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Abstract

The main challenge for gaining biological insights from genetic associations is identifying which 

genes and pathways explain the associations. Here we present DEPICT, an integrative tool that 

employs predicted gene functions to systematically prioritize the most likely causal genes at 

associated loci, highlight enriched pathways and identify tissues/cell types where genes from 

associated loci are highly expressed. DEPICT is not limited to genes with established functions 

and prioritizes relevant gene sets for many phenotypes.

The causal variants, genes and pathways in many genomewide association studies (GWAS) 

loci often remain elusive, due to linkage disequilibrium (LD) between associated variants, 

long-range regulation and incomplete biological knowledge of gene function. To translate 

genetic associations into biological insight, we need at a minimum to identify the genes that 

account for associations as well as the pathways and tissue/cell type context(s) in which the 

genes’ actions affect phenotypes. Although cell-type-specific expression quantitative trait 

loci (eQTLs) or coding (non-synonymous) variants in strong LD with associated variants 

can potentially link these variants to genes, overlap with eQTLs or coding variants may be 

coincidental. In addition, coding variants in high LD with associated variants are rarely 

observed, and eQTL data from non-haematological cell types are rare. Direct functional 

follow-up of the many potentially causal variants and genes is typically difficult and 

expensive, so an attractive first step is to use computational approaches to prioritize genes in 

associated loci with respect to their likely biological relevance, and to identify pathways and 

tissues to define their likely biological context. The current paradigm for gene prioritization 

methods is to systematically search for commonalities in functional annotations between 

genes from different associated loci, such as shared features derived from text mining1 

(which is limited by the literature’s highly incomplete characterization of gene function) or 

propensity to interact at the protein level2 (which is unlikely to capture the full functional 

spectrum of a given gene or phenotype3). The paradigm for gene set analysis is to search for 

enrichment of the genes near associated variants in manually curated gene sets or in gene 

sets derived from molecular evidence4. Although certain pathways have been carefully 

characterized, and manually curated gene sets and protein–protein interaction maps can be 

of great value, pathway annotation of genes remains sparse and skewed towards well-studied 

genes5. At the same time, the availability of large, diverse, genome-wide data sets, such as 

gene expression data, can elucidate and annotate potential functional connections between 

genes6. Given these limitations and opportunities, and the wide spectrum of traits and 

diseases analysed in association studies, there is a need for a general computational 

approach that integrates diverse, non-hypothesis-driven data sets to prioritize genes and 

pathways7,8.

With the goal of meeting this need, we develop and hereby present a framework called Data-

driven Expression Prioritized Integration for Complex Traits (DEPICT, 

www.broadinstitute.org/depict), which is not driven by phenotype-specific hypotheses and 

considers multiple lines of complementary evidence to accomplish gene prioritization, 

pathway analysis and tissue/cell type enrichment analysis. This framework can prioritize 

genes, pathways and tissue/cell types across many different phenotypes9–13.
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Results

Overview of the DEPICT methodology

DEPICT builds on our recent work that used co-regulation of gene expression (derived from 

expression data of 77,840 samples), in conjunction with previously annotated gene sets, to 

accurately predict gene function based on a ‘guilt-by-association’ procedure6. We first 

expanded this approach to include 14,461 existing gene sets, representing a wide spectrum 

of biological annotations (including manually curated pathways14–16, molecular pathways 

from protein–protein interaction screens17 and phenotypic gene sets from mouse gene 

knock-out studies18). By calculating, for each gene, the likelihood of membership in each 

gene set (based on similarities across the expression data; see Methods), we generated 

14,461 ‘reconstituted’ gene sets (see Fig. 1; Supplementary Data 1). Rather than traditional 

binary gene sets (genes are included or not included), these reconstituted gene sets contain a 

membership probability for each gene in the genome; conversely, a gene is functionally 

characterized by its membership probabilities across the 14,461 reconstituted gene sets. 

Using these precomputed gene functions and a set of trait-associated loci, DEPICT assesses 

whether any of the 14,461 reconstituted gene sets are significantly enriched for genes in the 

associated loci, and prioritizes genes that share predicted functions with genes from the 

other associated loci more often than expected by chance. In addition, DEPICT utilizes a set 

of 37,427 human microarrays to identify tissue/cell types in which genes from associated 

loci are highly expressed. DEPICT uses precomputed GWAS based on randomly distributed 

phenotypes to take sources of confounding into account: it extracts gene-density-matched 

input loci from these ‘null GWAS’, recomputes results and adjusts the P values from the 

above three analyses for null expectation. It also uses the null GWAS to adjust for multiple 

testing by computing false discovery rates (FDRs, see Methods).

