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Abstract 

An opportunity exists for meaningful concept extraction and indexing from large corpora of clinical notes in the 

Veterans Affairs (VA) electronic medical record. Currently available tools such as MetaMap, cTAKES and 

HITex do not scale up to address this big data need. Sophia, a rapid UMLS concept extraction annotator was 

developed to fulfill a mandate and address extraction where high throughput is needed while preserving 

performance.  We report on the development, testing and benchmarking of Sophia against MetaMap and 

cTAKEs. Sophia demonstrated improved performance on recall as compared to cTAKES and MetaMap (0.71 vs 

0.66 and 0.38). The overall f-score was similar to cTAKES and an improvement over MetaMap (0.53 vs 0.57 and 

0.43).  With regard to speed of processing records, we noted Sophia to be several fold faster than cTAKES and 

the scaled-out MetaMap service. Sophia offers a viable alternative for high-throughput information extraction 

tasks. 

Introduction 

There is a pressing need for clinical concept extraction and concept indexing to unlock currently obscured 

information from large corpora holding clinical narratives.  Natural language processing (NLP) tools such as 

MetaMap
1
, cTAKES

2
 and HITex

3
 have traditionally been used for concept extraction and have performed well in 

the clinical domain. However, these have not been scaled-up to handle big data while preserving processing 

speeds. Large health care systems such as Kaiser Permanente, Mayo, Vanderbilt and the US Department of 

Veterans Affairs (VA) would have need for scaling up their concept (information) extraction tasks. As an 

example, the VA  maintains a fast growing corpora of 2.6 billion clinical notes through a secure research 

environment (Veterans Informatics and Computing Infrastructure, VINCI
4
).  Using currently available tools 

running on several multi-core servers, we estimated that it would take multiple years to create concept indexes 

for the notes available in VINCI notes to facilitate further information extraction and retrieval. 

For clinical, health services and genomic research, there is a critical and ongoing need for NLP tools to mine the 

free text of medical records to supplement structured data queries to identify patient cohorts and phenotypes. In 

developing these tools, researchers consider several criteria: usability, maintenance, efficacy (in terms of 

recall/precision/f-score), ability to incorporate and use local lexica (or terminology), high throughput 

performance and adoption within the NLP community. While no currently available tools satisfy all criteria, we 

set out to develop a tool which would be useful for high throughput while maintaining efficacy.  

We report the development of Sophia which is a UIMA-AS
5
 based UMLS

6
 concept extraction annotator. Sophia 

is now a key component of the v3NLP Framework used by VINCI for information extraction tasks. Sophia 

shares some methodologies found in MetaMap and cTAKES, but includes some attributes that cTAKES does 

not, and also excludes some functionality that MetaMap has. More importantly, Sophia is designed for fast 

processing, while most prior efforts emphasize extraction accuracy.  

State of the Art in Extracting UMLS Concepts 

 

There are a number of open source NLP tools and techniques specifically developed to extract UMLS concepts 

from clinical text.  Among them, cTAKES and HITex are well represented in the field.  MetaMap and 

SAPHIRE
7
 were tools initially designed for UMLS concept extraction within the bio-literature domain that have 

been adapted for use with clinical text by several organizations.   There are a number of non-open source 

successful efforts to extract UMLS concepts within clinical text include MedLEE
8
, MedKAT

9
 and 

KnowledgeMap
10

. 

 

Many of these efforts are built upon two frameworks adopted or developed for use within the NLP field: GATE
11

 

and Apache-UIMA.  A relevant component common to these two frameworks is the notion of a pipeline 
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composed of a sequence, or end-to-end chaining, of atomic modules often referred to as annotators. An annotator 

adds stand-off highlights, mark-ups, labels or annotations related to the original text.   The annotations from one 

module are used as input to a downstream annotator.  A phrase chunker annotator, for example, depends upon 

part-of-speech annotations added via an upstream annotator in a pipeline.  Efforts built upon the UIMA platform 

have the potential for being scaled out through the replication of pipeline instances via a related framework: 

Apache UIMA’s Asynchronous Scale-out
12

 (UIMA-AS).   The UIMA-AS framework provides for pipeline 

component replication in addition to the full pipeline instance replication to address bottleneck annotators.    

