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Abstract

Purpose—Skeletal disease causes significant morbidity in mucopolysaccharidoses (MPS), and 

bone remodeling processes in MPS have not been well characterized. The objective of this study 

was to determine if biomarkers of bone turnover are abnormal in children with specific MPS 

disorders (i.e. MSP-I, MPS-II, and MPS-VI) compared to healthy children.

Methods—A cross-sectional study was performed of serum biomarkers of bone formation (bone-

specific alkaline phosphatase [BSAP], osteocalcin) and urine biomarkers of bone resorption 

(pyridinoline, deoxypyridinoline) in MPS and healthy controls. Measures of physical function and 

pain were obtained using the Children’s Health Questionnaire (CHQ).

Results—The cohort consisted of 39 children with MPS (MPS-I=26; MPS-II=11; MPS-VI=4) 

and 51 healthy children. Adjusting for sex and Tanner stage group, MPS individuals had 

statistically significant increases for osteocalcin (p<0.001), with trends toward higher BSAP 

(p=0.054) and urinary pyridinoline (p=0.084). These biomarkers were not significantly associated 

with CHQ bodily pain and physical-function scores.

Conclusion—Osteocalcin was increased in children with MPS disorders, with trends for 

increases in BSAP and urinary pyridinoline, suggesting that bone remodeling is altered in children 

with MPS. Future studies to assess the ability of these biomarkers to quantify and monitor MPS 

skeletal disease in response to therapy are needed.
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1. Introduction

The mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders resulting in 

an accumulation of complex sugars, leading progressive multi-organ system manifestations 

including skeletal disease [1,2]. The accumulation of glycosaminoglycans (GAG) in MPS 

disorders can lead to joint contractures, abnormal gait, atlantoaxial instability, short stature, 

and dysostosis multiplex [3-5]. Dysostosis multiplex in the context of MPS is hypothesized 

to be associated with abnormalities in bone remodeling given its progressive nature [3]. 

There are reports of occasional fractures and osteopenia in individuals with MPS [6-9], but 

their etiologies are not well elucidated and may be secondary to disuse, immobility, 

abnormal biomechanical forces, inflammatory effects, cell autonomous effects, or some 

combination of these [2,10].

The skeleton is affected in multiple MPS disorders (e.g. MPS I, II, III, IV, VI, VII, IX) [11]. 

In particular, MPS I, II, and VI have quite similar skeletal phenotypes and these 3 conditions 

were the focus of this study. MPS-I is an autosomal recessive disorder due to alpha-L 

iduronidase deficiency, and the phenotype is characterized based on severity (i.e. Hurler 

syndrome as the more severe form [MPS-IH], and Hurler-Scheie and Scheie syndromes as 

the attenutated forms [MPS-IA]). MPS-II (Hunter syndrome) is an X-linked disorder due to 

iduronate sulfatase deficiency. MPS-VI (Maroteaux-Lamy syndrome) is an autosomal 

recessive condition due to arylsulfatase B deficiency. Although therapies are available for 

many MPS disorders, notably enzyme replacement therapy (ERT) and hematopoietic cell 

transplantation (HCT) [12-20], their beneficial effect on the skeleton is thought to be limited 

if not initiated early [21]. As new therapies become available, development of biomarkers 

that are associated with the skeletal manifestations in MPS disorders would be helpful for 

clinical trials.

The MPS animal models suggest that bone remodeling could be impaired, but the data are 

limited and conflicting. It has been hypothesized that GAG accumulation impairs bone 

cellular function, as GAG accumulation has been described in bone cells (e.g. osteoblasts, 

osteoclasts and chondrocytes) in some MPS animal models [22-25] and in a human case 

report [26]. Findings from the MPS I mouse model [27] suggest that osteoclast function is 

impaired, and other MPS animal models show that osteoclasts don’t adhere properly to bone 

[22].