Calibration of locus definitions

Having developed this framework, we first considered a key feature, the definition of an 

associated locus—that is, given an associated variant, how many of the nearby genes should 

be taken into consideration as potentially causal? Using as a positive control Mendelian 

disease genes that affect skeletal growth and are over-represented in height-associated 

GWAS loci10,19, we evaluated DEPICT’s performance using loci defined by different 

combinations of genetic and physical distance from the lead associated variant 

(Supplementary Data 2). We found that a locus definition of r2>0.5 from the lead variant 

was optimal (Supplementary Note 1). We repeated the analysis using genome-wide-

significant associations for low-density lipoprotein (LDL) cholesterol20 and 14 Mendelian 

lipid genes20 as positive controls and observed similar results (r2>0.4), indicating that the 

calibration does not change drastically for other traits (Supplementary Data 3).

Type-1 error rate analysis

We next tested whether DEPICT properly controls the type-1 error rate. Running DEPICT 

with random input loci based on either real genotype or simulated genotype data, we 

observed nearly uniform distributions for gene set enrichment, gene prioritization and tissue/

cell type enrichment P values (see Supplementary Fig. 1 and Methods). Importantly, we did 

not observe any correlation between gene length and gene prioritization P values (Spearman 
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r2 = 7.70 × 10−5), nor correlation with locus gene density (Spearman r2 = 7.53 × 10−8), two 

factors that have often confounded pathway analyses21. We also did not observe any 

correlation between tissue/cell type enrichment P values and the number of samples 

available in the expression data sets for each annotation (Spearman r2 = 6.9 × 10−4), nor 

were results dependent on the particular set of genotype data used to construct the null 

GWAS (Supplementary Note 2). Together, these results indicated that DEPICT results are 

not driven by bias in its data sources.

Benchmarking the gene set enrichment framework

We next compared DEPICT with two GWAS pathway methods, MAGENTA22 and 

GRAIL1 using GWAS results for three phenotypes, each with >50 independent genome-

wide significant single-nucleotide polymorphisms (SNPs): Crohn’s disease23, human 

height10 and LDL20. DEPICT’s gene set enrichment functionality outperformed 

MAGENTA (a widely used GWAS gene set enrichment tool) by identifying more relevant 

gene sets (both methods exhibited comparable type-1 error rates; Supplementary Figs 1 and 

2) for all three phenotypes: DEPICT identified 2.5 times as many significant gene sets 

(FDR<0.05) for Crohn’s disease, 2.8 times as many significant gene sets for height and 1.1 

times as many significant gene sets for LDL (Fig. 2; Supplementary Figs 3–5; 

Supplementary Data 4–6). Many gene sets prioritized by DEPICT, but not MAGENTA, 

appear biologically relevant (for example, regulation of immune response, response to 

cytokine stimulus and toll-like receptor signalling pathway for Crohn’s disease; Fig. 2). To 

test whether our gene set reconstitution strategy was driving the performance differences 

between MAGENTA and DEPICT, we ran MAGENTA with non-probabilistic, binary 

(yes/no) versions of the reconstituted gene sets (see Methods). We found a consistent 

increase in the number of nominally significant gene sets when MAGENTA was run with 

reconstituted gene sets for Crohn’s disease, height and LDL (1.4, 1.6 and 1.7-fold increases, 

respectively, in number of nominally significant gene sets using the 95 percentile model; 

Supplementary Data 4–6; Supplementary Figs 6–8). To assess whether the reconstituted 

gene sets enhance the performance of DEPICT, we ran DEPICT using the original, 

predefined gene sets. As expected, the number of prioritized gene sets (FDR<0.05) dropped 

to 97.7, 92.9 and 20% for the Crohn’s disease, height and LDL analyses, respectively 

(Supplementary Data 4–6). Together, these analysis indicate that the gene set reconstitution, 

combined with DEPICT’s ability to use probabilistic gene sets, is responsible for the 

increased performance of DEPICT compared with MAGENTA in gene set enrichment 

analysis.

Benchmarking the gene prioritization framework

Using gene lists from whole-blood expression quantitative locus data24, rodent growth plate 

differential expression data25 and Mendelian human lipid genes reported in literature20 (see 

Methods), we constructed positive sets of genes to compare DEPICT’s gene prioritization 

performance with GRAIL (a widely used GWAS gene prioritization tool). DEPICT and 

GRAIL performed similarly in analyses based on all genome-wide significant loci with at 

least one positive gene, based on area under a receiver-operating characteristic (ROC) curve 

(AUC, Table 1; Supplementary Datas 7–9; Supplementary Fig. 9). However, when 

restricting the height comparison with loci with no well-known Mendelian human skeletal 
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growth gene, DEPICT markedly outperformed GRAIL, prioritizing genes at many more loci 

(DEPICT: 1.1 genes per locus, GRAIL: 0.4 genes per locus), suggesting that DEPICT 

performs better at loci harbouring genes with less well-established roles in literature 

(Supplementary Data 10). We validated this observation using genes nearest to height-

associated SNPs as positive genes at these loci. The nearest gene is an unbiased, but highly 

imperfect benchmark (for example, only 13/21 Mendelian skeletal growth genes in a large 

height GWAS19 were the nearest genes to a height-associated SNP), so AUC is expected to 

be low using this benchmark. Nonetheless, DEPICT not only prioritized more genes than 

GRAIL, but also had a higher AUC (Supplementary Data 11). Finally, DEPICT performed 

consistently better than a gene expression-based version of GRAIL (Supplementary Data 7–

9), indicating that use of gene expression data in the prediction is not driving DEPICT’s 

superior performance across several of the comparisons. Together, these analyses indicate 

that DEPICT performs particularly well for gene prioritization at what are arguably the most 

important loci for new discovery: those with biology that is less well captured in already 

published literature.