Methods 

Sophia Annotator Defined 

The Sophia annotator identifies UMLS Concepts using a lookup algorithm to match longest spanning matches to 

an index of known UMLS concepts.  A conscious decision was made to find longest spanning matches rather 

than shortest spanning or by including all possible matches.  Longest spanning matches reduce the ambiguity 

issue by finding the most specific match, for instance finding chest pain rather than chest and pain. While 

including the constituent components such as pain and chest might be useful for building google-like search 

indexes to aid retrieval techniques, the first iteration of Sophia does not include this capability because such a 

capability was not part of the motivating use cases.    

The lookup algorithm relies on exact match retrieval to keys in the index, rather than uninflected or stemmed key 

retrieval.   An exact match retrieval looks up the words as they appear in the sentence to find keys in an index. 

Within the sentence the patients were transferred, exact match retrieval would look up the words patients, were, 

and transferred within a dictionary.  Within an uninflected lookup algorithm, each of the words within the 

sentence would be transformed into the uninflected keys: patient is transfer.  These uninflected keys are what 

would be looked up within an index that holds the uninflected forms. The index includes all possible fruitful 

variants
13

 for a given UMLS concept to insure that valid matches will be found. Fruitful variants for a given term 

includes spelling variants, inflections, synonyms, acronyms and  abbreviations, acronym and abbreviation 

expansions, derivations and combinations of these transformations such as the spelling variants of synonyms. 

The burden of computation to make a match is shifted from the cost of normalizing words in the text to be 

looked up, to having a larger index where the variant expansion cost was taken up at index creation time.  An 

early MetaMap paper
14

 showed that this technique increases match precision or accuracy over stemming 

normalization techniques.  

The lookup algorithm works on a window that initially includes all the tokens of a sentence as the longest span to 

find. Subsequent lookups drop successive tokens from the beginning of the sentence until a match is made.  The 

algorithm does not rely on phrasal boundaries on the grounds that there are important UMLS terms that include 

multiple phrases, particularly those that include multiple prepositional phrases (of, with, without, with/without).  

Techniques that rely on phrasal barriers to determine the window size sometimes miss the longer, less 

ambiguous, more specific matches.  Both MetaMap and cTAKES have post phrase identification to re-join 

specific kinds of prepositional phrases to the adjoining noun phrases to partially ameliorate this condition. 

No phrasal boundaries are necessary for Sophia’s lookup technique.  As a consequence, no part-of-speech tagger 

is necessary to identify phrasal markers, eliminating two common up-stream annotators commonly found in 

other concept extraction systems.    

The Sophia lookup algorithm evolved from the  SPECIALIST Text Tools
15

. The SPECIALIST Text Tools 

lookup dropped tokens from the beginning side of the sentence where-as the  Sophia algorithm drops tokens 

from the ending side of the sentence. While neither version is perfect, dropping tokens from the ending side of 

the sentence favors having the head of a term as the last token matched.  For example, the prior version would 

have matched heavy chain and smoking from the sequence heavy chain smoking whereas the current version 

would match heavy and chain smoking, given the situation where the index includes heavy chain, chain smoking, 

and heavy as keys (and not heavy chain smoking). 

The index entry key creation is important to the overall Sophia scheme.  Each UMLS string has a set of lexical 

variants generated to create keys in the Sophia index.  These lexical variants include spelling variants, 

inflections, un-inflections, synonymy, derivations, acronym or abbreviation expansions and acronyms and 

abbreviations.  Fruitful combinations of each of the above mentioned variants are also generated including 

derivations of spelling variants, derivations of synonyms, and derivations of derivations.  These variants are 

generated from a configuration of the LVG tool
16

 distributed by the National Library of Medicine called the 
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fruitful variants flow.  This tool over-generates variants for Sophia’s purposes. Variants that are generated from 

terms that, themselves are acronym/abbreviation are most likely fallacious. For instance, generating spelling 

variants to the acronym A.I.D.S. generates the term AIDS, applying (un) inflections to that term creates AID 

(already fallacious), and applying either inflectional or derivational suffixes such as ing will lead to additional 

fallacious terms including aiding. 

A post-processing filter is applied to prune out any variant generation combination that includes 

acronym/abbreviation or acronym/abbreviation expansion plus any additional mutation. Long sequences of 

synonyms or derivations are likewise pruned out.  

The Sophia Pipeline 

To evaluate Sophia against MetaMap and 

cTAKES, we created a pipeline that includes 

the prerequisite upstream annotators, the 

Sophia annotator, and needed downstream 

annotators (the Sophia Pipeline).  The pipeline 

is built upon the UIMA-AS framework and is 

expected to be configured to utilize the 

resources of well-endowed production 

hardware to provide big-data concept 

extraction across the Veteran Administration’s 

2.6 billion clinical records.   

The Sophia annotator works on the tokens 

within sentence or utterance boundaries.  As 

such, the Sophia annotator requires upstream 

token and sentence annotators to identify 

words and sentences.  Sophia was developed 

with the v3NLP framework, which includes 

token and sentence boundary annotators.  V3NLP’s sentence boundary annotator takes advantage of an annotator 

that identifies slot:value structures (they have a special kind of sentence grammar), and an annotator that 

identifies section headings. Since many clinical notes include question and checkbox boiler-plated sections, an 

annotator was added to recognize questions and their related checkbox structures to correctly handle concept 

assertions within these entities.  The Sophia Annotator will blindly find UMLS concept mentions. The conText
17

 

assertion annotator is run downstream of the Sophia annotator to provide assertion attributes to the concepts 

found.  Figure 1 shows a skeuomorphic representation of the Sophia pipeline with a medical problems 

identification annotator at the tail end of the pipeline.  The problems identification component was added here to 

extract medical problems from clinical text as an extrinsic evaluation. 

 

Evaluation 
 

The Sophia Pipeline, MetaMap Pipeline and cTAKES were evaluated in an extrinsic task to identify medically 

significant problems mentioned in clinical 

text.  The evaluation includes a span 

comparison compared to a human reference 

set and the throughput performance, i.e., 

how many records per second were 

processed. This paper provides the basis for 

baseline efficacy and performance metrics 

of the software devoid of the deployment 

environment.  

 

 

Figure 1.  v3NLP Sophia pipeline 

Figure 2. MetaMap pipeline 
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Span Evaluation 

A gold standard reference corpus with span level clinically significant utterances was developed through a 

Consortium for Healthcare Informatics Research
18

 (CHIR) Information Extraction and Modeling task from the 

Veterans Administration.  Human annotators highlighted problems (as defined by the i2b2/VA 2010 Challenge
19

) 

in 145 clinical records in a corpus chosen at random from the 100 most frequent VA document types by the 

annotation team that annotated the i2b2/VA 2010 Challenge.  Assertion attributes of negation, conditional, and 

subject were also annotated for these problems.   

A MetaMap pipeline and a Sophia pipeline were created for this effort.  Each of the pipelines included the 

problem identification annotator after the concept extraction annotation. The problem annotator filtered to 

concepts that were of the proscribed problem semantic type.  The conText annotator was also applied to add 

assertion attributions.  The conText annotator marked concepts with asserted, negated, conditional, applies-to 

the-patient, and historical attributions.   

Figure 2 shows the MetaMap pipeline used for this evaluation.  The cTAKES part-of-speech annotator and a 

phrase annotator were added and the Sophia annotator is replaced with the MetaMap annotator. The MetaMap  

annotator is a wrapper around a client that goes out to a MetaMap service running on external machines. This 

annotator gathers and uniques the phrases for a given record, then makes one request out to the MetaMap service. 

The MetaMap service runs MetaMap in the term processing mode.  The MetaMap service is a restful service that 

includes 60 instances of MetaMap.  The service treats each incoming term as a new request to the next available 

MetaMap process.  Even with this environment, 86% of the processing time taken within the MetaMap pipeline 

is taken within this one annotator when analyzed via the UIMA CPE tool. 

The cTAKES application was run separately on the 145 records.  The output was fed into a post processing 

v3NLP pipeline that converted the cTAKES UMLS concept annotations to the CHIR model’s CodedEntries. The 

same problem annotator was applied.  cTAKES includes assertion attributions.  

The span level comparison was done with overlapping matching spans compared to the reference standard on 

asserted problems associated with the patient. 