In more common metabolic disorders of bone such as osteoporosis, biomarkers of bone 

turnover can help predict long-term disease severity such as fracture risk. The hypothesis is 

that biomarkers of bone turnover will prove helpful in predicting disease severity and in 

monitoring therapies for musculoskeletal complications in MPS disorders. The objective of 

this study wasto determine if biomarkers of bone turnover were abnormal in children with 

MPS I, II and VI compared to healthy children. The secondary aim was to determine if 

biomarkers of bone turnover were associated with physical functioning, pain, and height.
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2. Methods

Individuals with MPS-IH, MPS-IA, II or VI (ages 5-17.9 years of age) were recruited from 

treating physicians from multiple centers, the MPS Society Newsletters, website and annual 

family meeting, and clinicaltrials.gov. The controls were previously recruited from the local 

community for a separate study of bone and energy metabolism (data unpublished). 

Informed consent was obtained from the parents or guardians of all participants and assent 

was obtained from all participants whenever cognitively possible (generally age 7 years or 

older). The protocol was approved by the Institutional Review Boards at the University of 

Minnesota and the National Institute of Neurological Disorders and Stroke.

Anthropometric measurements included height measured by wall mounted stadiometer 

(without shoes) to the nearest 0.1 cm and weight by electronic scale to the nearest 0.1 kg. 

Age and sex specific standard deviation scores (SDS) were calculated for weight and height 

using the SAS program from the Centers for Disease Control [http://www.cdc.gov/nccdphp/

dnpao/growthcharts/resources/sas.htm, accessed Dec 2012]. Pubertal Tanner stage [28] was 

assessed by physical examination by a trained study physician. Three groups were identified 

based on Tanner stage (i.e. Tanner stage 1; Tanner stage 2 and 3; Tanner stage 4 and 5).

Biomarkers were obtained in the morning after fasting for 8 or more hours. Urine was 

obtained from a single void (first or second morning void). Markers of bone formation 

measured were serum bone-specific alkaline phosphatase (BSAP) and osteocalcin. Markers 

of bone resorption were urine pyridinoline (PYD) and deoxypyridinoline (DPD). Urinary 

DPD was measured using the MicroVue DPD EIA kit, urinary PYD was measured using the 

MicroVue PYD EIA kit, creatinine was measured using the MicroVue Creatinine EIA kit, 

and BSAP was measured in serum using the MicroVue BSAP EIA kit all from Quidel 

Corporation (San Diego, CA). Osteocalcin was measured in plasma using the Human Bone 

Panel from Millipore Corporation (Billerica, MA). In addition, serum 25-hydroxy vitamin D 

(25(OH)D) concentrations were also obtained and analyzed by liquid chromatography 

tandem mass spectroscopy at Fairview Diagnostics Laboratory, Minneapolis, MN.

Measures of physical function and pain were obtained using the Children’s Health 

Questionnaire – Parent form 50 (CHQ-PF50). The CHQ-PF50 is a 50-item, parent-

completed questionnaire designed to measure the physical and psychosocial well-being of 

children between the ages of 5 and 18. The CHQ-PF50 has established reliability and 

validity and has been widely used in studies of chronic illness in childhood [29-31]. Items 

are measured on a Likert scale, summed for each subscale and linearly transformed to a 0 to 

100 scale, where higher scores reflect better functioning. In this study, CHQ data were 

obtained only from individuals with MPS disorders.

Descriptive statistics were tabulated separately for the healthy control and MPS groups, 

which included the mean and standard deviation for continuous variables and frequency for 

categorical variables. Additive comparisons between group means were adjusted for sex and 

Tanner stage groups defined above and based on linear regression and the t-distribution with 

corresponding model degrees of freedom for confidence intervals and p-values. 

Multiplicative comparisons between group mean formation/resorption ratios used a log link 
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with a poisson working variance and robust variance estimation for confidence intervals and 

P-values. Each biomarker and biomarker formation/resorption ratio was evaluated 

separately. Similarly, the association between differences in biomarker values and outcomes 

was based on linear regression and the t-distribution for inference. Reported degrees of 

freedom and test statistics follow the APA formatting style. All analyses were conducted 

using R v2.15.2 [32].

3. Results

3.1 Participant Demographics/Treatments

Thirty-nine individuals with MPS were included (MPS-IH=19, MPS-IA=5, MPS-II=11 and 

MPS-VI=4) and compared to 51 controls (Table 1). Controls were, on average, about 2 years 

older than MPS individuals. All individuals with MPS had previously undergone HCT 

and/or were receiving ERT. Some individuals who had HCT received ERT before HCT but 

did not continue after. All children with MPS-IH were treated with HCT at <3 years of age. 

