
RESEARCH ARTICLE

mTORC1 Regulates Flagellin-Induced
Inflammatory Response in Macrophages
Wenlei Bao1☯, YanfengWang1☯, Yuting Fu1, Xiaoyang Jia1, Jiaxin Li1,
Nyamtsengel Vangan1, Lili Bao1,2, Huifang Hao1, ZhigangWang1*

1 College of Life Science, Inner Mongolia University, Hohhot, China, 2 College of Basic Medical Science,
Inner Mongolia Medical University, Hohhot, China

☯ These authors contributed equally to this work.
* lswzg@imu.edu.cn

Abstract
Bacterial flagellin triggers inflammatory responses. Phosphoinositide 3-kinase (PI3K) and

mammalian target of rapamycin (mTOR) regulate the production of pro- and anti-inflamma-

tory cytokines that are induced by extrinsic antigens, but the function of mTORC1 in flagel-

lin-induced inflammatory response is unknown. The purpose of this study was to examine

the role and the mechanism of PI3K/Akt/mTOR pathway in flagellin-induced cytokine ex-

pression in mouse macrophages. We observed that flagellin upregulated TNF-α time- and

dose-dependently. Flagellin stimulated rapid (<15 min) PI3K/Akt/mTOR phosphorylation

that was mediated by TLR5. Inhibition of PI3K with LY294002 and wortmannin, and of

mTORC1 with rapamycin decreased flagellin-induced TNF-α and IL-6 expression and cell

proliferation. The activation of NF-κB p65 and STAT3 was regulated by mTORC1 via degra-

dation of IκBα and phosphorylation of STAT3 in response to flagellin, respectively. Thus,

the PI3K/Akt/mTORC1 pathway regulates the innate immune response to bacterial flagellin.

Rapamycin is potential therapy that can regulate host defense against pathogenic

infections.

Introduction
Flagellin is a pathogen-associated molecular pattern (PAMP) that is recognized by pattern rec-
ognition receptors, resulting in innate immune responses in diverse organisms, including flies,
plants, and mammals [1–3]. Extracellular and cytoplasmic bacterial flagellin induces immune
responses. Mediated by TLR5, extracellular flagellin effects inflammatory gene expression, in
intestinal epithelia and promonocytic cells [1,4–7], in which entails the release of proinflamma-
tory cytokines, such as TNF-α and IL-6 via NF-κB activation [8,9]. TNF-α is a proinflamma-
tory cytokine that regulates the immuno-inflammatory response [10]. IL-6 is a multifunctional
cytokine that controls immune responses, inflammation, hematopoiesis, bone metabolism,
and immunity [11,12] and is involved in the pathogenesis of autoimmune diseases and chronic
inflammation [13]. Conversely, cytoplasmic flagellin activates caspase-1 and induces the
secretion of IL-1β through IPAF, a cytosolic pattern recognition receptor [14,15]. The
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inflammasome is activated by cytoplasmic flagellin via NLR apoptosis inhibitory protein 5
(Naip5) [16]. The inflammasome is a large cytoplasmic multiprotein complex, that effects the
secretion of IL-1β [17,18], a proinflammatory cytokine that protects the host from infection
[19].

Phosphoinositide 3-kinase (PI3K) is a phosphatidylinositol kinase that regulates innate im-
mune responses that are induced by bacterial components, such as CpG DNA [20], LPS [21],
flagellin [22], and byproducts of viral infections [23], but has the double-edged function in
TLR-mediated inflammatory cytokine expression. Several reports have demonstrated that
PI3K is proinflammatory [21,24,25]. In contrast, PI3K negatively regulates synthesis of the
proinflammatory cytokine IL-12 in DCs [26], and PI3K activation limits IL-6 and IL-8 expres-
sion in epithelial cells [22]. PI3K leads to PIP2 to PIP3; subsequently, PIP3 activates Akt
[27,28]. LY294002, a PI3K inhibitor, decreases the phosphorylation and kinase activity of Akt
(Ser473) [29].

Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that con-
trols transcription, translation, cell proliferation, and apoptosis. mTOR forms 2 distinct com-
plexes with other proteins: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2);
only mTORC1 is rapamycin-sensitive. The mTOR signaling pathway lies downstream of PI3K
[30], of which ribosomal p70S6 kinase (p70S6K) and initiation factor 4E-binding protein 1
(4EBP-1) are downstream effectors [31]. mTORC1 signaling regulates LPS-induced pro- and
anti-inflammatory cytokine production in various cells, such as macrophages, monocytes,
DCs, and other immune cells [10,32–35]. Moreover, it regulates viral dsRNA-induced inflam-
matory responses in keratinocytes [36]. However, the functions of mTORC1 and PI3K/Akt/
mTOR signaling in flagellin-induced inflammatory response are unknown.

In this study, we treated mouse macrophages with LY294002 and measured proinflamma-
tory gene expression. We also determine the effects of rapamycin, a specific inhibitor of
mTOR, on flagellin-induced proinflammatory gene expression and activation of transcription
factors. Our data suggest that PI3K/Akt/mTOR signaling mediates flagellin-induced proin-
flammatory gene expression via TLR5-dependent mechanism and that the mTOR pathway
regulates NF-κB and STAT3 activation to regulate gene expression in response to flagellin in
mouse macrophages.

Materials and Methods

Ethics statement
The mouse procedure used in this study is approved by the Inner Mongolia University Animal
Care and Use Committee.

Cell culture conditions
The Ana-1 mouse macrophage cell line was purchase from Cell Bank of Chinese Academy of
Sciences. The cell line was cultured in complete medium (RPMI 1640, containing 10% heat-in-
activated FCS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin) at 37°C
in a humidified atmosphere with 5% CO2. Mouse peritoneal macrophages were isolated 5 min
after injecting RPMI 1640 medium without fetal bovine serum into the peritoneal cavity of ICR
mouse. The cells were seeded in RPMI 1640 medium supplemented with 100 U/ml penicillin,
100 mg/ml streptomycin, and 10% fetal bovine serum and incubated in 5% CO2 at 37°C.
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Reagents and antibodies
Purified flagellin from S.typhimurium ligand (ultrapure) TLR5 was purchased from InvivoGen
(San Diego, CA, USA). Wortmannin was purchased from Sigma Chemical (St Louis, MO,
USA). Rapamycin was purchased from Gene Operation (Ann Arbor, Michigan, USA).
LY294002 was purchased from Cell Signaling (Beverley, MA, USA). Antibody to β-actin was
purchased from Sigma Chemical. Antibodies to phospho-p44/42 MAPK (Erk1/2) (Thr202/
Tyr204), p44/42 MAPK (Erk1/2), phospho-Akt (Ser473), Akt, phospho-S6 (Ser240/244), S6,
phospho-4EBP1 (Thr37/46), IκBα, NF-κB p65, phospho-STAT3 (Tyr705), and STAT3 were
purchased from Cell Signaling (Beverley, MA, USA). Antibodies to 4EBP1, phospho-mTOR
(Ser2448), mTOR, TLR5, TLR4 and phospho-NF-κB p65 (Ser536) were purchased from
Abcam (Cambridge, UK). Cytokine ELISA kits were obtained from eBioscience (San Diego,
CA, USA).

Cytokine ELISA
Cell culture supernatants were collected, centrifuged to remove cellular debris, and assayed im-
mediately or stored at -80°C until analysis. Cytokines were measured per the ELISA kit manu-
facturer’s instructions, and absorbance was read at 450 nm and 570 nm on a Varioskan Flash
Multimode Reader (Thermo Fisher Scientific, Pittsburgh, PA, USA). The detection limit of
TNF-α and IL-6 was 3.9 pg/ml. All measurements were made in triplicate, and the mean values
of the three independent measurements were used for the statistical analysis.

