
20,40-42

 and derived and tested a number of 

additional features to detect structure in lines of text.  Table 6 shows a sample 

of the features we adopted.  We looked for similar clues in each of the text 

elements that help us tell them apart from other text elements.  These clues fall 

into one of several types of text features: formatting features, special character 

usage, term usage, and document structural features.  Examples of formatting 

features include whether the line was in all uppercase letters or in title case, as 

well as the number of uppercase letters in the line.  Special character features 

Table 6.  Feature Examples 
Feature Description 

AllCaps All uppercase letters 

Title In title case 

NumCaps Number of uppercase letters 

Hyphens Number of hyphens 

Spaces Number of spaces 

Slashes Number of slashes 

DecPos Offset position of decimal 

ColPos Offset position of colon 

QmPos Offset position of  “?” 

Bar Formatting bar  

YesNo Ends with “Yes” or “No” 

Icd Presence of IDC9 code 

Bullet Line is bulleted 

Numbed Line is numbered 
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included items such as the total number of spaces, slashes, and hyphens in the line and where the first, second, and 

third decimal and colon could be found in the line.  Examples of term usage-based features included position of a 

question mark, if the line of text ends with a “Yes” or “No” and if the token “ICD” was found in the line.  Finally, 

document structural features included items such as if a line was numbered, had a text bullet, and if a line had a 

formatting bar (e.g., **********).  In all, there were over 70 features defined to describe the differences between 

classes.   

 

Data Preparation 

 
Document Selection.  A set of 162 notes formed the corpus for this study.  These notes are a subset of the 5,048 

medical progress notes collected in a separate and unrelated study in the VHA to identify patients who have suffered 

a fall-related injury
5
.  The notes were randomly selected from note types containing the greatest number and variety 

of semi-structured text elements.  The variety of note types selected represents note types that are most frequently 

used in the VHA for treatment of falls, primarily notes from emergency room and primary care visits.  They 

included “Primary Care Notes”, “Primary Care Nursing Notes”, “Primary Care H&P Notes”, “Primary Care Home 

Health Consult Notes,” “Emergency Room Nursing Notes”, “Emergency Room Triage Notes” and “Nursing 

Discharge Notes.”  These note types tend to have more structured elements than those written in free text.  To 

evaluate machine learning on assigning line classes, all lines (n=15,103) from the selected notes were randomly split 

into sets of 10,000 and 5,103 for training and test respectively.  To evaluate the structure annotator on identification 

of targeted semi-structured data, the 162 notes were randomly split into 115 notes for training and 47 notes for 

testing. 

Labeling Lines of text. To provide data for machine learning each of the 15,103 lines in the 162 notes, classes were 

assigned to lines of text as an intermediate step to finding and extracting information from specific predefined types 

of semi-structured text elements. Class labels were determined by membership in or relationship to, the structure 

types defined in the CHIR ontology, and were derived empirically from the text.  The classes may describe a part of 

a structure, such as a table or contain multiple structural parts.  Class determination and text line labeling were 

iterative simultaneous tasks.  First we examined the line for a relationship to a structure type in the ontology.  If 

there was a class that describes this relationship, then we applied that class.  If not, we created a new class within the 

ontology that describes the relationship and apply the class label.  Structure types in the ontology can be associated 

with multiple classes of lines.  This is grounded in the fact that any given structure type identified by the ontology 

may appear in the text in multiple forms as in the slot-fillers example above.  Rigorous steps were taken to ensure 

that the classes were unique and that they related to only one text element in the ontology.  Each class was evaluated 

individually and discussed as it was added to the set.  As the number classes grew we evaluated their usefulness 

them by using them in some preliminary machine learning models.  Classes that were misclassified were re-

examined and if the label applied by the machine learning model was valid, it was relabeled with the predicted label.  

If the label was not valid, then we applied a new label and new features were added to the machine learning models 

to improve performance.   