All children with MPS-IA or MPS-II were being treated with ERT. Two participants with 

MPS-VI were treated with HCT at ages 1.8 and 3.9 years; the other 2 participants with 

MPS-VI were being treated with ERT. Twelve participants with MPS were receiving 

treatment with human growth hormone (hGH) (5 with growth hormone deficiency) for an 

average of 3.2±2.5 years (range 0.3-8.5 years) and 8 with levothyroxine for hypothyroidism 

(all with normal free thyroxine and thyroid stimulating hormone levels at the time of the 

study). Four females and one male had untreated gonadal failure. Individuals with MPS had 

lower mean 25(OH)D concentrations compared to controls (Table I; t(78)=6.7, p<0.001). 

Four of the participants (10%) with MPS had vitamin D deficiency defined as a 25(OH)D 

concentration <20 ng/ml, which was a significantly higher percentage of subjects compared 

to controls (0%; p=0.028; Fisher’s exact test). No individual with MPS or healthy control 

had a fracture within the year prior to enrollment.

3.2 Bone Biomarkers

Unadjusted mean values for all biomarkers of bone remodeling were higher in the 

individuals with MPS compared to controls (Table I). Using linear regression to evaluate the 

difference in biomarkers between MPS versus controls after adjusting for covariates of sex 

and Tanner stage group separately for each bone biomarker, only osteocalcin remained 

significantly higher in MPS (t(85)=3.9, p<0.001; Table II). There were trends for both 

BSAP (t(84)=1.95, p=0.054) and urinary PYD (t(81)=1.75, p=0.084). Noteworthy is that 

results for urinary DPD and PYD were heavily influenced by one MPS individual with 

extremely elevated concentrations. When this individual was excluded, differences in DPD 

and PYD were much more attenuated: difference from control (95% CI) [DPD: −7.8 (−20.4, 

4.8), t(80)=−1.23, p=0.221; PYD: 18.4 (−49.7, 86.5), t(80)=0.54, p=0.592].

As noted above, the control group was older, with no individuals < 8.5 years of age. When 

MPS individuals <8.5 years of age (presumably pre-pubertal) were excluded from the 

analysis (N=10), results were similar in magnitude and strength of association (data not 

shown).
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Multiplicative comparisons of biomarker formation/resorption ratios between MPS versus 

control groups showed increases for BSAP/DPD, BSAP/PYD, OCN/DPD, and OCN/PYD 

ratios, although only statistically significant for BSAP/PYD and OCN/PYD ratios (see Table 

II).

Due to the presence of donor, non-MPS affected osteoclasts in individuals treated with HCT, 

we divided the MPS group by HCT versus non-HCT for further analysis. When comparing 

HCT and non-HCT MPS groups to controls, osteocalcin remained significantly higher in 

both groups (t(84)=3.95, p<0.001and t(84)=2.43, p=0.017, respectively). BSAP was also 

estimated to be higher for both groups compared to controls, but still did not reach statistical 

significance (t(83)=1.34, p=0.184 and t(83)=1.91, p=0.060, respectively). DPD and PYD 

were significantly higher in the HCT group (t(80)=2.07, p=0.041and t(80)=3.55, p<0.001, 

respectively), and lower on average in the non-HCT group, but not statistically significant 

(t(80)=−1.73, p=0.087and t(80)=−0.79, p=0.434, respectively). Multiplicative comparisons 

of biomarker formation/resorption ratios between MPS group by HCT and non-HCT versus 

control groups showed increases in the BSAP/DPD, BSAP/PYD, OCN/DPD, and 

OCN/PYD ratios for both the MPS HCT and non-HCT groups vs. controls, but were only 

statistically significant for the MPS non-HCT group when compared to controls (data not 

shown).

3.3 Association of Biomarkers with Functional Measures

Height SDS, CHQ bodily pain and CHQ physical function scores were not significantly 

associated with biomarkers of bone metabolism in individuals with MPS after adjusting for 

Tanner stage group and sex (Table III).