Prioritization of genes outside genome-wide significant loci

We hypothesized that DEPICT could also be used to prioritize genes outside genome-wide 

significant loci, based on predicted functional relatedness to genes within genome-wide 

significant loci. Similar to the gene prioritization implemented in DEPICT, we prioritized 

genes with higher than expected pairwise similarities to genes from trait-associated loci 

(across the 14,461 functional predictions; see Methods). SNPs within or near (± 50 kb) the 

3,022 genes that were functionally related to Crohn’s disease loci genes (at FDR < 0.05) had 

lower association P values than SNPs in the same number of unrelated genes (genes with 

FDR>0.99; genomic inflation factor λ=1.49 versus λ= 1.31), indicating that DEPICT 

enriches for as-yet-unidentified genes associated with Crohn’s disease. The enrichment was 

further increased when considering only SNPs that overlap with eQTLs in whole blood24 (λ 

= 1.69 versus λ = 1.25). A similar enrichment of associations was seen for height (λ = 1.92 

versus λ = 1.62) and LDL (λ = 1.06 versus λ = 0.97).

To begin to assess the performance and specificity of DEPICT across a wider range of 

phenotypes, we applied DEPICT to 61 phenotypes in the NHGRI GWAS Catalog26 that had 

at least 10 genome-wide-significant (unadjusted association P value < 5 × 10−8) 

associations. DEPICT identified at least one significantly enriched (P value <10−6, the 

Bonferroni-corrected significance threshold) reconstituted gene set for 39 of the 61 

phenotypes (Fig. 3; Supplementary Data 12). To test whether DEPICT identified similar 

gene sets for related phenotypes, we clustered the 39 traits based on their gene set 

enrichment scores across the 14,461 reconstituted gene sets (Fig. 3). Related traits clustered 

with each other, but different phenotypes yielded quite different gene sets. Furthermore, 

many of the top gene sets were of clear relevance to the phenotype (Supplementary Data 

12). Thus, DEPICT is able to identify, with specificity, biologically relevant gene sets for a 

wide range of human traits and diseases. Consistent with these results, we recently used 

DEPICT to analyse GWAS data for height, body mass index and waist-hip ratio adjusted for 

body mass index (from the GIANT Consortium)10,12,13 and for hypospadias9. For each 
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phenotype, DEPICT highlighted a distinct and biologically meaningful group of known and 

novel genes, gene sets and tissue/cell types.

Discussion

We present a computational framework called DEPICT, which enables gene prioritization, 

gene set enrichment analysis and tissue/cell type enrichment analysis to generate specific 

testable hypotheses that are critical to inform experimental follow-up of GWAS. DEPICT 

implements these three distinct functionalities into a single, publicly available tool. Apart 

from providing useful insights into pathways and biological annotations of relevance to a 

phenotype, a key application of the gene set enrichment functionality is to use it for 

selecting in vitro phenotypes that may serve as readouts in cellular assays used to validate 

prioritized genes for a complex trait. A key advantage of DEPICT over existing tools is the 

gene set reconstitution, which enables prioritization of previously poorly annotated genes, as 

well as more specific and powerful gene set enrichment analysis. By using data sets and 

methods that are not specific to any particular disease or trait, DEPICT does not depend on 

phenotype-specific hypotheses (for example, particular neuronal gene sets being important 

for schizophrenia).

On the basis of our current experience, we recommend employing DEPICT on genome-wide 

significant loci as well as all loci with association P values < 10−5 (see Supplementary Fig. 

10 for results based on LDL loci using the relaxed threshold and for an example on 

visualizing DEPICT results). We also recommend a locus definition of r2 > 0.5 from lead 

SNPs. It is important to note that reconstituted gene sets should be interpreted in light of the 

genes that are mapped to them, rather than strictly by their identifiers (which are carried 

over from the predefined gene sets).

Despite DEPICT’s ability to identify relevant gene sets for a large number of traits and 

diseases, the method may be less sensitive to phenotypes caused by genes that have 

specialized functions that cannot be well predicted based on integrating gene expression data 

with the currently existing predefined gene sets. Indeed, there are multiple ways in which 

the DEPICT framework could be improved further. Additional future work includes 

iteratively conditioning on significant genes, gene sets and tissue/cell types to enhance 

prioritization of genes with weaker, yet significant, relationships, and quantification of the 

relative importance of significant predictions. Additional expression data would enhance the 

data sources available for DEPICT, especially for prioritization of tissues/cell types. Other 

data types, such as epigenetic data, have yet to be integrated into the DEPICT framework, 

and DEPICT does not yet use information that could further prioritize genes within loci, 

such as LD with eQTLs or missense variation, or being the nearest gene to the lead SNP. 