Both the MetaMap server and Sophia indexed using the 2011AA Level0+9 configuration. cTAKES uses the 

2011AA SNOMED concepts. The evaluation used an f-score computed as  

        
 (                )

(                )
 

where 

          
              

(                              )
 

 

           
         

(                              )
 

Efficacy Results: 

Table 1 shows MetaMap, cTAKES, and Sophia compared to the 145 record reference standard.   The evaluation 

was a span-only evaluation, where credit was given for partial matches.  cTAKES has the overall better F-Score 

at 0.568, followed closely by Sophia at 0.531.   MetaMap had an overall f-score of 0.431.  Sophia performed 

better at recall with a metric of 0.71 followed by cTAKES at 0.66.  MetaMap had a recall metric of 0.38.  

cTAKES and MetaMap had a precision metric of 0.5 vs Sophia’s .422.   Sophia’s precision was noticeably lower 

because of a plethora of false positives for this task.  Those false positives from Sophia that were reviewed 

indicated that many could have been considered medical problems associated with the patient but the annotators 

chose not to mark them as such.     
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Table 1. Problem span comparison  

  TP FP FN Recall Precision F-Score 

MetaMap 436 436 717 0.380 0.500 0.431 

cTAKES 757 760 391 0.660 0.500 0.568 

Sophia 823 1125 325 0.717 0.422 0.531 

Differences between Sophia, MetaMap and cTAKES  

There was a large overlap between the systems.  It cannot be construed that those concepts unique to one system 

or another are fallacious.  Of interest is how well each system identified multi-word spans.  The more tokens 

involved in the match, the less ambiguity is left for downstream processors to deal with.  Table 2 shows the 

Sophia pipeline compared to MetaMap and cTAKES, using MetaMap and cTAKES as reference standards.  

Table 2. Problem span comparison using MetaMap and using cTAKES as the reference standard 

  TP FP FN Recall Precision F-Score 

Sophia compared to MetaMap reference standard 1000 1238 169 0.855 0.45 0.587 

Sophia compared to cTAKES reference standard  1496 1117 562 0.727 0.57 0.641 

 

Many of the differences found included how each system chunked phrases, with no clear indication of whether 

either system did better or not.  Table 3 shows instances where MetaMap picked up multi-word concepts but 

Sophia chunked them into separate concepts and instances of where Sophia picked up multi-word terms that 

include phrasal barrier markers.   

Table 3.  Multiword matching differences between MetaMap, Sophia and cTAKES 

MetaMap Sophia cTAKES 

right sided facial weakness facial weakness facial weakness 

multiple old infarcts infarcts Infarcts 

 hard of hearing  

 change in bowel habits  

 lives with family  

 unable to sit  

 Sensitive to touch  

 

The largest category of differences between Sophia and cTAKES was that CTAKES annotated terms found in 

section headings that Sophia did not.  A concept mention within a section heading would not indicate that the 

mention is related to the patient. For instance, a section heading Pain Management would not automatically 

indicate the patient has or does not have pain; only that there is a section in the document that includes a section 

with pain in the name.  The reference standard did not include annotations from within section headings. The 

Sophia pipeline includes a sectionizer that marks section headings to be ignored.  Table 3 shows multi-word 

terms that Sophia suggested that were missed by cTAKES. 

Time Performance  

The Sophia pipeline, the MetaMap pipeline and the cTAKES assertion aggregate annotator were run against two 

corpora on a development virtual machine (VM) provided by the VA to securely process clinical records.  The 

CHIR reference standard has a shorter average character length than other available corpora. The i2b2 2010/VA 

Corpus
i
 provided an additional benchmark to a corpus with known attributes within the NLP community. The 

fastest of 3 runs are reported here (Table 4).   The throughput numbers are meant to be interpreted as a means to 

rank the relative performance between the three systems.  The performance time of these systems on well-

                                                           
i
 Parts of the Sophia pipeline were used within an entry in the i2b2 2010 VA Challenge.  The whole corpus was 

used for additional training to improve pipeline components after the challenge. This training invalidates any 

efficacy evaluation to this corpus. 

471



endowed production servers are vastly different than the VM’s provided for development purposes or current 

desktop machines. cTAKES and Sophia performance time on the i2b2 corpus on the a core i7 desktop was 4 

times faster than the development virtual machine, and the MetaMap performance time was 2 times faster on the 

same corpus on the core-i7 using a less endowed MetaMap server. 

