| Experimental. Melting point was determined by using open capillary. FT—IR Spectrum was recorded on Jasco FT—IR Spectrometer. 1H-NMR and 13C-NMR spectra were recorded on Jeol-400 MHz NMR instrument using DMSO-d6 as solvent. Chemical shift values were expressed in δ (p.p.m.) relative to tetramethylsilane (TMS) as an internal reference standard. Mass spectrum of the compound was recorded on Shimadzu LC-2010EV with ESI probe. The analysis of various spectra are as follows.IR wavenumbers (cm-1): C=O 1674.9, C—N 1348–1060, N—H 3510–3120, C—N—C 515–409, C—Cl 850–550, C—Cl 650–515. 1H-NMR (399.6 MHz, DMSO-d6) δ: 10.49 (s, 1H, NH), 7.57–7,55 (dd, 1H, Ar—H), 7.34–7.27 (m, 2H, Ar—H), 6.88–6.83 (m, 1H, Ar—H), 2.47 (s, 2H, –CH2-). 13C-NMR (100 MHz, DMSO-d6) δ: 165.41, 163.76, 140.67, 130.89, 115.54, 110.80, 106.77, 43.92. MS: Predicted Mass: 187.07; Obtained Mass 188.07 (M+1). |
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |