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Abstract

Genomewide studies and localized candidate gene approaches have become everyday study 

designs for identifying polymorphisms in genes that influence complex human traits. Yet, in 

general, the number of significant findings and the need to focus in smaller regions require a 

prioritization of genes for further study. Some candidate gene identification algorithms have been 

proposed in recent years to attempt to streamline this prioritization, but many suffer from 

limitations imposed by the source data or are difficult to use and understand. CANDID is a 

prioritization algorithm designed to produce impartial, accurate rankings of candidate genes that 

influence complex human traits. CANDID can use information from publications, protein domain 

descriptions, cross-species conservation measures, gene expression profiles, and protein-protein 

interactions in its analysis. Additionally, users may supplement these data sources with results 

from linkage, association and other studies. CANDID was tested on well-known complex trait 

genes using data from the Online Mendelian Inheritance in Man (OMIM) database. Additionally, 

CANDID was evaluated in a modeled gene discovery environment, where it ranked genes whose 

trait associations were published after CANDID’s databases were compiled. In all settings, 

CANDID exhibited high sensitivity and specificity, indicating an improvement upon previously 

published algorithms. Its accuracy and ease of use make CANDID a highly useful tool in study 

design and analysis for complex human traits.
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Introduction

Investigators initiating a study of a complex human trait generally choose either a candidate 

gene or genomewide approach. In a candidate gene approach, genes are selected based on 

their putative functions and possible relevance to the trait. This approach is necessarily 

biased towards well-characterized genes, but if the right candidate gene(s) are selected, it 

may be the quickest and least expensive study design. Genomewide studies are more 
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impartial, but the resulting statistical analyses are complicated by the large number of 

statistically significant or suggestive results. In many cases, investigators use a combination 

of genomewide and candidate gene approaches, using genomewide technologies to identify 

a subset of genes of interest and then conducting further analysis on the most promising 

candidates in this subset [Calvo, et al. 2006; Mootha, et al. 2003; Niculescu, et al. 2000; 

Schadt, et al. 2005]. As a result, both candidate gene and genomewide approaches often 

require a candidate gene selection and/or prioritization step. This step is highly susceptible 

to bias from a number of sources, including the extent and area of the individual scientist’s 

knowledge and the degree to which potential candidate genes have been characterized in the 

scientific literature and public databases.

Some candidate identification algorithms (CIAs) have been created to assist in automating 

candidate gene selection or prioritization. These algorithms make use of a wide array of 

publicly available and user-generated data, and as such, they are very diverse in their 

designs. While some of these algorithms may be very successful under certain circumstances 

as discussed below, broader use of these algorithms is generally limited by shortcomings in 

two main areas: data sources and overall usability. Many CIAs require specific data inputs, 

such as previously obtained biological data, which may not be available. For example, 

Prioritizer, TOM, SUSPECTS and POCUS require the user to supply at least one locus of 

interest [Adie, et al. 2006; Franke, et al. 2006; Perez-Iratxeta, et al. 2005; Rossi, et al. 2006; 

Turner, et al. 2003]. GeneSeeker requests that the user supply a locus of interest; if there are 

none, the algorithm must rely solely on publicly-available expression data [van Driel, et al. 

2003]. Another CIA, GeneRank, is based on Google’s PageRank algorithm and requires the 

user to supply expression data, again necessitating previous biological studies [Morrison, et 

al. 2005]. Two recently reported CIAs, Endeavour and CGI, do not require biological data 

but instead require a training set of at least several known disease genes, which are then used 

to create a profile that is compared to potential candidates [Aerts, et al. 2006; Ma, et al. 

2007]. Selection of the training set relies on previous biological characterization of the trait, 

meaning that only a subset of well-characterized traits can be studied with these CIAs.

The choice of datasets used to evaluate candidates can also limit the usefulness of CIAs. For 

example, Gene Ontology (GO) functional classifications of genes are heavily relied upon in 

many CIAs, including Endeavour, Prioritizer, TOM, SUSPECTS, POCUS, G2D, GeneRank, 

and GFSST [Adie, et al. 2006; Aerts, et al. 2006; Franke, et al. 2006; Morrison, et al. 2005; 

Perez-Iratxeta, et al. 2005; Rossi, et al. 2006; Turner, et al. 2003; Zhang, et al. 2006]. GO 

classification terms include a unique identification number and a brief description of the 

corresponding biological function using a controlled vocabulary, making them ideally suited 

to annotating large datasets [Ashburner, et al. 2000]. However, only 60% of all human genes 

have associated GO terms, and these terms may be inconsistent due to differences in 

curators’ judgment [Ashburner, et al. 2000; Dolan, et al. 2005]. Additionally, genes that 

already have GO annotations may still have additional unidentified functions. Similar 

limitations occur with the use of manually-annotated pathway classifications from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG), implemented in Endeavour, Prioritizer and 