 Sophia has a significant initialization cost to load all the keys into an in-memory hash.  This initialization is the 

same whether kicking off one instance or 100 due to the way the hash is shared across server threads.  The 

impact of this initialization becomes less as more records are processed.  Table 5 shows the initialization cost and 

the average per-record cost with and without taking into account the initialization cost.  The initialization cost 

with MetaMap is hidden behind the running MetaMap service that was employed. CTAKES does have an 

initialization time of 36 seconds vs Sophia’s 40 seconds observed on a desktop core i7 with solid state drives. 

 

Table 4. Time performance in milliseconds to run Sophia, MetaMap and cTAKES on two corpora of records 

  # of Records Sophia MetaMap cTAKES 

i2b2 2010 VA Corpus 349 1,395,271 

(23.24 min) 

4,804,951 

(80.08 min)  

24,524,827 

(408 min) 

Problem Reference Standard Corpus 145 343,384 

 (5.7 min) 

478,824  

(8 min) 

3,060,000  

(51 min)  

 

 

Table 5. Time performance to run Sophia on two corpora of records, reported in milliseconds 

  # of 

records 

Initialization 

in 

milliseconds 

Average 

milliseconds 

per Record  

Average 

milliseconds 

per record 

w/out 

initialization 

Total 

milliseconds 

i2b2 2010 VA Corpus 349 187,013 70,271 69,735 24,524,827 

 

Problem Reference Standard 

Corpus 

145 185,664 2,351 1,079   343,384 

 

This time evaluation is not perfect.  The number of external CPU’s and threads employed by the MetaMap 

services makes it difficult to replicate the same MetaMap pipeline performance if moved to an environment that 

does not employ the VA’s MetaMap services.   Even with these constraints, the single threaded Sophia annotator 

out-performs the MetaMap annotator by a factor of 7 and out-performs cTAKES by a factor of 18. 

 

Pipeline Performance Analysis  

 

Figure 3. Sophia pipeline proportion of each annotator's processing 

Figure 3. Sophia pipeline proportion of each annotator’s processing 
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A pipeline performance analysis was performed to analyze the time contribution for each of the components 

within the Sophia, MetaMap, and cTAKES pipelines.  The UIMA Component Processing Engine (CPE) was 

employed to break down each of the component times.  See the pie charts in figures 3-5 of the relative amount of 

time each component consumed.  It is the assertion component that takes up the most time (70%) within the 

Sophia pipeline, and the second highest amount of time (27%) in the cTAKES pipeline, yet it is a mere 9% 

within the MetaMap pipeline.  Within Metamap and cTAKES, other components consume much more 

processing relative to the assertion module.  Efficiencies to conText should be explored before improving 

performance elsewhere for the Sophia pipeline.   

 

Figure 4. MetaMap pipeline proportion of each annotator’s processing 

 

 

Figure 5.  cTAKES pipeline proportion of each annotator's processing 

Some efficiency had been built into Sophia’s conTEXT wrapper, by spawning off a pool of threads to handle the 

conTEXT processing.   This change contributed a 30% performance improvement compared to using no 

additional threads.  

Discussion 

Inspired by currently available tools and with the objective of improving total throughput performance in NLP 

tasks, we developed Sophia as an expedient UMLS concept extraction annotator. The Sophia pipeline, as 

configured as a single end-to-end UIMA application for evaluation purposes significantly out performs both 

MetaMap and cTAKES in throughput.  Components of each of the pipelines were examined to further elucidate 

the bottleneck components. For the Sophia Pipeline, assertion is the most time consuming component, even with 

some efficiency built around the ConText methods.  Evaluation using the extrinsic task of finding clinical 

problems showed that Sophia has a similar over-all f-score to cTAKES, and out performs MetaMap.  

Furthermore, Sophia had a better recall than both cTAKES and MetaMap on this task.      