 

When the labeling was completed a count was made of each occurrence of each class and the distribution of the 

class frequencies was checked. It was found in initial models developed that classes with fewer than six instances in 

the dataset achieved an F-Measure of less than 0.6.  Classes with less than six occurrences in the dataset were 

removed and the lines with those labels were re-labeled with the next best class.  This required that the new class 

label be re-defined to include the new instances.  There were a total of 75 possible class labels derived from the text 

and ontology.  A total of 13 classes were eliminated from the list, leaving 58 remaining classes for use in machine 

learning models.  None of the removed classes were relevant for the structures examined in this effort.  The classes 

that most frequently appeared in the text were free text (FRT), slot-value (SLV), medication list item (MLI), and 

table item (TBI).  Since the annotator uses the predicted line labels in its parsing routines, the errors in line label 

predictions are likely to cause errors in the structural annotations.  It is therefore crucial to achieve the highest 

possible prediction accuracy in the first step.    

 

TagLine 

 

To accomplish the goal of this study, the prototype TagLine system was designed and implemented.  TagLine 

consists of a series of interacting software modules written in Python.  Shown in Figure 2, the paths in yellow show 

the flow sequence for training a new model and the blue paths show the sequence for structure annotation.    
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Extraction Module.  Notes are converted to a 

list of text lines and each text line is subjected to 

a series of functions that extract values for the 

features to be used in machine learning.  When a 

new model is trained, all features are selected 

for extraction.  The final model determines 

which features will be extracted when using the 

system for annotation.  The resulting new 

dataset was used to train the learning machine 

and make predictions.  Each line in the dataset 

described a line of text in the note.  This dataset 

was sent to the C5.0 module when training a 

new model or to the next stage for use in classification by the tree classifier.   

C5.0 module.  Decision trees are a good fit for the work in this study for the following reasons
43

:  They handle high 

dimensional data well, are computationally efficient, easily interpreted by human beings, and most importantly for 

this study, can be readily converted to computer executable code.  This study uses an updated version of the C4.5 

algorithm developed by Ross Quinlan as C5.0.
44

  The C5.0 module is a Python wrapper for a console application.  

The C5.0 application was compiled from the GPL C code distributed freely by Ross Quinlan.  The C5.0 module 

develops a decision tree model based on the features provided by the extraction module.  The C5.0 algorithm 

performs winnowing of the attributes before building a tree by evaluating each attributes’ effect on error rate when 

the attribute is removed. Error-based pruning is also performed to cut back on branches that do not contribute to the 

models overall efficacy.  Finally, this module writes a tree model file out to disk for use later.  

Tree converter module.  The tree converter parses the original tree model file written by the C5.0 module and writes 

two new files; a text file and a Python executable classification module.   The text file is a list of the features 

determined by the C5.0 decision tree model found to be useful in prediction.   When the new classification module is 

used, the extractor will only extract those features that are needed.   

Tree classification module.  The tree classification module is automatically created by the tree converter module by 

parsing the tree model and writing executable Python code.  This module takes the note as a list of text lines and 

classifies them using a series of if-then rules.  Then it passes the classification results along with the lines of text to 

the annotation module.   

Annotation module.  The annotation module takes the classification results and the lines of text from the tree 

classification module and uses them to locate structures in the text based on options submitted by the user.  For each 

type of structure indicated in the options, the annotation module loops through each line of the note looking for the 

appropriate line labels for the targeted structures.  When targeted labels are encountered, a rule-based approach is 

used to parse and annotate the structure and return values in the form “ElementType|StartOffset|StopOffset.”  The 

annotations can be written to a file for review, recorded in a database for storage and used later as structured data, 

used as features in another classification task downstream, or sent to an NLP pipeline where annotations can be used 

for extracting concepts from the text elements using a structured vocabulary.  TagLine can also extract the elements 

and record the notes with the annotated structures removed as a text reduction method.   

TagLine Evaluation 
 

TagLine was evaluated in two separate experiments.  First, we evaluated the use of decision trees for predicting the 

classes assigned to the lines of text, then we evaluated the accuracy of our rules based annotator for identifying slot-

value pairs and tables based on the classes assigned to the lines. 

 

Results for Line Classification.  A decision tree was constructed on the line-level training data and evaluated on 

unseen test data for prediction accuracy.  Winnowing was used for feature reduction before a tree was constructed. 