Western blot analyses
Ana-1 cells were treated with flagellin in the presence or absence of LY294002 or rapamycin
and washed two times with ice-cold PBS (pH 7.4). Cells were lysed in lysis buffer that contained
25 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% Nonidet P-40, 1% sodium deoxycholate, 0.1%
SDS, protease inhibitor mixture, and phosphatase inhibitors (Sigma, Chemicals) and then
placed on ice for 10 min. Next, the cells were harvested by scraping and centrifuged at 4°C for
10 min at 13,000 rpm.

Equal amounts of cell lysates were separated by SDS-PAGE on 10% polyacrylamide gels and
transferred to PVDF membranes, which were then immunoblotted with the designated prima-
ry antibodies. The membranes were then treated with horseradish peroxidase-conjugated goat
anti-rabbit IgG or goat anti-mouse IgG (GE Healthcare, UK) and detected using the ECL detec-
tion (Thermo Fisher Scientific, Pittsburgh, PA, USA) by exposure to X-ray film. The resolved
bands were quantified using Gel-Pro Analyzer 4.0 (Media Cybernetics, USA).

Cell viability assay
Ana-1 cells were used to seed 96-well plates at 1×103 cells/well for culture. After 48 h, the cells
were preincubated with LY294002 (10 μM), wortmannin (10 nM) or rapamycin (100 nM) 4 h
before stimulation with flagellin (100 ng/ml) for 24 h, and cell proliferation was measured by
methyl thiazolyl tetrazolium (MTT) assay. Briefly, 0.02 mL MTT solution (5 mg/mL in PBS)
was added to each well and incubation for 4 h at 37°C, after which the media was replaced with
0.15 mL dimethyl sulfoxide, followed by a 10-min incubation. Then, the optical density was
measured at 490 nm with a Varioskan Flash Multimode Reader (Thermo Fisher Scientific,
Pittsburgh, PA, USA). All measurements were performed in sextuplicate, and the means of the
three independent measurements were used for the statistical analysis.
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TLR5 blocking antibody assay
Ana-1 cells were used to seed 12-well plates in 1 ml medium per well in the presence or absence
of TLR5 or TLR4 blocking antibody and stimulated with flagellin. After 24 h, cell culture super-
natants were harvested, centrifuged to remove cellular debris, and assayed by ELISA. Cells
were lysed, and total protein was collected for western blot analysis.

Statistical analysis
The groups were compared by Fisher’s LSD or Bonferroni post-hoc analysis in one-way
ANOVA using SPSS 19. The results are expressed as mean ± SD. Statistical significance was ac-
cepted at p< 0.05.

Results

Flagellin induces TNF-α expression in a time- and dose-dependent
manner
To determine the appropriate incubation time and dose of flagellin, we studied the effects of
fiagellin on Ana-1 cells. Cells were stimulated with 0–100 ng/ml flagellin for 0–24 h, and
TNF-α expression was measured by ELISA. TNF-α levels rose with the increasing incubation
times and doses (Fig 1A and 1B), indicating that flagellin upregulates TNF-α time- and dose-
dependently. TNF-α expression peaked at treatment with 100 ng/ml flagellin for 24 h, thus this
condition was used for all subsequent experiments.

LY294002, wortmannin and Rapamycin attenuate flagellin-induced
TNF-α and IL-6 expression in Ana-1 cells
To determine whether PI3K regulates flagellin-induced expression of proinflammatory cyto-
kines in mouse macrophages, we examined the effects of LY294002 and wortmannin on
TNF-α and IL-6 expression in response to flagellin. The result shows that TNF-α and IL-6 lev-
els in response to flagellin fell significantly due to LY294002 and wortmannin (Fig 2A and 2B),
suggesting that PI3K/Akt regulates flagellin-induced proinflammatory cytokine expression.