Finally, DEPICT is currently optimized for GWAS results, but could be adapted to other 

types of data sets (custom arrays, exome chip or sequencing).

In conclusion, there is a need for approaches that are not driven by phenotype-specific 

hypotheses and that consider multiple lines of complementary evidence to accomplish gene 

prioritization, pathway analysis and tissue/cell type enrichment analysis. We have developed 

a computational and publicly available tool—DEPICT—that can address this need by 
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performing integrative analysis, thereby generating novel, testable hypotheses from genetic 

association studies across a wide spectrum of traits and diseases.

Methods

Data and software availability

The following sections describe the DEPICT methodology in detail. DEPICT source code 

and example data are available at https://github.com/DEPICTdevelopers. Ready-to-use 

software is available at www.broadinstitute.org/depict.

Definition of associated loci

From the set of associated SNPs at a particular threshold (such as genome-wide significance, 

P<5 × 10−8), we generated independent ‘lead SNPs’ by retaining the most significant SNP 

from each set of SNPs that are in LD (pairwise r2>0.1) and/or in proximity (physical 

distance of < 1 Mb). We computed pairwise LD coefficients based on the imputation panel 

used in the GWAS, either HapMap Project release 2 and 3 CEU genotype data27 or 1000 

Genomes Project Phase 1 CEU, GBR and TSI genotype data28. We defined positions in the 

human genome according to genome build GRCh37. Next, we created lists of genes at 

associated loci by mapping genes to loci if they resided within, or were overlapping with, 

boundaries defined by the most distal SNPs in either direction with LD r2>0.5 to the given 

lead SNP (see Supplementary Note 1 for justification of this locus definition). If no genes 

were within the locus defined by r2 > 0.5, the gene nearest to the given lead SNP was 

included. Loci with overlapping genes were then merged. Due to the extended LD in the 

major histocompatibility complex region and the resulting challenges in delineating 

associated loci, genes within base pairs 25,000,000–35,000,000 on chromosome 6 were 

excluded. DEPICT takes as input a set of independent, associated SNPs and automates all 

other steps outlined here.

Gene sets used in DEPICT

DEPICT is based on a large number of predefined gene sets from diverse databases and data 

types (Supplementary Data 1). Gene ontology15, Kyoto encyclopedia of genes and 

genomes14 and REACTOME16 gene sets were mapped to Ensembl database identifiers. 

Molecular pathways were constructed based on experimentally derived high-confidence 

protein–protein interactions from the InWeb database17 by considering each of the 12,793 

genes in the database and annotating direct, high-confidence interaction partners of a given 

gene as a molecular pathway (including the given gene itself). We defined high-confidence 

interactions as pairs of gene products with InWeb-specific protein–protein interaction 

confidence scores above 0.154, a cutoff previously justified17. In addition, we constructed 

2,473 phenotypic gene sets based on 211,882 phenotype–gene relationships from the Mouse 

Genetics Initiative18. These gene sets were constructed by adding genes to the same gene set 

if they were related to the same Mouse Genetics Initiative phenotype. From all repositories, 

we only included gene sets with at least 10 genes and at most 500 genes.
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Gene function prediction for gene set reconstitution

DEPICT performs gene prioritization and gene set enrichment based on predicted gene 

function and reconstituted gene sets (note that the reconstituted gene sets are a consequence 

of the gene function prediction). Please refer to Fehrmann et al.6 (and www.genenetwork.nl) 

for a detailed description of the gene function prediction method. The main hypothesis 

behind the gene function prediction follows a guilt-by-association logic: a gene that is co-

regulated with say 20 other genes, which perform a specific function, is likely to exhibit the 

same function. In Fehrmann et al.6, we developed an approach that quantifies co-regulation 

between pairs of genes based on gene expression data, even in instances where 

transcriptomic co-regulation is subtle. In Fehrmann et al.6, we conducted the following steps 

to predict functions of genes and construct reconstituted gene sets:

1. We first renormalized 77,840 microarrays from two human, one rat and one mouse 

Affymetrix gene expression platform downloaded from the Gene Expression 

Omnibus (GeO) database29 (Supplementary Data 13).

2. We constructed a probe–probe correlation matrix (using Pearson correlation to 

compute all pairwise probesets correlations) for each of the four platforms.

3. We performed principal component analysis on each of the four correlation 

matrices, and used Cronbach’s Alpha and Split-half reliability statistics to retain 

777 and 377 eigenvectors (hereafter ‘transcriptional components’ or ‘TCs’; 

Fehrmann et al.6) from the two human platforms, 677 TCs from the mouse 

platform and 375 TCs from the rat platform.