Winnowing removes any feature that does add to the models efficacy.  The C50 algorithm constructs an initial 

model on half of the training data and calculates the increase in error rate for each feature when it is left out of the 

model.  Global pruning was performed after tree induction keeping only those branches that had at least one instance 

associated with it.  Error based pruning was also employed; a branch was pruned if its prediction errors exceeded a 

 
Figure 2.  TagLine system architecture  
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level of 25 percent.  A series of fifty models were tested using graduating numbers of lines in increments of 200 

examples starting at 200 and ending with 10,000.  The overall prediction accuracy was calculated for each test 

using a hold out set of 5,103 lines.  The results are presented as a learning curve in Figure 4.  

 

 
Figure 3.  Learning Curve for Machine Learning 

 

Table 7.  Line Classification Statistics 
Class N Precision Recall F-Measure 

Free-text 934 0.9789 0.9936 0.9862 

TableItem 900 0.9944 0.9878 0.9911 

Slot-filler 508 0.9882 0.9882 0.9882 

MedLine 362 0.9564 0.9696 0.9630 

Slot 273 1.0000 0.9963 0.9982 

AphaLine 6 0.8333 0.8333 0.8333 

NumbedQue 4 0.8000 1.0000 0.8889 

NumbMed 3 0.6667 0.6667 0.6667 

LabeledDS 2 0.6667 1.0000 0.8000 

QuestHead 1 0.5000 1.0000 0.6667 

 

With a sample size of 200 lines, the decision tree model was able to achieve an accuracy rating of 80 percent.  The 

accuracy increased to 90 percent at 1,200 lines.  An overall accuracy level of 98.5 percent was achieved with a 

sample set of 10,000 lines, only 3.5 percent higher than at the 3,000-line sample size. The performance results for 

the five most and least frequent classes in the test set are shown in Table 7.  Only five classes did not achieve an 

overall F-measure of 0.9 or above.   

 

Prior to tree construction, the winnowing process eliminated 20 features. The top 10 remaining features are shown 

below in Table 8 with their respective importance ratings.  The importance rating is C5.0’s estimate of the factor by 

which the true error rate or misclassification cost would increase if that attribute were excluded.  The number of 

colons in a line of text appears to be the most important feature in the model.  Colons are important when looking 

for slot-value pairs, as well as dates and timestamps.  The second most predictive feature is the line number for the 

line of text.  Line numbers describe how far into the note a line appears; beginning, middle or end.  Interestingly, all 

of the tests done by the model using the line number feature took place at the top of the note (see figure 4).  Question 

marks, capital letters, and white space gaps also help in distinguishing structured text from un-structured text.   

The occurrence of a question 

mark was the most used feature 

in the model.  This is shown in 

the tree fragment in Figure 4 

where the feature QM is at the 

top of the decision tree, 

indicating it is the first attribute 

the tree splits on.      

The tree classification module 

was used to predict the 5,103 

line class labels in the test data.  

Many classes achieved a perfect 

score.  The poor performers were all low prevalence classes, each occurring less than ten times in the entire test set.  

The class ALI is alpha list item, or an item in a list that is delineated by an alpha character and some delimiter.  One 

line labeled ALI was misclassified as FRT causing one false negative.  The only feature that would distinguish Free-

text from an alpha-labeled-line is the use of the delimiter after the delineating character.  In most applications a 95 

percent accuracy rate would be considered acceptable, so it would not be necessary to use more than 3,000 lines for 

an acceptable result.  However, because the results of the annotation in TagLine is dependent on the accuracy of the 

line labels it was decided to use the full 10,000 lines for the training set and the remaining for testing in the next 

section.   