Fig 1. Flagellin induces TNF-α expression in a time-dependent and dose-dependent manner. Ana-1 cells were treated with flagellin, and supernatants
were assayed for TNF-α by ELISA. A. flagellin (100 ng/ml) for 0, 4, 8, 12, and 24 h. B. flagellin (0, 1, 10, 100 ng/ml) for 24 h. Experiments were made in
triplicate, and data are representative of three separate experiments (mean ± SD).

doi:10.1371/journal.pone.0125910.g001
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To further examine the mechanism by which PI3K regulates flagellin-induced TNF-α and
IL-6 expression, we measured the effects of mTOR on TNF-α and IL-6 levels in response to fla-
gellin. TNF-α and IL-6 levels declined significantly due to rapamycin (Fig 2C and 2D), suggest-
ing that mTOR controls flagellin-induced TNF-α and IL-6 expression in Ana-1 cells.

LY294002, wortmannin and Rapamycin inhibit flagellin-induced Ana-1
cells proliferation
To measure the effects of flagellin on mouse macrophages proliferation, Ana-1 cells were stim-
ulated with 100 ng/ml flagellin for 24 h, and cell proliferation was measured by MTT assay. Fla-
gellin enhanced Ana-1 cell proliferation, an effect that was inhibited by pretreatment with
LY294002 (10 μM) and wortmannin (10 nM) for 4 h (Fig 3A). These results suggest that PI3K/
Akt mediates flagellin-induced Ana-1 cell proliferation.

Next, we treated Ana-1 cells with rapamycin in the presence of flagellin to determine the in-
fluence of mTORC1 signaling on their proliferation. We found that flagellin-induced mTOR,
4EBP1, and S6 phosphorylation was inhibited by rapamycin (S1 Fig), indicating that rapamy-
cin inhibits flagellin-induced mTOR signaling. Further, Ana-1 cell proliferation was suppressed

Fig 2. LY294002, wortmannin and rapamycin dowregulates flagellin-induced TNF-α and IL-6 expression in mousemacrophages. Ana-1 cells were
pretreated with LY294002 (10 μM), wortmannin (10 nM) and rapamycin (100 nM) for 4 h before being stimulated with 100 ng/ml flagellin for 24 h.
Supernatants were assayed for TNF-α and IL-6 by ELISA. A. flagellin-induced TNF-α is inhibited by LY294002 and wortmannin. B. flagellin-induced IL-6
expression is inhibited by LY294002 and wortmannin. C. flagellin-induced TNF-α is inhibited by rapamycin. D. flagellin-induced IL-6 expression is inhibited by
rapamycin. Experiments were made in triplicate, and data are representative of three separate experiments (mean ± SD). *p< 0.05 compare to untreated
controls, # p< 0.05 compared with flagellin group.

doi:10.1371/journal.pone.0125910.g002
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by rapamycin in response to flagellin (Fig 3B). These results suggest that flagellin-induced pro-
liferation is regulated by mTOR.

Flagellin activates PI3K/Akt/mTOR signaling in Ana-1 cells via a
TLR5-dependent mechanism
Next, we examined the effects of flagellin on PI3K/Akt/mTORC1 signaling. Phospho-Akt and-
mTOR levels increased significantly within 15 min, persisting for at least 24 h. Phospho-4EBP1
and-S6 rose within 15 min and peaked between 2 and 6 h, these levels were maintained for at
least 24 h (Fig 4A). These results indicate that flagellin effects rapid activation of PI3K/Akt/
mTOR signaling for at least 24 h in Ana-1 cells. To investigate whether flagellin activates PI3K/
Akt/mTORC1 signaling via TLR5 in Ana-1 cells, we blocked activation of the small amount of
endogenous TLR5 by TLR5 antibody, TLR4 antibody as a control. Increased phospho-Akt,-
mTOR, -4EBP1 and-S6 levels were inhibited by TLR5 antibody, but not TLR4 (Fig 4B). Thus,
flagellin induces PI3K/Akt/mTORC1 signaling in macrophages via a
TLR5-dependent mechanism.