4. We mapped all human genes to Ensembl identifiers30; mouse and rat genes were 

mapped to their human homologues (Ensembl database orthology mapping). The 

loadings of each gene on each TC are the elements of a gene-TC matrix with 

19,997 gene rows (the number of genes covered by the Affymetrix platforms) and 

2,206 TC columns.

We then used the gene-TC matrix to predict 19,997 genes’ function across the 14,461 

functional annotations represented by the predefined gene sets, by doing the following steps:

1. For each gene set, we computed the enrichment on each TC (using z-scores derived 

from Welch’s t-test to assess whether the TC loadings from genes from the given 

set significantly deviated from all other genes’ loadings). This resulted in a TC 

profile for each gene set (a gene set-TC matrix of z-scores with 14,461 gene set 

rows and 2,206 TC columns).

2. To obtain gene function predictions and reconstituted gene sets, we quantified each 

gene’s likelihood of being part of a given predefined gene set by correlating the 

gene’s 2,206 TC loadings (from the gene-TC matrix) with the z-score TC profile of 

each gene set (from the gene set-TC matrix). To avoid circularity in cases where a 

particular gene was part of a predefined gene set, we left out that gene from the 

gene set, recomputed the gene set z-score profiles along all TCs and then computed 

the correlation of the gene with the gene set.
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3. We converted the correlation P values to z-scores to obtain a gene-gene set matrix 

of z-scores comprising 19,997 gene rows and 14,461 gene sets columns. This 

matrix is used by DEPICT to perform gene prioritization and gene set enrichment 

analysis.

Null GWAS construction

To take sources of confounding into account, DEPICT makes use of precomputed GWAS 

based on randomly distributed phenotypes to (‘null GWAS’). We computed 200 GWAS 

based on genome-wide CEU genotype data from the Diabetes Genetics Initiative31 (DGI) 

and simulated Gaussian phenotypes (random draws from N(0,1) distribution) with no 

genetic basis.

DEPICT gene prioritization

For gene prioritization, DEPICT employs a phenotype- and mechanism-agnostic algorithm, 

which is predicated on a previously formulated assumption that truly associated genes share 

functional annotations1,17,32. In other words, genes within associated loci that are 

functionally similar to genes from other associated loci are the most likely causal candidates. 

DEPICT prioritizes genes based on three major steps: a scoring step, a bias adjustment step 

and a FDR estimation step. In the scoring step, the method quantifies the similarity of a 

given gene to genes from other associated loci by correlating their reconstituted gene set 

memberships (across all 14,461 gene sets). The bias adjustment step is designed to control 

inflation in gene scores caused by, for example, gene length (longer genes are more likely to 

be part of associated GWAS loci) or structure in the underlying expression data. In this step, 

the method normalizes the given gene’s similarity score based on the distribution of the 

given gene’s similarity to genes from 1,000 sets of gene-density-matched loci, derived from 

the 200 pre-permuted null GWAS. In the last step, experiment-wide FDRs are estimated by 

repeating the scoring and bias adjustment steps 20 times based on top SNPs from 

precomputed null GWAS. For a given gene (gene x) that has a prioritization P value y in the 

actual data, a FDR is calculated by first counting the number of genes having a P value 

smaller or equal to y across all 20 null runs and dividing this count by the rank of gene x in 

the actual data. We note that in the version of DEPICT implemented in the studies of 

anthropometric traits10,12,13, we included a correction for the number of genes at a given 

locus. Because this correction does not change gene prioritization results markedly (gene set 

enrichment results and tissue/cell type enrichment results are unchanged), we recommend 

not using this correction because it imposes an overly conservative correction on genes in 

relatively gene-poor loci. This correction was not implemented in the version described 

here.

DEPICT reconstituted gene set enrichment

The gene set enrichment analysis algorithm comprises the same three steps as employed in 

gene prioritization: a gene set scoring step, a bias correction step and a FDR estimation step. 

For a given reconstituted gene set, DEPICT quantifies enrichment by (1) summing the given 

gene set membership z-scores (entries in the gene-gene set matrix) of all genes within each 

associated locus and then computing the sum of sums across all loci; (2) repeating step 1 a 
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thousand times based on random loci that are matched by gene density, and using the 

thousand null z-scores to adjust the real z-score by subtracting their mean, dividing by their 

s.d. and converting the adjusted z-score to a P value; and (3) repeating steps 1 and 2 twenty 

times to estimate experiment-wide FDRs similar to the method described above.

DEPICT tissue/cell type enrichment analysis

DEPICT utilizes 37,427 human Affymetrix HGU133a2.0 platform microarrays 

(approximately half of the microarrays used to reconstituted gene sets) to assess whether 

genes in associated loci are highly expressed in any of the 209 Medical Subject Heading 

(MeSH) tissue and cell type annotations. The tissue/cell type expression matrix was 

constructed by averaging gene expression levels of microarray samples with the same MeSH 

annotation6. This process included N(0,1) normalizing across all tissue/cell type annotations 

to remove effects of ubiquitously expressed genes, N(0,1) normalizing the columns of the 

tissue/cell type expression matrix (to allow enrichment analysis identical to the gene set 

enrichment analysis framework) and retaining only tissue/cell type annotations covered by at 

least 10 microarrays. Conceptually, the resulting gene-tissue/cell type expression matrix 

resembles the gene-gene set matrix, the only difference being that columns represent the 

relative expression of genes in a given tissue compared with the other tissues, as opposed to 

the likelihood of membership of a gene in a gene set. Consequently, the tissue/cell type 

enrichment analysis algorithm is conceptually identical to the gene set enrichment analysis 

algorithm.