Figure 4. MetaMap pipeline proportion of each annotator’s processing 

 

Figure 5. cTAKES pipeline’s proportion of each annotator’s processing 
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The techniques within Sophia are an evolution of the techniques embedded within MetaMap.  Sophia borrowed 

heavily from NLM’s SPECIALIST Text Tools™, which were included in the first Java implementation of 

MetaMap Technology Transfer (MMTx). The Text Tools included the lexical lookup, the part-of-speech tagger 

and the phrase identification components of MetaMap.  Sophia’s lexical lookup is a direct descendant to the Text 

Tools™.  Sophia differs from MetaMap in that it does not do the brute force mapping that was included in 

MMTx; it keeps only the longest spanning matches from the variant table, that is, it does not compute partial 

matches; it does not do part-of-speech tagging or phrase identification; and it combines the concept information 

within the variant and lookup table, rather than relying on tables to do the lexical lookup, then lookup in tables to 

find the variants, followed by lookup in tables to find the concept information for each match.   

MetaMap’s strength is in the evaluation and ranking it achieves once candidate concepts are pulled from the 

index.  It is in this evaluation where MetaMap churns away.  It is the most computationally expensive part of the 

algorithm, by far.  Neither Sophia nor cTAKES includes such an evaluation component.  This evaluation 

component allows MetaMap to retrieve and rank quality near matches that don’t quite cover, or cover too much 

(partial matches, concept gaps and over-matches) from the corpus text.  Neither cTAKES nor Sophia retrieves 

partial matches, concept gaps or over-matches.  This increases coverage for information retrieval tasks.  If one 

limits to exact matches (those that have 1000 as the final mapping score within MetaMap), results, in theory, 

should be equivalent. MetaMap’s ranking takes into account the cognitive distance it took between seen text and 

a UMLS Concept.  Sophia retains the cognitive distance but does not use it. Even with this ranking mechanism, 

MetaMap still returns ambiguous concepts when the ambiguity is at the lexical level.   Embedded within 

MetaMap are techniques to limit ambiguity where it can without having to call upon the services of Word Sense 

Disambiguation (WSD).  Such techniques include stop word filters, the ability to filter by semantic type, 

truncating by frequency hit cut offs and the like.  MetaMap has an add-on WSD service to help ameliorate this 

facet as well.   The Sophia pipeline considers all its ambiguous retrieval results to be a WSD issue that should be 

addressed properly in a downstream process or annotator, where both local and global context can be utilized. 

 

In comparing Sophia, MetaMap and cTAKES methodology, the Sophia annotator shares many attributes with the 

cTAKES dictionary lookup annotator, and the Dictionary Lookup Annotator UMLS aggregate engine.  Both are 

UIMA based, both include similar windowed lookup techniques.  Whereas cTAKES uses LVG’s normalization 

to a normalized index of UMLS strings, Sophia looks up unadulterated tokens in Sophia indexes that are 

generated via LVG’s fruitful variants flow using UMLS Strings as its input.  This algorithm was developed as 

part of MetaMap
1
, and had become an LVG function in the early 2000’s.  Sophia relies on a post filtering of this 

flow to prune off unnecessarily aggressive or likely to be fallacious variants.  

 

CTAKES matches to the SNOMED vocabulary subset of the UMLS.  Sophia indexes to the level 0 + 9 UMLS 

terminologies which include MeSH and SNOMED.  Both the cTAKES and Sophia pipelines were designed for 

use within the clinical setting, and as such, utilize tokenizer, sentence and section annotators and downstream 

annotators to add negation, conditional, hypothetical, or not-relating-to-the-patient context.   

Sophia relies on sentence annotations created from upstream annotators within a UIMA pipeline. In this way, 

Sophia is similar to the cTAKES Lookup annotator functionality. Sophia adds Clinical Statements filled with 

CodedEntries to each annotated document. Clinical Statements are roughly equivalent to cTAKES 

EntityMentions and EventMentions, and even more roughly equivalent to MetaMap’s final mappings. A 

CodedEntry is equivalent to cTAKES’ UMLSConcept, and roughly equivalent to MetaMap’s Candidate 

Concept.   

 

Whereas MetaMap and cTAKES formulate candidate phrases for lookup using similar techniques, Sophia does 

not.  MetaMap and cTAKES break text into phrases before concept lookup by first tokenizing into sentences, 

then doing part-of-speech annotation, followed by phrase detection prior to phrase-to-candidate concept lookup.   