Results for Annotating Tables and Slot-Fillers.  For this experiment, the data were split into training and test sets 

segregated at the note level.  In the next stage, the parsing routines were tested on two types of structures; slot-value 

Table 8. Top 10 Features 

Importance Feature 

835%   Colons 

264%   LNum 

255%   Slot 

179%   LSpc 

166%   Bull 

150%   Med 

148%   Gaps 

139%   QM 

137%   Caps 

127%   Time 
 

QM > 0: 

:...Quest > 0: 

:   :...LNum > 0: NQU (10) 

:   :   LNum <= 0: 

:   :   :...Colons <= 0: 

:   :       :...SLow <= 0: QUE (268) 

:   :       :   SLow > 0: QUF (28) 

:   :       Colons > 0: 

:   :       :...UpSlot <= 0: HQU (4) 

:   :           UpSlot > 0: SLV (1) 

Figure 4.  Decision Tree Fragment 
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pairs and tables.  Since tables are multi-line units, all lines are needed to identify a unit.  There were a total of 115 

notes and 10,048 lines of text in training set, while the test set had the remaining 47 notes and 5,055 lines of text.  A 

record was constructed noting the number of tables, slots and fillers in the 47 notes.  Table 6 shows the occurrences 

of each structure in the note set.  The test set of notes has a total of 96 tables, 770 slots and 566 fillers for the slots.  

Not all of the slots have fillers associated with them so the numbers of slots and fillers will not match.  The complete 

set of 47 notes was used in a GATE pipeline that called TagLine using a remote procedure call (RPC) server.   

 
As the notes were processed, the server recorded the annotation actions.  The extraction results were compiled for 

evaluation.  Table 9 summarizes performance of TagLine on tables, slots, and slot fillers.  The TagLine server reads 

the options, extracts the features from the note, uses the prediction module constructed from the decision tree, 

applies class labels to the lines, and returns the annotations on the structures found. When tables are targeted, start 

and stop rules are used to identify the boundaries of the table.  The routine sequentially examines the labels applied 

to each line and when a class is encountered that signals the beginning of a table, a flag is set and all successive lines 

are included until a line label signaling a stop rule is encountered and the table end boundary is set and the 

annotation is returned.  If a line in 

the middle of the table is 

classified as free text, it would 

prematurely trigger the table’s 

end and close off the boundaries 

of the table and erroneously start 

a new table at the next table line.  

For this reason, a rule was 

included to allow for a one-line misclassification gap in the table. While traversing the lines of text after a table 

beginning has been encountered, if a line is found that is not a table line, the end of table is marked, but held until 

the next line is checked.  If the line after the non-table line is a table line then the table end is cleared and the 

boundary of the table is extended until there are no more table lines.  In the event the next line is a table header or a 

column labels, then the current table is completed and a new table begins.  A constraint enforced by this method is 

that a table must have at least one table line (TBL) to be annotated as a table.   

 

Discussion 

 

TagLine performed well on slots and fillers.  There was little difference when evaluating performance on exact 

versus partial matching criteria. There were 770 slots in the 126 notes used for the test.  TagLine found 768 of the 

slots matching the start and stop end points exactly.  The two remaining slots were found but the parsing routine 

failed to set the offsets properly.  One was due to colon placement in the string.   The text line in the middle of the 

note: “(R): 0.7cm X 0.5cm   (L): cm X cm” was marked as a DSV, or a double slot value.  The 

“(R):” is the slot, and the filler is “0.7cm X 0.5cm.”  TagLine failed to parse this line appropriately for both 

of the slots and fillers.  While they were found, they were not considered exact matches.  There were 21 false 

positives for slots.  A total of 19 of the false positives were due to date entries across several notes that were 

misclassified as slot-values.  There were a total of 566 fillers in the 47 test notes.  TagLine successfully annotated all 

but one of the fillers, but there were 26 false positives, 19 associated with the date misclassifications mentioned 

above, resulting in a lower precision (0.9543) than recall (0.9965).   Figure 5 shows the slot-filler annotations 

highlighted for one of the test notes.   

There were 96 tables distributed throughout the 47 test notes.  TagLine achieved an F-measure of 0.9250 for exact 

matching, lower than the number achieved for slots and fillers, but encouraging.  Of the 96 tables in the test set, 86 

were matched exactly according to the start and stop codes.  Of the remaining 10 tables, 9 were identified with 

partial matches and one table was missed completely.  Many partial match cases were due to column labels (CLA), 

or table item (TBI) being misclassified as free text (FRT), causing the parser to miss that portion of the table.  In 

Figure 6, it can be seen that three lines in the table were not annotated.  The first of the three is the column label and 

the next two descriptive entries did not conform to the format of the other table lines and were labeled FRT.  