Gentrepid [Aerts, et al. 2006; Franke, et al. 2006; George, et al. 2006]. Depending on the 

CIA in question, these issues reduce or eliminate the probability that poorly characterized 

genes are selected as candidates.
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The usability limitations of current CIAs are generally related to either the algorithm output 

or the ease of use. Some CIAs evaluate a certain number of genes and then supply the user 

with an unordered subset of these genes [George, et al. 2006; Rossi, et al. 2006; Turner, et 

al. 2003; van Driel, et al. 2003; Zhang, et al. 2006]. This subset can be prohibitively large, 

depending on the nature of the intended follow-up experiments. In this situation, the user 

would be forced to rely upon his own knowledge to pick candidates out of the subset, 

negating the purpose of using a CIA. A better output method provides a ranked list of all 

considered genes, allowing the user to interpret the results as he or she sees fit. This method 

is employed by many of the CIAs, including Prioritizer, SUSPECTS, G2D, GeneRank, 

Endeavour and CGI [Adie, et al. 2006; Aerts, et al. 2006; Franke, et al. 2006; Ma, et al. 

2007; Morrison, et al. 2005; Perez-Iratxeta, et al. 2005]. The last weakness of some CIAs is 

low accessibility. An ideal CIA would be easy for all potential users to understand and easy 

to access, preferably through a web-based interface that does not require software 

installation [Troyanskaya 2005]. Of the eleven previously mentioned CIAs, only five 

(Endeavour, G2D, TOM, GeneSeeker and SUSPECTS) are available as purely web-based 

applications that are easily accessible to both biologists and statisticians.

CANDID is a highly effective genomewide candidate identification algorithm designed with 

complex human trait genetics in mind. A variety of data sources are used by CANDID, and 

most of these were selected to reduce bias against poorly characterized genes. Users also 

have the option of supplementing CANDID’s analyses by providing their own data sources, 

including results from linkage and association studies. Additionally, users can optionally use 

their own knowledge to fine-tune their analyses by specifying which data sources CANDID 

uses and the weights CANDID gives to each source. Finally, CANDID has a flexible web-

based interface that is easily accessible to both biologists and statisticians.

Methods

CANDID scores genes by up to eight criteria: publications, protein domains, cross-species 

conservation, gene expression profile, protein-protein interactions, linkage analysis results, 

association analysis results, and custom data (Figure 1). Each gene receives criterion-

specific scores, which are normalized and weighted by the user-defined criterion weight and 

then summed to form the gene’s final score. Genes are ranked by final score and presented 

as a list to the user along with detailed scoring information. While CANDID evaluates all 

human genes by default, users also have the option of limiting their analyses to only protein-

coding genes.

Publication data and scoring

CANDID’s publications scoring method differs from those of previously described CIAs. 

G2D, for example, links genes to traits through medical subject headings (MeSH) and GO 

terms [Perez-Iratxeta, et al. 2007; Perez-Iratxeta, et al. 2005]. CANDID’s publications 

database consists of direct links between PubMed IDs and EntrezGene IDs, where a gene-

publication link is made when a publication describes evidence of the sequence or function 

of the human gene or its murine ortholog. The publications associated with gene X will be 

identified as the set G(X). The CANDID user provides a set of keywords associated with the 
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trait of interest that would be appropriate for a typical literature search. As a general rule, 

keywords should be chosen based on whether publications about that keyword would be of 

interest to someone researching the trait. For example, if someone researching schizophrenia 

were interested in knowing about genes with known functions in the brain, he or she should 

include “brain” as a keyword. As a result, keywords may range from very trait-specific 

(“schizophrenia”) to very broad (“brain”). Traits may also differ greatly in the number of 

applicable keywords. It is to be expected that some traits will only have a few relevant 

keywords, and in these cases, adding more keywords that are only vaguely related to the trait 

would likely introduce more noise into the final rankings. Also, synonyms should be 

included when appropriate to encompass as many relevant publications as possible. For 

example, searching for “Alzheimer” and “Alzheimer’s” returns different results, so both 

variations should be used when applicable. The resulting set of keywords is used in a “text 

word” PubMed search to identify all matching publications (M). The publication score, P, 

for gene X is a value between 0 and 1 equal to

The rationale for this method is to reward genes that are commonly linked with publications 

describing the trait of interest independent of the degree to which these genes are 

characterized in the literature. After all genes are scored for this criterion, scores are 

normalized by dividing all publications scores by the highest overall publications score, 

eliminating a relative bias against traits with few matching publications.