Sophia, in contrast, relies on upstream annotators to label sentences.   Sophia looks up longest matching terms 

within the sentence, similar to MetaMap’s lexical lookup algorithm. Like MetaMap’s lexical lookup, Sophia’s 

term lookup uses a longest spanning match, which is an evolution of the algorithm embedded in the 

SPECIALIST Text Tools, which was embedded in MMTx, the java implementation of MetaMap.  It should be 

noted that MetaMap has the ability to do both longest and shortest spanning matches.  Sophia’s lookup 

mechanism has two new attributes not found in the SPECIALIST Text Tools.  First, it starts its matches from left 

to right, using an index where the token keys are reversed. This is done to favor picking up right headed noun 

phrases.  Second, UMLS Concept information is embedded within the indexes, so further lookup is not needed.  
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Whereas MetaMap first looks up terms within the SPECIALIST Lexicon, then uses those terms for phrase 

barrier determination, then looks up the phrase tokens to find UMLS concepts from an index of UMLS Concept 

variants, Sophia looks up terms in the UMLS Concept variant table directly without need for part-of-speech or 

phrasal boundaries.   

 

An early UMLS principle was to keep knowledge resources like the SPECIALIST Lexicon and the UMLS 

Metathesaurus separate to keep semantic components out of the SPECIALIST Lexicon and to keep syntactic 

components out of the Metathesaurus.  This allowed maintenance cycles for these resources to be de-coupled.  

This principle carried forth to continue to decouple the syntactic processing from the semantic processing via 

first finding terms,  , then phrases, then concepts within those phrases, as MetaMap, and to some extent, 

cTAKES does.  Finding multi-word terms, particularly if they come from the SPECIALIST Lexicon, and 

particularly if they decrease ambiguity, greatly helps phrasal boundary detection from part-of-speech taggers that 

tag at the single token level of granularity.  MetaMap uses the MedPost part-of-speech tagger, which was trained 

using a corpus that had sparse coverage of the majority of multi-words found in the SPECIALIST lexicon, and 

from the UMLS Metathesaurus.  Term lookup followed by part-of-speech tagging on those words and terms 

within MMTx is used to make phrasal barrier decisions.  

 

Sophia does away with the need for phrases and consequently, parts-of-speech. The term indexes and the UMLS 

Concept information are folded into one, indexed off the same key.  That’s not to say that other annotators 

shouldn’t be run to keep around both part-of-speech and phrasal information. A consequence of ignoring phrasal 

boundaries within Sophia, longest matching terms that span across phrasal boundaries are retrievable within 

Sophia, but would be missed via MetaMap and cTAKES. 

 

Although not incorporated here, the Sophia Pipeline, in practice, is often augmented with a local concept 

annotator combined with a file of local terms and their categories to address tasks where the UMLS lacks 

coverage.  This is a capability included within the v3NLP framework that is not easily replicated within 

MetaMap or cTAKES.    

 

Future Work 

Future versions of Sophia will be integrated into v3NLP’s scaled-out architecture, where the slower annotators 

are replicated as multiple instances behind services, and called via wrappers around clients to these services.  The 

next version of Sophia will be updated to the latest version of the UMLS.   

The next version of the Sophia pipeline will include annotators to filter out non-salient false positives including 

the units of measure, dates, and the like that MetaMap effectively filters out.  Further analysis will be spent to 

understand those multi-word instances that Sophia missed, and vice versa. 

Assertion attribution will be looked at further to choose what assertion modules perform the best in respect to 

time and efficacy.  

There is on-going interoperability work to enable v3NLP annotators, Sophia being one, with cTAKES to enable 

the use of cTAKES annotators within v3NLP and vise-versa.  

Availability 

Sophia is available via an Apache license, and is distributed from the http://v3nlp.utah.edu/sophia.  End users are 

required to validate their own UMLS license via an application that validates UMLS licenses through the 

National Library of Medicine’s UMLS Terminology Services (UTS) before unlocking the content of indexes that 

contain UMLS derivative content within this distribution.  

Conclusions 

Sophia has been developed as an expedient UMLS concept annotator. The Sophia pipeline out performs both 

cTAKES and MetaMap in recall and has an f-score that is only 0.04 different than cTAKES. The pipeline runs 

18 times faster than cTAKES and 7 times faster than the scaled-out MetaMap services. For those information 

extraction applications where fast throughput is needed and/or recall is favored over precision, the Sophia 

pipeline is an acceptable solution.   
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