Adjusting for confounding sources

For a given set of associated loci from the ‘real GWAS’ (the study of interest), DEPICT 

extracts the same number of independent loci from the 200 precomputed null GWAS. For a 

given null GWAS, this is accomplished by varying the SNP association P value cutoff until 

the number of independent top loci is the same as the number of independent loci in the real 

GWAS. The independent top loci from each null GWAS are then collected into a single pool 

of loci. During the DEPICT gene prioritization, gene set enrichment and tissue/cell type 

enrichment analyses, this pool of loci is used to sample 1,000 collections of gene density-

matched ‘null loci’ (in each collection there are as many null loci as the number of loci 

observed in the real GWAS). Null loci within a given collection are not allowed to overlap 

(in terms of genes). During the DEPICT background correction step, if a locus from the real 

GWAS is represented by < 10 gene-density-matched null loci, DEPICT iteratively includes 

larger and smaller null loci (to avoid oversampling the same null loci during the 1,000 

background runs). We employed different numbers of null GWAS contributing to the pool 

of null loci, and observed no major differences between using 200, 500 or 900 null GWAS 

(Supplementary Note 3).

Type-1 error rate analyses

To compute type-1 error rates for the gene prioritization, gene set enrichment and tissue/cell 

type enrichment analyses, we first computed 100 DGI null GWAS the same way as describe 

in the above section. Spearman correlation coefficients were computed based on log10 

transformed P values. We used an alternate approach to estimate type-1 error by replacing 
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the null GWAS with simulated GWAS that have positive signals but no underlying 

biological basis. We simulated 50,000 individuals using HAPGEN33 using parameters from 

the HapMap Project release 3 CEU population. From this, we obtained 1,175,577 genotypes 

for all autosomes (chromosomes 1–22) and calculated the allele frequency for each SNP 

using the 50,000 individuals. We then randomly selected 1,000 SNPs to have an effect on 

the phenotype and assigned effect sizes such that all SNPs jointly explain 45% of the total 

variance. The effect size for each SNP was calculated as follows,

(1)

where β is the effect size in s.d. units, σ2 is the variance explained for each SNP,p is the 

SNP’s minor allele frequency and σ denotes a random variable with equal probability of 

being + 1 or − 1. Once each SNP’s effect size was determined, we calculated the weighted 

allele score for each individual by summing up the SNP minor allele dosages weighted by 

their effect size. The weighted allele score was calculated as follows,

(2)

where N is the number of SNPs (N = 1,000), βi is the effect size of the ith SNP as calculated 

earlier, SNPi is the dosage of the minor allele for the ith SNP (0,1 or 2) and pi is the minor 

allele frequency of the ith SNP. The subtraction of 2βipi served to adjust the weighted allele 

score such that its mean was 0. We obtained the final phenotypic z-score by adding a 

remaining noise term such that the total variance was 1. The z-score was calculated as 

follows,

(3)

where N(0, variance_remaining) is a randomly generated number sampled from a Normal 

(N) distribution with mean 0 and variance 0.55. This process was repeated 100 times to 

obtain 100 sets of phenotypic z-scores for each of the 50,000 individuals. We used PLINK34 

to perform GWAS on each set of phenotypes using the 50,000 simulated genotype samples, 

and then, for each null GWAS, identified the association P-value threshold that resulted in 

100 fully independent loci (DEPICT locus definition). Finally, we ran DEPICT with default 

settings on each of the n = 100 sets of input SNPs.

Crohn’s disease DEPICT analysis

Summary statistics from GWAS-based meta analysis of Crohn’s disease23 (downloaded 

from www.ibdgenetics.org) were used to identify genome-wide significant loci (using 

PLINK and parameters ‘–clump-kb 1000 –clump-r2 0.01’). As input to DEPICT we used the 

resulting 63 genome-wide significant (χ2-test P value < 5 × 10−8), which were located in 54 

fully independent loci based on DEPICT definitions of independence.
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Human height DEPICT analysis

As input we used 697 genome-wide significant human height associations identified in 

GWAS-based meta analysis10 (accessible through http://www.broadinstitute.org/

collaboration/giant), which were located in 566 fully independent loci based on DEPICT 

definitions of independence.

Low-density lipoprotein cholesterol DEPICT analysis

Summary statistics from GWAS-based meta analysis of LDL20 (downloaded from 

www.sph.umich.edu/csg/abecasis/public/lipids2010) were used to identify genome-wide 

significant loci (using PLINK with parameters ‘–clump-kb 1000 –clump-r2 0.01’). As input 

to DEPICT we used the resulting 67 independent loci, which resulted in 40 fully 

independent loci used DEPICT definitions of independence.