PI3K mediates flagellin signaling to activate the Akt/mTORC1 pathway
but not p44/42 MAPK (Erk1/2)
To identify the downstream targets of PI3K-mediated flagellin signaling, LY294002 was used
to inhibit PI3K and examine the activation of flagellin-induced p44/42 MAPK (Erk1/2) and
Akt/mTORC1 in Ana-1 cells. Phospho-p42/44 MAPK (Erk1/2),-Akt,-mTOR,-S6, and -4EBP1
were measured by immunoblotting after treatment with flagellin in the presence or absence of
LY294002. Phospho-Erk1/2 levels increased significantly after stimulation with flagellin for
24 h, but LY294002 did not affect flagellin-induced phosphorylation of Erk1/2 (Fig 5A). How-
ever, the activation of Akt, mTOR, S6, and 4EBP1 by flagellin was attenuated by LY294002
(Fig 5B). These results indicate that PI3K governs flagellin-induced Akt/mTOR signaling but
does not affect activation of p44/42 MAPK (Erk1/2) by flagellin. Thus, PI3K and Erk1/2 medi-
ate flagellin signaling in parallel.

Fig 3. LY294002, wortmannin and rapamycin attenuates flagellin-induced cell proliferation. Ana-1 cells were pretreated with LY294002 (10 μM),
wortmannin (10 nM) and rapamycin (100 nM) for 4 h and then stimulated with 100 ng/ml flagellin for 24 h, and cell proliferation was measured by methyl
thiazolyl tetrazolium (MTT) assay. A. Proliferation was inhibited by LY294002 and wortmannin in response to flagellin. B. Proliferation was inhibited by
rapamycin in response to flagellin. Experiments were made in triplicate, and data are representative of three separate experiments (mean ± SD). *p< 0.05
compare to untreated controls, # p< 0.05 compared with flagellin group.

doi:10.1371/journal.pone.0125910.g003
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Rapamycin impairs flagellin-induced NF-κB and STAT3 activation
To determine the mechanism by which mTOR regulates proinflammatory cytokine gene ex-
pression, we studied the function of rapamycin in flagellin-induced activation of NF-κB and
STAT3, two important transcription factors. Ana-1 cells were pretreated with or without
100 nM rapamycin before stimulation with flagellin, and IκBα, NF-κB, and STAT3 activation
was detected by immunoblotting. Flagellin promoted IκBα degradation and NF-κB p65 phos-
phorylation, which were inhibited by rapamycin, indicating that mTOR regulates NF-κB p65
activation by degrading IκBα in response to flagellin (Fig 6A). Also, flagellin enhanced STAT3
phosphorylation, which was attenuated by rapamycin (Fig 6B). These data indicate that mTOR
is central in the regulation of flagellin-induced NF-κB and STAT3 activation.

TLR5 mediates flagellin-induced proinflammatory gene expression and
STAT3 activation in Ana-1 cells
To determine whether TLR5 mediates flagellin-induced cytokine expression in Ana-1 cells,
we measured flagellin-induced expression of TNF-α and IL-6 by ELISA, and STAT3 activation
by western blot in the presence or absence of TLR5 blocking antibody, TLR4 antibody as a con-
trol. TNF-α and IL-6 levels declined significantly due to TLR5-blocking antibody, but not
TLR4 (Fig 7A and 7B), and phospho-STAT3 levels of stimulation by flagellin were inhibited by
TLR5-blockingantibody, and were inhibited by TLR4 antibody, but, the level of phospho-
STAT3 in TLR5-blocking antibody group was significantly lower than the TLR4-blocking anti-
body group (Fig 7C). These results suggest that flagellin-induced proinflammatory gene ex-
pression and STAT3 activation via TLR5 in macrophages.