Protein domain data and scoring

Protein domain information is obtained from the National Center for Biotechnology 

Information (NCBI) Conserved Domain Database (CDD), a curated database that integrates 

information from other databases, such as Pfam, SMART and COG. The CDD is similar to 

InterPro, another protein domain resource used by CIAs such as SUSPECTS [Adie, et al. 

2006]. Domain entries may possess a description of the domain and links to genes whose 

protein products contain these domains. As with the publications criterion, the CANDID 

user provides a set of keywords relating to the trait of interest, which are used to search the 

protein domain descriptions. Any gene whose protein product(s) contain at least one of the 

matching domains receives a score of 1. All other genes receive a score of 0. This method 

serves to reward genes for their putative functions, and since domain prediction is generally 

sequence-based, it will have the potential to reward nearly all protein-coding genes for 

which domains have been identified, regardless of how extensively they have been 

characterized in the scientific literature.

Conservation data and scoring

CANDID’s method for assigning conservation scores is similar to that of other CIAs, 

including DGP [Lopez-Bigas and Ouzounis 2004]. NCBI’s HomoloGene database provides 

the information for CANDID’s conservation analysis. HomoloGene analyzes genes from 18 

completely sequenced organisms and detects homologs using amino acid and DNA 
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sequences. For each gene, one of nine labels is supplied that describes the phylogenetic 

similarity between humans and the organism harboring the most distant homolog. 

“Eutheria,” for example, is a common descriptor that refers to genes present only in 

eutherian mammals, such as humans and mice. Human-specific genes receive a score of 0, 

while genes with the label “Eukaryota” receive the maximum score of 1. Scores for the other 

seven labels are distributed evenly, ranging from 0.125 to 0.875 in increments of 0.125; 

genes with the label “Eutheria” receive a score of 0.375. A high score for this criterion may 

be relevant for phenotypes that are known to involve conserved cellular processes, such as 

cancer, while it may be irrelevant for phenotypes such as hair color that only affect a small 

subset of species. Scores for this criterion are normalized by dividing all genes’ conservation 

scores by the highest conservation score.

Expression data and scoring

The Genomics Institute of the Novartis Research Foundation (GNF) Gene Atlas comprises 

expression levels of 17,761 human genes in 79 human tissues [Su, et al. 2004]. CANDID 

stands in contrast to other CIAs, such as TOM, that compare expression patterns across 

genes [Rossi, et al. 2006]. Instead, CANDID compares each gene’s expression levels across 

the 79 measured tissues in the GeneAtlas. Each gene receives a score of 1 for the tissue(s) in 

which the gene is most highly expressed, and the gene’s scores for the remaining tissues 

correspond to the ratio of the expression level in that tissue to the gene’s maximum 

expression level. With this strategy, genes that are specifically expressed in a certain tissue 

receive a high score for that tissue and very low scores for all other tissues, while 

“housekeeping” genes with roughly equal expression levels in all tissues receive roughly the 

same scores across all tissues. This method serves to highlight genes in the tissues where 

they may be thought to play the most important roles. In order to use this criterion, 

CANDID users must enter at least one tissue code between 1 and 79 corresponding to the 

tissue(s) of interest. A gene’s expression score corresponds to the sum of its individual tissue 

scores for all of the user-specified tissues. Scores for this criterion are normalized by 

dividing all genes’ expression scores by the highest expression score.

Protein-protein interaction data and scoring

Protein-protein interactions can provide valuable information about a gene product’s 

function, even in the absence of other information. As such, they have been widely used in 

recent CIAs, including Prioritizer, Gentrepid, and the method published by Oti, et al 

[Franke, et al. 2006; George, et al. 2006; Oti, et al. 2006]. In the NCBI Gene database, 

published protein-protein interactions for each gene are compiled from sources such as 

BIND, HPRD and BioGRID. To determine a gene’s interactions score, CANDID sums the 

publications and protein domains scores for all of the gene’s interacting partners. Using this 

method, it is possible for a gene of unknown function to have scores of zero in all categories, 

but still be highly rated due to an interaction with a key, high-scoring protein, perhaps 

identified through a high-throughput screen. These scores are not normalized, and as such, 

scores for this criterion range from 0 to an undefined upper limit.
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Linkage data and scoring

CANDID was specifically designed to accommodate one or more sets of existing linkage 

data. CANDID users with linkage information may wish to limit their CANDID gene 

analyses to one or more loci or to prioritize genes based on the gene’s approximate LOD 

score. CANDID readily accepts custom linkage files as well as linkage output files from 

GENEHUNTER, MERLIN, and SOLAR [Abecasis, et al. 2002; Almasy and Blangero 1998; 

Kruglyak, et al. 1996]. Multiple linkage files may be submitted to MetaMaker, an associated 

tool on the CANDID website, to create a meta linkage file by summing individual LOD 

curves. All marker positions are in centiMorgans (cM) and correspond to the Marshfield 

genetic map. Base pair positions can be converted to approximate Marshfield cM positions 

using MapConverter, another tool on the CANDID website.