Gene set enrichment benchmark

Due to the lack of an unbiased set of gold standard pathways for any complex trait, we 

compared DEPICT and MAGENTA22 by counting the number of statistically significant 

gene sets predicted based on Crohn’s disease, height and LDL loci. Prior to the benchmark, 

we estimated the type-1 error rate of both methods by running them with summary statistics 

from 100 null GWAS constructed based on simulated Gaussian phenotypes with no genetic 

basis, and HapMap Project release 2 imputed DGI Consortium genotype data 

(Supplementary Figs 1 and 3). For the null analyses, the top 200 independent loci from each 

null GWAS were used as input, whereas genome-wide significant loci were used as input in 

the Crohn’s disease, height and LDL analyses. All MAGENTA runs were based on the 

complete set of summary statistics. We restricted the comparison to a list of 1,280 gene sets 

(gene ontology terms, Kyoto encyclopedia of genes and genomes and REACTOME 

pathways) with overlapping identifiers between both methods. DEPICT was run on 

reconstituted gene sets. MAGENTA was run with default settings and both methods 

excluded the major histocompatibility complex region. The non-probabilistic, binary 

(yes/no) version of the reconstituted gene sets used in one of the MAGENTA comparisons 

were constructed by applying a threshold on the gene scores for a given reconstituted gene 

set (all genes above a permutation-based cutoff were considered part of the given 

reconstituted gene sets, as reported in ref 6). Entries with ‘NA in columns ‘DEPICT with 

predefined gene sets P’ and ‘DEPICT with predefined gene sets FDR’ in Supplementary 

Data 4–6 marked predefined gene sets for which enrichment could not be computed in the 

DEPICT analysis based on predefined gene sets.

Gene prioritization benchmark

We ran each method (DEPICT and GRAIL1) using their default settings on all genome-wide 

significant Crohn’s disease23, height10 and LDL20 associations. To evaluate the methods’ 

performance on the same set of positive genes (genes that are highly likely to be causal to 

the phenotype) and negative genes (genes that are unlikely to be causal), we limited the 

comparison to loci at which there was at least one positive gene present across both 

methods, and discarded any genes at these benchmark loci that were not considered by each 

method. For the Crohn’s disease comparison, we used as positives 31 genes that were 
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transcriptionally regulated in whole blood24 by a genome-wide significant Crohn’s disease 

association or a SNP in high LD (r2 > 0.7) with a genome-wide significant SNP. For the 

height comparison, we used as positives a set of 44 genes that were within genome-wide 

significant height-associated loci and differentially expressed in rodent growth plate 

expression studies; we have previously shown that the rodent gene expression data are 

enriched for genes in height-associated loci25 (Supplementary Table 2 in Lango Allen et 

al.19). For the LDL comparison, we used as positives a set of seven genes with reported 

Mendelian mutations proposed to cause lipid-related traits20. For all three benchmarks, we 

removed negative genes that had a missense variant in strong LD (r2 > 0.7) with an 

associated SNP; for the height and LDL benchmarks, we removed negative genes that were 

transcriptionally regulated24 by a SNP in strong LD (r2 > 0.7) with an associated SNP; in the 

height benchmark, we removed negative genes that were differentially expressed in rodent 

growth plates versus other tissues, spatially regulated across different growth plate zones 

(hypertrophic versus proliferating, and proliferative versus resting) or temporally regulated 

in growth plates between week 12 and week 3 at nominal significance in reference25, and 

genes that were reported in the high-confidence list in ref. 19. After these steps, we were 

able to use 42 negative genes across 18 loci as Crohn’s disease benchmarks and 37 negative 

genes across 43 loci as height benchmarks. There were no negative genes among the seven 

LDL benchmark loci. Positive and negatives genes, are listed in Supplementary Data 7–9. 

Precision (the fraction of positive genes among all prioritized genes at a given P-value 

threshold) and recall (the fraction of correctly classified positive genes at a given P-value 

threshold also referred to as sensitivity) estimates were used to measures accuracy and 

summarized using the F-measure, which incorporates the ability to recall positive genes with 

a high precision into a single measure. (Maximum precision implies no false positives, 

whereas maximum recall implies no false negatives.) To measure the ability to discriminate 

positive and negative genes at a relative scale, we also computed ROC AUC estimates. To 

avoid circularity, the growth plate data25 and the eQTL data24 were not part of the data used 

by any of the three methods tested. The R software35 and the ROCR R library36 were used 

to construct the precision recall and ROC curves and the AUC estimates.