Fig 4. Flagellin activates PI3K/Akt/mTORC1 signaling via TLR5. Ana-1 cells were lysed, and total
proteins were extracted. A. the cells were stimulated at the indicated times with S. typhimurium flagellin
(100 ng/ml). B. the cells were stimulated by flagellin (100 ng/ml) for 24 h in present or absent of TLR5 or TLR4
antibody. Total proteins were subjected to immunoblot with phospho-Akt(Ser473), phospho-mTOR
(Ser2448), phospho-S6 (Ser240/244), and phospho-4EBP1 (Thr37/46). Blots were stripped and probed with
total Akt, mTOR, S6, and 4EBP1 antibodies. β-actin was used as a loading control. Three separate
experiments were performed. *p< 0.05, ns. not significant.

doi:10.1371/journal.pone.0125910.g004
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Fig 5. LY294002 decreases flagellin-induced Akt/mTOR activation but does not affect p44/42 MAPK (Erk1/2) activation. Ana-1 cells were pretreated
with LY294002 (10 μM) for 4 h and stimulated with 100 ng/ml flagellin for 24 h. A. Total proteins were subjected to immunoblot with phospho-p44/42 MAPK
(Erk1/2)(Thr202/Tyr204), the blot was stripped and probed with p44/42 MAPK (Erk1/2). B. Total proteins were subjected to immunoblot with phospho-Akt
(Ser473), phospho-mTOR (Ser2448), phospho-S6 (Ser240/244), and phospho-4EBP1 (Thr37/46) antibodies. The blots were stripped and probed with Akt,
mTOR, S6, and 4EBP antibodies. β-actin was used as the loading control. Three separate experiments were performed.

doi:10.1371/journal.pone.0125910.g005

Fig 6. Rapamycin prevents flagellin-induced IκBα degradation and p65 and STAT3 activation. Ana-1 cells were pretreated with rapamycin (100 nM) for
4 h and stimulated with 100 ng/ml flagellin for 24 h. Total proteins were separated by SDS-PAGE and probed with IκBα, phospho-NF-κB p65 (Ser536), and
phospho-STAT3 (Tyr705) antibodies. The blots were stripped and probed with NF-κB p65 and STAT3 antibodies. β-actin was used as the loading control.
Three separate experiments were performed.

doi:10.1371/journal.pone.0125910.g006
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Rapamycin downregulates flagellin-induced proinflammatory genes
expression in mouse peritoneal macrophages
To further examine the role by which mTOR regulates flagellin-induced proinflammatory ex-
pression, we measured the effects of rapamycin on IL-6 levels in response to flagellin. Mouse
peritoneal macrophages were pretreated with rapamycin before being stimulated with flagellin.
IL-6 levels declined significantly due to rapamycin (Fig 8), suggesting that mTOR controls fla-
gellin-induced IL-6 expression in mouse peritoneal macrophages.

Discussion
Innate immune cells secrete inflammatory cytokines to protect the host from bacterial and
viral infection. PI3K is a crucial signaling molecule that is required for macrophages and
monocytes during inflammation [37,38], and flagellin activates PI3K through a TLR5-depen-
dent mechanism in human colon epithelial cells [22]. mTOR is a downstream factor of PI3K
that mediates the production of inflammatory cytokines by LPS [10,32–35].

PI3K and mTOR participate in the innate immune response and regulate the production of
inflammatory cytokines. Yet, the function of PI3K and mTOR in the regulation of flagellin-in-
duced cytokine expression in mouse macrophages is unknown. Flagellin stimulates immune re-
sponses by upregulating TNF-α and IL-6 and activating PI3K in epithelial cells and cancer cells
[22,39]. In this study, flagellin-induced TNF-α expression was time- and dose-dependently
(Fig 1). Thus, we examined the mechanisms in mouse macrophages.