CANDID assigns a linkage score to each gene based on the approximate LOD score at the 

gene’s location. Approximate cM positions for each gene have been interpolated by 

examining the physical distance between the midpoint of the gene and the two closest 

Marshfield markers. The linkage score for a gene is interpolated between the two closest 

markers with assigned LOD scores and then normalized by dividing by the highest 

individual gene’s linkage score. The highest maximum linkage score will be 1, but some 

genes may have negative linkage scores if they are associated with negative LOD scores. 

This method therefore filters out these genes, even in the presence of moderate to high 

scores from other criteria.

When a CANDID user is interested in analyzing one or more loci in the absence of linkage 

data, a dummy linkage file may be created to focus the analysis on specific intervals. This is 

done using four dummy markers for each interval. Two represent the boundaries of the 

interval, and both of these markers are assigned the same arbitrary non-zero LOD score. 

Additionally, two markers are created just outside the interval and assigned a LOD score of 

0. In this way, only the genes in the interval will receive a non-zero linkage score from 

CANDID, allowing them to be separately analyzed if the user has chosen the option to limit 

analysis only to genes with LOD scores greater than 0.

Association data and scoring

CANDID can accept and use SNP-based association data from the user. The user supplies a 

file where each line contains a SNP ID from dbSNP and a p-value for that SNP. CANDID 

assigns each of these SNPs to their associated genes according to NCBI’s dbSNP database. 

The best p-value for each gene is subtracted from 1 to yield each gene’s association score. 

Users will note that genes with more tested SNPs are more likely to have a good p-value, 

and therefore a good association score, due to multiple tests. It should also be noted that a 

gene with one SNP and a highly insignificant p-value will always receive a higher 

association score than a gene with no associated SNPs. To eliminate these problems, the 

user has the option of setting a p-value threshold, where p-values greater than the threshold 

are not considered. Using this threshold greatly speeds up the association analysis and also 

results in the same range of scores, since association scores are normalized to fall between 0 

and 1 regardless of whether the threshold is used.
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Custom data and scoring

In addition to linkage and association data, CANDID can also accept and utilize other data. 

Users may provide a two-column custom file, where each line contains an EntrezGene ID 

and a numeric score, with higher numbers corresponding to greater interest in the gene. This 

data will be weighted and used like the other CANDID criteria.

Final score determination and ranking

The CANDID user must specify a series of weights corresponding to the eight criteria 

described above. Criteria with non-zero weights are evaluated, and their scores are 

multiplied by the user-defined criterion-specific weights. Finally, a gene’s weighted scores 

are summed across all criteria to produce the final score. Genes are ranked by final score, 

and this information, along with normalized raw scores and basic information on each gene, 

is provided in a comma-separated output file available for download from the server. This 

file can easily be opened in Microsoft Excel or any number of statistical software packages. 

The user is also provided with a summary file stating the parameters used for the analysis as 

well as a literature file with further information on the publications scores.

ROC curve calculation and analysis

For all CANDID tests, ranks of causal genes were extracted from CANDID output files and 

used to create receiver operating characteristic (ROC) curves. For each data point in the 

curve, the specificity corresponds to the percentage of genes that ranked lower than the 

causal gene(s), while the sensitivity corresponds to the percentage of the causal genes that 

achieved at least that level of specificity. For example, a specificity value of 0.91 and a 

sensitivity value of 0.65 indicates that 65% of the causal genes ranked at or above the 91st 

percentile in the CANDID output. The area under the curve (AUC) for each ROC is an 

indicator of the performance of the algorithm; an algorithm that ranked the causal gene(s) 

first every time would have an AUC of 1, while an algorithm that randomly ranked the 

causal gene(s) would have an AUC of 0.5.

Analysis of known genes responsible for traits in OMIM

In order to gauge the effectiveness of CANDID and its various criteria in ranking candidate 

genes, 29 complex traits were selected from the Online Mendelian Inheritance in Man 

(OMIM) database. First, a set of 154 traits and associated identified causal genes on 

chromosome 1 was selected, and from that set, 29 traits were chosen that are generally 

common in the population or known to be influenced by multiple genes. These traits include 

various cancers, Alzheimer’s disease, obesity, and others. Phenotypic keywords were chosen 

for each trait by referencing the trait descriptions in OMIM. Additionally, when the trait 

seemed to affect certain tissues, those tissue codes were identified in order to use the 

expression criterion. A full list of the 29 traits, their keywords, tissue codes, causal genes, 

and OMIM identifiers is available as Supplementary Table I. Keywords and tissue codes 

were selected a priori and were not changed at any point in the analysis.