4. Discussion

There are significant musculoskeletal abnormalities in the MPS disorders, and in a majority, 

dysostosis multiplex is a cardinal feature. Biomarkers of bone remodeling have not 

previously been evaluated in this population. Animal models suggest that bone cellular 

functions are abnormal in MPS disorders [22-27]. Our data show that a marker of bone 

formation is different in children with MPS compared to controls, suggesting increased 

osteoblast activity. The differences of bone markers in MPS compared to controls may in 

part be due to factors such as activity level, mobility [33], diet, and other co-morbidities. For 

example, 25(OH)D concentrations were lower in the MPS group and perhaps this is a 

consequence of less sun exposure or dietary intake that potentially could have impacted the 

bone remodeling markers.

We found that the most significant difference in bone biomarker levels was for a marker of 

bone formation. This may be related to the greater specificity of the markers of bone 

formation versus the markers of bone resorption that we measured, or a greater impact of the 

disease process on osteoblasts (bone formation) versus osteoclasts (bone resorption). 

Osteocalcin is predominantly synthesized by osteoblasts, whereas PYD and DPD are found 

in other tissues besides bone [34,35]. In addition, we found a trend towards higher BSAP 

and PYD in individuals with MPS; however, no statistically significant difference was 

observed. DPD, a related urinary marker of bone resorption was not significantly different. 
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The reason for this may be because PYD originates from both bone and articular cartilage 

versus DPD which is not present in cartilage [34,35]. Cartilage abnormalities with increased 

cartilage break down, similar to inflammatory joint disease, have been well described in 

MPS animal models [36-39], thus the increased PYD may reflect increased cartilage 

turnover rather than increased bone resorption.

The osteoclasts of MPS individuals who underwent HCT are donor-derived and bone 

density changes after HCT can be observed [40,41]. When separating MPS individuals with 

and without HCT, the respective cohorts became small and hence conclusions are difficult. 

However, results for bone formation markers were relatively unchanged for both groups 

compared to controls, whereas bone resorption markers (DPD and PYD) became 

significantly increased in the HCT group consistent with other studies of children and adults 

treated with HCT [42-44].

The functional significance of our findings is not certain, as we did not see statistically 

significant associations between markers of bone turnover and our selected health measures 

(i.e. CHQ bodily pain, CHQ physical function, and height SDS). As lysosomal storage 

disorders are rare diseases, our cohort was small which limited our power to detect such 

associations. Additionally, parent report measures of children’s pain and physical 

functioning may be too distal to be directly associated with biomarkers of bone turnover.

Another limitation is the lack of younger individuals in the control group; however, we 

obtained similar results when the two groups had similar age distributions by excluding 

individuals with MPS under age 8.5 years. Also, activity levels likely impact bone turnover 

and our findings of increased bone biomarkers may be secondary to reduced physical 

activity and decreased mobility [32], which were not directly measured in the current study. 

It is also important to note that the MPS group was heterogeneous, consisting of several 

MPS types and the various treatments (i.e. HCT, ERT), which may have impacted our 

ability to see associations between bone turnover markers and specific health outcomes.

Despite the limitations, this study represents a relatively large cohort of MPS individuals. 

The skeletal abnormalities in the MPS disorders can be debilitating and identification of 

surrogate markers of skeletal disease in MPS will be beneficial in avoiding radiation and 

high costs of radiographic procedures in monitoring the disease and responses to therapy. It 

is likely that modifications of current therapies and the addition of new therapies will 

continue for MPS disorders, and markers of bone metabolism may ultimately be helpful in 

determining early efficacy and monitoring disease progression of the musculoskeletal 

manifestations with the various therapies. Future studies with larger cohorts of children with 

MPS disorders are needed to better understand the potential relationship between biomarkers 

of bone health and children’s physical function, and should include direct measures (e.g. 

range of motion and six-minute walk tests) and measurements of children’s physical activity 

in daily life (e.g. accelerometry) to better understand the functional significance of these 

biomarkers for children’s quality of life.
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5. Conclusion

Osteocalcin was increased in children with MPS disorders, with trends for increases in 

BSAP and urinary PYD. This study provides evidence that bone biomarkers can potentially 

be used to quantify and monitor skeletal disease in MPS disorders as additional treatments 

(e.g., post-HCT supplemental ERT, stop codon suppression drugs, gene therapy, anti-

inflammatory therapy) become available for evaluation.
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