Flagellin governs the proliferation of T cells and cancer cells by upregulating cytokines and
chemokines, including TNF-α and IL-6 [40–42], and the role of mTOR signaling in flagellin-
induced inflammatory responses is unknown. Our data show that rapamycin downregulates
flagellin-induced TNF-α and IL-6 expression (Fig 2C and 2D and Fig 8), moreover, flagellin-
induced macrophage proliferation inhibited by rapamycin (Fig 3B). These results are consis-
tent with the function of LY294002 and wortmannin in flagellin-induced TNF-α and IL-6 ex-
pression and cell proliferation (Fig 2A and 2B and Fig 3A). Thus, we hypothesize that PI3K/
Akt/mTOR controls flagellin-induced cell proliferation by modulating cytokine expression.

Fig 7. TLR5mediates flagellin-induced TNF-α and IL-6 expression and STAT3 activation in
macrophages. Ana-1 cells were pretreated with TLR5-blocking antibody or TLR4-blocking antibody for 24 h
and stimulated with 100 ng/ml flagellin for 24 h. Supernatants were assayed for TNF-α and IL-6 by ELISA. A.
Flagellin-induced TNF-α expression is inhibited by TLR5 blocking antibody. B. Flagellin-induced IL-6
expression is inhibited by TLR5 blocking antibody. Experiments were made in triplicate, and data are
representative of three separate experiments (mean ± SD). *p< 0.05, ns. not significant. C. Total proteins
were separated by SDS-PAGE and probed phospho-STAT3 (Tyr705) antibodies. The blots were stripped
and probed with STAT3 antibodies. β-actin was used as the loading control. Three separate experiments
were performed. *p< 0.05 compare to flagellin group, # p< 0.05 compared with TLR4 antibody group.

doi:10.1371/journal.pone.0125910.g007
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The PI3K/Akt pathway activates mTORC1 in response to growth factors [43]. In this study,
flagellin stimulated PI3K/Akt/mTOR signaling within 15 min and maintained such activation
for at least 24 h (Fig 4A), but these effects were mitigated by LY294002 (Fig 5B). Moreover,
LY294002 and rapamycin have the same effect in regulating flagellin-induced TNF-α and IL-6
expression and cell proliferation. These results indicate that PI3K/Akt lies upstream of the
mTORC1 pathway in flagellin signaling.

Yu et al. reported that PI3K inhibition enhances flagellin-induced gene expression by pro-
longing the activation of Erk1/2 in human colon epithelial cells [22]. However, our data dem-
onstrate that LY294002 has no effect on flagellin-induced Erk1/2 activation in mouse
macrophages (Fig 5A). Thus, PI3K regulates flagellin-induced cytokines expression but not
likely through p44/42 MAPK (Erk1/2) activation.

The NF-κB family of transcription factors are central regulators of immune and inflamma-
tory responses [44], controlling TNF-α and IL-6 expression, and comprises five members in
mammals: RELA (also known as p65), c-REL, RELB, NF-κB1 (also known as p105), and
NF-κB2 (also known as p100). p65 contains a strong transcriptional activation domain and is
responsible for most NF-κB transcriptional activity [35,39]. Inhibitors of NF-κB (IκBs) specifi-
cally inhibit NF-κB, associating with and retaining it in the cytoplasm [45]. IκBs are degraded
by proteasome, effecting the release NF-κB into the nucleus to initiate transcription [35]. In
this study, mTOR signaling pathway regulated NF-κB activation by degrading IκBα in re-
sponse to flagellin (Fig 6A).