Because the lines “color yellow” and “appeara sl cldy” do not conform to the format of the rest of the 

table, the table was partially captured in two parts.  An allowance is made in the case that one line is misclassified, 

so tables are not broken apart.  However, if more than one line is misclassified then the table will only be a partial 

match.  Making allowances for more than one misclassified line causes problems when tables are found stacked 

directly on top of another table.  In these cases, the two tables erroneously become one contiguous table.   

Table 9.  TagLine Annotation Performance 

  
Exact Match  Partial Match  

Structure Count Precision Recall F-Measure Precision Recall F-Measure 

Tables 96 0.9250 0.9250 0.9250 0.9896 0.9896 0.9896 

Slots 770 0.9709 0.9974 0.9840 0.9735 1.0000 0.9865 

Fillers 566 0.9543 0.9965 0.9749 0.9560 0.9982 0.9767 
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Figure 5.  Slot-filler Annotation Example in GATE   Figure 6.  Table Annotation Example in GATE 

 

Conclusions 

 

TagLine was evaluated for parsing and annotating semi-structured text elements both at the macro level, on multi-

line structures, and at the micro level, on within-line structures.  TagLines’ performance identifying slots and fillers 

was impressive.  The annotator achieved an F-measure of 0.9840 for exact matching criteria for slots and 0.9965 for 

fillers.   The results for tables were not as impressive, achieving an F-measure of 0.925 for exact matches and 0.9896 

for partial matches.  Since even partial matches are likely to be useful in practice, the results were quite good. 

 

Contributions.  In this study, we have shown how using the line of text as the unit of analysis can play an important 

role in semi-structured elements and that text analysis can be beneficial at this level.  TagLine has been shown to be 

effective for distinguishing specific classes of lines based on their structural roles and for identifying semi-structured 

text elements in medical progress notes.  This will enable researchers to use more of the information in the text than 

was possible before.  The information in the annotations can be stored in a database and used for other analyses as 

fully structured data.  Once identified, semi-structured text elements can also be removed from the document so 

NLP can focus on the free-text sections which may result in more accurate concept extraction, as well as faster 

processing times for each note.  The counts of these structures could be used as features in a machine learning 

approach for document classification tasks.  TagLine can now be used to do ad hoc concept extraction from the 

semi-structured text by using rule as implemented in the JAPE module of GATE.  Rules such as “if slot = <search 

term> lookup <filler>.”Only those structures that contained the search terms or concepts would be annotated and 

returned. Since more information can be extracted from the notes, more complete information is available for patient 

analysis or document classification.  This additional data could enable researchers to explore topics better and 

perhaps improve the healthcare for veterans easier and faster than before. 

 

Limitations.  This study has two primary limitations.  First the dataset, while adequate for purposes of providing 

sufficient examples for developing and evaluating learning machines, is still limited since the sample was taken 

from an existing study and may not include many note types and their specific challenges.  TagLine needs further 

testing and development to ensure good generalizability.  Also, samples of documents from other hospitals should to 

be included in the corpus to train models for increased generalizability.   

 

Future Work.  The parser in TagLine will be expanded to include other types of structures like full templates, 

questions and checkboxes.  The language across note sections tends to differ.
45

  This feature is often used in NLP 

systems for “word sense disambiguation,” and is a fertile area for research
46

. There is a need to improve section 

identification or section header identification.
47,48

   We will also extend Tagline to function as a “sectionizer,” which 

accurately determines which section of the note a line of text belongs to.  A sectionizer would be useful in word 

sense disambiguation and for text reduction, potentially saving significant amounts of time and money on creating 

annotated data sets.  Human annotators would have smaller, more concentrated notes to cover if it is known that 

certain sections held no interest.  This may increase productivity by shortening the time necessary to cover the note 
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and decrease the likelihood of mental fatigue that occurs with longer notes, as well as reducing the amount of time 

spent on irrelevant documents.   

Funding for this work was provided by the Veterans Healthcare Administration Health Services Research & 

Development grants IIR05-120-3 and SDR HIR 09-002.  The views expressed in this paper are those of the authors 

and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the US government. 
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