Prioritizing genes outside genome-wide significant loci

To enable prioritization of genes below the genome-wide significance threshold, we scored 

each gene outside the genome-wide significant loci with respect to its similarity to genes 

within associated loci. For a given gene outside genome-wide significant loci, we (1) 

correlated (Pearson) its predicted functions across all 14,461 gene sets to every gene in each 

of the trait-associated loci, (2) kept the lowest correlation P value from each genome-wide 

significant locus, (3) converted the P values to z-scores and (4) summed the z-scores and 

converted the sum back to a P value (alternative hypothesis: gene functionally related to 

genes in trait-associated loci). We computed FDRs, by redoing steps 1–4 based loci from 

null GWAS. Using FDR < 0.05 as the threshold, we identified 3,022, 5,916 and 1,901 

related genes for Crohn’s disease, height and LDL. For each of the three traits, we then 

calculated genomic inflation factors for SNP P values in the functionally related genes and 

for SNP P values in the same number of genes exhibiting the highest (non-significant) 

FDRs. We added 50 kb flanking loci to gene boundaries (defined by the boundaries of the 
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most extreme transcripts) and required genes to be at least 1 Mb away from the nearest 

genome-wide significant locus.

GWAS catalog analysis

The GWAS Catalog26 was downloaded from www.genome.gov/gwastudies/ (download 

date: 02 January 2014) and 61 phenotypes with at least 10 fully independent regions 

(DEPICT definitions) based on genome-wide associations were retained. Hierarchical 

clustering implemented in the R software method ‘hclust’ was run with default settings 

(method = ‘complete-linkage’, dist = ‘euclidean’). The DEPICT locus definitions for all 

GWAS catalog traits can be downloaded from www.broadinstitute.org/mpg/depict.

Overlap of gene sets and visualization

A previous version of DEPICT used in analyses of anthropometric traits10,12,13 computed 

gene set overlap by imposing a threshold on which genes belong to a given reconstituted 

gene set and then used the Jaccard index to compute pairwise overlaps. Overlapping 

reconstituted gene sets were grouped as pathway families. Here, we instead computed the 

pairwise Pearson correlation between all reconstituted gene sets and then used the Affinity 

Propagation method37 to group similar reconstituted gene sets. We named each cluster 

(‘meta gene set’) by the name of the representative gene set automatically identified by the 

Affinity Propagation method (for examples, see the top 10 gene set enrichment meta gene 

sets for Crohn’s disease, height and LDL in Supplementary Data 14–16). The R software35 

and a R version of the Affinity Propagation method38 was used setting the parameters 

‘maxits’ to 10,000 and ‘convits’ to 1,000 to ensure conversion when thousands of 

reconstituted gene sets needed to be clustered. We visualized the overlap between pathway 

families pathways using Cytoscape39.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of DEPICT
DEPICT is designed to identify likely causal genes, functional or phenotypic gene sets that 

are enriched in genes within associated loci, and tissues or cell types that are implicated by 

the associated loci. DEPICT takes as input a set of trait-associated SNPs and uses them to 

identify independently associated loci that may comprise up to several genes. DEPICT uses 

co-regulation data from 77,840 microarrays to predict genes’ biological functions across 

14,461 gene sets representing a wide spectrum of biological annotations and to construct 

14,461 ‘reconstituted’ gene sets. DEPICT then uses this information to identify reconstituted 

gene sets that enrich for genes in the associated loci, and to prioritize genes at associated 

loci, by identifying genes in different loci that have similar predicted functions. Finally, 

DEPICT relies on 37,427 human gene expression microarrays to assess whether genes in 

associated loci are highly expressed in any of 209 tissue/cell type annotations.
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Figure 2. Comparison of DEPICT and MAGENTA for Crohn’s disease
Comparison of DEPICT, which was run with 63 genome-wide significant Crohn’s disease 

SNPs as input, and MAGENTA, which was run using the complete list of Crohn’s disease 

summary statistics23 (downloaded from www.ibdgenetics.org). DEPICT was run using 

1,280 reconstituted gene sets, and MAGENTA was run using the predefined versions of the 

same 1,280 gene sets. Both methods were run with default settings and non-adjusted 

enrichment P values are plotted.
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Figure 3. DEPICT analysis using GWAS Catalog results
DEPICT identified at least one significant reconstituted gene set for 39 traits and diseases 

from the GWAS Catalog (we investigated 61 traits with at least 10 independent genome-

wide significant loci). (a) Unsupervised clustering of the 39 phenotypes based on their gene 

set enrichment scores across all reconstituted gene sets yielded 7 clusters of phenotypes 

(roughly corresponding to metabolic, lipids, haematological, autoimmune, blood pressure/

cardiac conduction, growth/bone/menopause and a second autoimmune cluster), which 

indicates that DEPICT is able to identify phenotypic-specific and biologically relevant gene 

sets for a wide range of phenotypes. The inset shows that the multiple sclerosis and coeliac 

disease gene set enrichment scores are highly correlated and therefore were clustered within 

the same clade. (b) The number of genome-wide significant loci for a given phenotype was 

positive correlated with the number of significant (FDR<0.05) reconstituted gene sets for 

that phenotype (Pearson r2 = 0.26, t-test P value = 6.86 × 10−5).
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