For each trait, the identified keywords and tissue codes were used in a genomewide 

CANDID analysis using version 1 of the CANDID databases. Five criteria were scored in 
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these analyses: publications, protein domains, conservation, expression, and protein-protein 

interactions. To further assess CANDID’s specificity, the 29 traits and their corresponding 

gene(s) were shuffled 100 times. Additionally, each of the 29 traits was paired with a 

randomly selected gene 100 times. The AUCs from the analyses using the true causal genes 

were compared to the AUCs resulting from the shuffled and random gene analyses using the 

Wilcoxon signed-rank test.

To maximize the specificity and sensitivity of CANDID when using more than one criterion, 

11 values were tested for each criterion weight. These values ranged from 0 to 1 by 

increments of 0.1 and yielded 161,051 possible configurations of weights for the five 

criteria. Some of these configurations were redundant; a configuration with weights of (0, 0, 

0, 0.3, 0.6) would yield identical results to a configuration with weights of (0, 0, 0, 0.1, 0.2), 

since these weights serve only to rank genes relative to each other. The AUCs of all weight 

configurations were determined, and the highest AUC was used to select the optimal 

configuration. This was performed in both a genomewide setting and a locus-limited setting, 

where a dummy linkage file was used to restrict CANDID’s analysis to only chromosome 1.

To test the resulting optimal weight configuration, 15 additional complex or polygenic traits 

were selected from the subset of traits in OMIM that are linked to chromosome 2 

(Supplementary Table I). As with the chromosome 1 traits, keywords and tissue codes were 

selected for these traits, and genomewide and chromosome-specific CANDID analyses were 

performed using the optimal weight configuration obtained from the chromosome 1 

analyses. Ranks of causal genes on chromosome 2 were determined, and AUCs were 

calculated for both the genomewide and chromosome-specific analyses.

Analysis of recently characterized causal genes for complex traits

CANDID was designed for gene discovery purposes, and often, genes found to contain 

causal variants have no prior published association with the trait of interest. To model a gene 

discovery effort, gene-trait associations published after November 2006 were identified. The 

first version of the CANDID databases was compiled prior to the publication of these works, 

so the evidence from these publications that links the genes to their corresponding traits was 

not factored into CANDID’s analysis. These publications identified causal variants for 

complex human traits by using various methods, including studies of promising candidate 

genes as well as genomewide studies. In several situations, a small cluster of genes was 

identified, but the causal gene could not be determined due to linkage disequilibrium; in 

these cases, all genes in the cluster were used in this analysis. A full list of all 56 genes and 

their associated traits is included in Table I. Keywords describing the ascertained traits were 

carefully selected from the publications, and tissues were selected for the expression 

criterion if it was deemed appropriate to do so (Supplementary Table II). Keywords and 

tissue codes were selected a priori and were not changed at any point in the analysis.

Analysis of these traits was conducted similarly to the OMIM analyses. Each of the five 

main criteria was evaluated separately and in combination with 161,051 different weight 

configurations. For each of the criterion-specific analyses, the 56 gene-trait pairs were also 

shuffled 100 times, and each of the traits was also paired with a randomly selected gene 100 

times. The analyses of various weight configurations were conducted in a genomewide 
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setting as well as a locus-limited setting, where dummy linkage files limited the analysis to 

the 200 genes closest to the true causal gene. The other main difference between the recently 

identified causal gene analysis and the OMIM analysis is that while genes associated with 

the same trait were analyzed together in the OMIM analyses, each of these 56 gene-trait 

pairs was analyzed separately. The optimal weight configuration was determined by 

selecting the configuration that produced the highest AUC.

To test this resulting set of optimal weights, an additional 19 causal genes and their 

corresponding traits were selected. These gene-trait associations were also published after 

the compilation of the first version of the CANDID databases. Once again, relevant 

keywords were selected for each trait, and tissue codes were selected if applicable 

(Supplementary Table II). This information was used to run both genomewide and locus-

limited CANDID analyses using the optimal weight configuration determined from the 

analysis of the original 56 gene-trait pairs. Ranks of the causal genes were determined, and 

AUCs were calculated. To compare CANDID to Endeavour, training sets of genes were 

determined from OMIM for each trait, and loci including the recently identified gene and 

199 surrounding genes were selected and used as input for Endeavour. A full list of this 

information is in Supplementary Table III.