STAT3 has a significant function in blocking apoptosis and keeping cells alive during in-
flammatory responses, improving the survival and proliferation of myeloma [46]. IL-6 triggers
the phosphorylation of STAT3 by JAK1, and the induction of phosphotyrosine705 STAT3 by
IL-6 is unaffected by rapamycin [47], suggesting that IL-6-induced STAT3 activation is not
regulated by mTORC1. In our study, flagellin induced the phosphorylation of STAT3, which

Fig 8. Rapamycin downregulates flagellin-induced IL-6 expression in mouse peritoneal
macrophages.Mouse peritoneal macrophages were pretreated with rapamycin (100 nM) for 4 h before
being stimulated with 100 ng/ml flagellin for 24 h. Supernatants were assayed for IL-6 by ELISA. flagellin-
induced IL-6 expression is inhibited by rapamycin. Experiments were made in triplicate, and data are
representative of three separate experiments (mean ± SD). *p< 0.05 compared with flagellin group.

doi:10.1371/journal.pone.0125910.g008
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rapamycin inhibited (Fig 6B), indicating that flagellin-induced STAT3 activation is regulated
by mTORC1. We hypothesize that flagellin and IL-6 activate STAT3 through disparate
signaling pathways.

Bacterial flagellin reconstitutes TLR5-stimulating activity and rapidly induces IL-6 produc-
tion [1]. Our results showed that flagellin-induced TNF-α and IL-6 expression were blocked by
TLR5 antibody and TLR5 siRNA (Fig 7A, 7B and 7D), and flagellin-induced STAT3 activation
were declined by TLR5 antibody (Fig 7C). Our results also showed that TLR5 antibody blocked
the activation of PI3K/Akt/mTOR signaling stimulated by flagellin (Fig 4B). These findings
indicate that TLR5 mediates flagellin-induced TNF-α and IL-6 expression, PI3K/Akt/mTOR
signaling activation, and STAT3 activation, these results are proved for the first time in macro-
phage. In addition, TLR5 recruits the p85 regulatory subunit of PI3K to its cytoplasmic TIR do-
main through the adaptor molecule MyD88 in response to flagellin [42]. Thus, we propose that
TLR5 mediates and transmits flagellin-derived signals to PI3K, for which MyD88 is required.

Based on our studies and other reports, we propose a model in which the PI3K/Akt/
mTORC1 pathway regulates TNF-α and IL-6 production. Flagellin associates with TLR5 and
then transmits its signal to PI3K through MyD88. Activated PI3K stimulates Akt/mTOR, and
mTOR signaling then activates NF-κB and STAT3. These translocate into the nucleus, and

Fig 9. Model of PI3K/Akt/mTORC1 regulation of flagellin-induced TNF-α and IL-6 expression. Based on
our studies and other reports, we propose a model in which flagellin binds toTLR5 and transmits its signal to
PI3K via MyD88. Activated PI3K stimulatesAkt/mTOR, and mTOR signaling activates NF-κB and STAT3.
These factors translocate to the nucleus and enhance TNF-α and IL-6 expression, promoting cell proliferation
and survival.

doi:10.1371/journal.pone.0125910.g009

mTORC1 in Macrophages Inflammatory Response

PLOS ONE | DOI:10.1371/journal.pone.0125910 May 5, 2015 11 / 14



NF-κB upregulates TNF-α and IL-6 expression, enhancing cell proliferation, and STAT3 pro-
motes cell survival (Fig 9). Although there is no direct evidence that these transcription factors
increase TNF-α and IL-6 expression, such a mechanism is possible, depending on their charac-
teristics and functions.

Supporting Information
S1 Fig. Rapamycin decreases flagellin-induced mTORC1 signaling. Ana-1 cells were pre-
treated with or without rapamycin (100 nM) for 4 h and stimulated with 100 ng/ml flagellin
for 24 h. Total proteins were separated by SDS-PAGE and tested using phospho-mTOR
(Ser2448), phospho-S6 (Ser240/244), and phospho-4EBP1 (Thr37/46) antibodies. The blots
were stripped and probed with mTOR, S6, and 4EBPantibodies. β-actin was used as the loading
control. Three separate experiments were performed.
(TIF)
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