Databases and computing

CANDID databases are periodically built using Perl scripts implementing the DB_File 

module (version 1.814). Users can choose which version of the CANDID databases they 

would like to use. To date, several versions have been constructed. Version 1 was compiled 

from data downloaded in November 2006, while the data used to construct version 2 was 

downloaded in June 2007. New database versions will be soon automatically created each 

month. Both version 1 and version 2 contain a similar number of genes, with 38,697 in 

version 1 and 38,530 in version 2. In the version 2 databases, 85% of protein coding genes 

have information for at least one of the five data-independent criteria. Except where 

specified otherwise, CANDID is described using the current version 2 dataset. On average, a 

CANDID query returns results in less than three minutes, though run time can increase if 

there are many literature matches or extensive supplied association data.

Results

Genes associated with complex traits in OMIM

29 common or multigenic traits were selected from OMIM as described in the Methods 

section and used to analyze the effectiveness of each individual criterion. Receiver operating 

characteristic (ROC) curves were calculated to determine each criterion’s specificity and 

sensitivity. These values were generally high and, in most cases, statistically significantly 

higher than the values determined when the gene-trait pairs were randomized 

(Supplementary Figure 1).

Different weight configurations were assessed to select the configuration that maximized 

CANDID’s sensitivity and specificity. One set of redundant configurations proved to be 

optimal for ranking genes associated with the OMIM traits: the configurations where all 
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weights equaled zero except for the publications weight. For the genomewide analysis, this 

configuration yielded an AUC of 0.923, while a configuration with equal weights yielded an 

AUC of 0.895 (Figure 2A). The AUCs were improved when a dummy linkage file was used 

to limit the analysis to evaluate only genes on chromosome 1. In this case, the AUC for the 

publications-only analysis was 0.983, compared to an AUC of 0.927 when all criteria were 

weighted equally (Figure 2B). Using the optimal weight conditions, both shuffling the genes 

and their traits and pairing the traits with randomly selected genes resulted in significantly 

lower AUCs: approximately 0.81 when genes were shuffled (P = 8.4 × 10−9) and 0.52 when 

genes were randomly selected. Genomewide and chromosome-specific analyses of an 

additional 15 traits linked to chromosome 2 were performed using the publications-only 

weight configuration, and results were similar to those from the chromosome 1 traits, with 

AUCs of 0.969 (genomewide) and 0.971 (chromosome 2 only) (Figure 2).

Recently published causal genes for complex traits

Next, CANDID was tested in a gene discovery situation, where genes did not necessarily 

have any prior publications linking them to the trait. As with the OMIM genes, the 

effectiveness of each individual criterion in ranking these causal genes was evaluated. 

Unsurprisingly, when attempting to rank these recently characterized genes, the specificity 

and sensitivity were slightly lower than when attempting to rank the well-characterized 

OMIM genes (Supplementary Figure 2). However, in most cases, these values were 

significantly higher than values determined when the gene-trait pairs were randomized.

The optimal weight configuration for ranking recently characterized genes was determined 

to be one in which the publications scores are weighted by 1, the expression scores are 

weighted by 0.2, and the protein-protein interactions scores are weighted by 0.1. The protein 

domains and conservation scores had weights equal to 0 and were not used in the optimal 

weight configuration. For the genomewide CANDID analyses, use of the optimal weights 

improved the AUC to 0.926 compared with 0.878 when all weights were equal (Figure 3A). 

The optimal weight configuration for the locus-limited analysis was the same as for the 

genomewide analysis, yielding an AUC of 0.906 compared with an AUC of 0.843 when all 

weights were equal (Figure 3B). Randomly shuffling the genes and traits resulted in 

significantly lower AUCs (0.818 for the genomewide analysis, P = 7.2 × 10−13, and 0.755 

for the locus-specific analysis, P = 2.4 × 10−12), as did randomly selecting genes (0.502 and 

0.487, respectively).

CANDID’s optimal weight configuration depends heavily on publications. Since the 

publications criterion in turn depends on the keyword selection, one or two keywords were 

dropped for each trait in the genomewide analysis, and the resulting AUC was not 

significantly different (0.912 compared to 0.926 with all keywords, data not shown.) It is 

also possible that novel causal genes of unknown function could be missed using 

CANDID’s optimal weight configuration. To test this, the optimal weight configuration 

using all data sources other than publications was determined. This configuration weights 

protein domains by 0.1, conservation by 0.1, gene expression by 0.3, and protein-protein 

interactions by 0.9. Though not quite as accurate as the optimal weight configuration, it still 

has a very high AUC (0.889 for the genomewide analysis and 0.850 for the locus-limited 
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analysis, Figure 3.) When the original optimal configuration of weights was used to repeat 

the CANDID analyses after CANDID’s publications database was updated to version 2, 

including the publications describing the 56 gene-trait pairs, the specificity and sensitivity 

increased, yielding AUCs of 0.952 and 0.941 for the genomewide and locus-specific 

analyses (Figure 3). Finally, the optimal weight configuration was also quite successful in 

ranking the 19 causal genes that were not included as part of the original set of 56 gene-trait 

pairs (genomewide AUC = 0.882, locus-limited AUC = 0.855). When these gene-trait pairs 

were analyzed with Endeavour in a locus-limited setting, the AUC was lower (0.818, Figure 

3B).

Discussion

CANDID is a flexible and easy to use method for identifying and prioritizing candidate 

genes for complex human traits. CANDID uses a variety of sources, including publications, 

protein domains, cross-species conservation levels, gene expression levels, and protein-

protein interactions to assess and rank all human genes. These five criteria were chosen to 

reduce or eliminate dependence on the user’s personal knowledge. Though users may 

optionally contribute their own linkage, association, and other experimental data to 

CANDID’s prioritization process, prior data is not required. Additionally, CANDID does 

not require the definition of training or test sets, which may limit the types of traits available 

for analysis. Compared to other candidate identification algorithms (CIAs), CANDID may 

the most versatile.

CANDID’s effectiveness was rigorously tested using two types of datasets: genes linked to 

common or complex traits described in OMIM and genes recently linked to complex traits. 

The resulting AUCs were quite high compared to AUCs for other gene prioritization 

programs. Prioritizer, developed by Franke, et al, demonstrated an AUC of 0.90 when the 

method was used to characterize gene networks, but when used to prioritize known OMIM 

genes at a given locus, the AUCs appear to be between 0.65-0.70 [Franke, et al. 2006]. 

Endeavour, probably the most accurate candidate gene prioritizer to date, produced an AUC 

of 0.866 for known OMIM genes and 0.805 for the same genes when publication data was 

omitted to avoid bias [Aerts, et al. 2006]. CANDID’s AUCs exceeded these values in both 

the OMIM gene analysis (genomewide weight-optimized AUC = 0.923, genomewide 

chromosome 2 analysis AUC = 0.969) and the simulated gene discovery analysis 

(genomewide weight-optimized AUC = 0.926, genomewide new gene analysis AUC = 

0.882). This indicates that if the number of genes to be tested is equal, CANDID should rank 

true causal genes higher than the other algorithms. Furthermore, Endeavour was used to rank 

a handful of genes that had been recently linked to complex traits. These analyses were 

limited to a 200-gene locus, and the publication data used was “rolled back” to one year 

before the critical publications were published. The average rank of the causal genes was 40 

in Endeavour’s analysis; in CANDID’s very similar simulated gene discovery analysis, the 

average causal gene rank was 20 (Table I) [Aerts, et al. 2006]. In a “head-to-head” 

comparison of CANDID and Endeavour using 19 gene-trait pairs, Endeavour also had a 

lower AUC (0.818), despite the fact that it could access databases that were updated after the 

gene-trait associations were published, while CANDID’s databases were compiled prior to 

this.
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Some limitations do exist to CANDID’s performance. Chief among these is a problem 

inherent in all of CANDID’s data sources – that the genome is incompletely and unevenly 

described. As annotation increases, so may the perception of public data sources as complete 

or infallible. It is worth pointing out that even databases such as dbSNP, which contain 

millions of entries, fail to provide even, complete coverage. Furthermore, the gaps in 

coverage may be nonrandom, depending on the database used. For example, users supplying 

custom data from a genomewide association study may note that genes involved in immune 

response and sensory perception are located in regions of weak linkage disequilibrium, and 

as such, may be underrepresented by SNPs on the current generation of SNP chips [Li, et al. 

2008; Smith, et al. 2005]. Similarly, the average CANDID user may be concerned with the 

uneven coverage of the scientific literature, upon which CANDID relies heavily. The high 

relative weight attributed to the publications criterion may raise questions about CANDID’s 

ability to rank genes that have yet to be characterized in the scientific literature. The 

accuracy of a genomewide CANDID analysis excluding the publications criterion was high 

(AUC = 0.889), though not as high as when publications were included (AUC = 0.926). 

Additionally, the optimal weight configuration changed significantly when publications 

were excluded, the main difference being the inclusion of the protein domains and 

conservation criteria. Users who wish to focus strongly on poorly characterized genes may 

therefore choose to use the publications-excluded optimal weight configuration. All users 

should note that increasing the number of data sources used in a CANDID analysis might 

help to reduce bias against genes that are underrepresented in any one particular data source. 

Additionally, careful selection of the criteria to be used and an understanding of each 

criterion’s flaws are important.

The high reliance on certain criteria may raise questions of the effectiveness of other criteria 

in identifying true causal genes. For example, the optimal weight configuration for gene 

discovery contained weights of 0 for the protein domains and conservation criteria. These 

criteria performed significantly better than would be expected of a random prioritization 

algorithm (Supplementary Figures 1, 2), but they failed to distinguish between the causal 

gene(s) specific to a given trait and causal genes for other traits. It is interesting to note that, 

even when using optimal weight configurations, the AUCs resulting from shuffling gene-

trait associations were high. Though generally significantly different from the AUCs 

resulting from the correct gene-trait pairs, these AUCs were higher than expected. This may 

indicate that CANDID tends to prioritize genes causal for any trait over genes not causal for 

any traits. One CIA, PROSPECTR, aims to do just this by utilizing sequence features [Adie, 

et al. 2005]. However, CANDID does not evaluate genes directly at the sequence level. It is 

possible that causal genes are instead characterized by a number of other factors measured 

by CANDID, such as a large number of protein-protein interactions, the presence of 

identified functional domains, extensive cross-species conservation or tissue-specific 

expression patterns. As more gene-trait associations are published, it may be possible to 

examine this profile in greater detail.

One of CANDID’s strengths is its ability to conduct genomewide analyses, whereas other 

CIAs must focus on a specific locus or set of genes. CANDID appears to be equally 

effective in genomewide and locus-specific settings. In the OMIM gene set, CANDID 

performed slightly better when limited to the 3,504 genes on chromosome 1, while in the 
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gene discovery setting, CANDID performed slightly worse when limited to a 200-gene 

locus. Causal genes will therefore be ranked in roughly the same percentile, regardless of 

how many genes are analyzed. It is therefore suggested that as a practical matter, users who 

wish to follow up on a smaller number of genes should limit their analyses to one or more 

loci, if feasible.

Though CANDID has been described here as a method for prioritizing candidate genes for 

complex human traits, it can easily be used to investigate other traits, including Mendelian 

human traits. Murine versions of the CANDID databases are in preparation for users who 

wish to investigate mouse traits. In addition, a batch mode version of CANDID is available 

upon request for individuals who wish to adapt the CANDID algorithm and databases to 

high-throughput gene identification and other methods.

The potential applications of CANDID are numerous. A ranked list of candidate genes can 

be created to select genes for a variety of initial or follow-up studies. If a promising locus is 

identified, CANDID could be used to prioritize genes within that region for resequencing or 

SNP-based genotyping. Additionally, results from genomewide CANDID analyses could be 

used to identify a large set of genes to use in the construction of custom microarrays. 

Ranked output of candidates could also prove useful in analyzing the large amount of data 

generated by genomewide association studies; instead of analyzing all SNPs at once, 

requiring a correction for a large number of tests, smaller batches of SNPs could be analyzed 

sequentially, based on CANDID’s ranking of their corresponding genes. When used wisely, 

CANDID has great potential to reduce bias in candidate gene-directed studies and to 

streamline genomewide studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Depiction of CANDID’s information flow. Genes are evaluated by up to 8 criteria 

(Publications, Protein domains, Conservation, Expression, Interactions, Linkage, 

Association, and Custom). Scores from each criterion are normalized, weighted by the value 

specified by the user for that criterion, and combined to form final scores. CANDID output 

consists of a list of all evaluated genes, ranked by final score, as well as other associated 

information.
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Figure 2. 
Success in predicting OMIM genes using 5 main criteria. Receiver operating characteristic 

(ROC) curves were generated for the genomewide (A) and chromosome-specific (B) 

analyses of traits linked to chromosomes 1 and 2. Analyses of traits linked to chromosome 1 

using the optimal weight combination (blue) and equal weights (orange) are shown. 

Analysis of traits linked to chromosome 2 using the optimal weight combination is shown in 

pink.
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Figure 3. 
Success in predicting recently published genes using 5 data-independent criteria in (A) 

genomewide and (B) locus-specific analyses. Receiver operating characteristic (ROC) 

curves are shown for the optimal weight configuration (blue), equal weights configuration 

(orange), and optimal weight configuration excluding publications (pink). The purple curves 

represent the ROC curves produced when optimal weights were used with updated databases 

from June 2007. Green ROC curves indicate the results from analyses with the optimal 

weight configuration on the 19 gene-trait pairs not used in the original analysis. The brown 

ROC curve in (B) represents results from an Endeavour analysis using the 19 gene-trait 

pairs.
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Table I

Genes with recently identified complex human trait associations

Reference Gene Trait Rank
(genome)

Rank
(locus)

Original set of 56 gene-trait associations

[Mullighan, et al. 2007] PAX5 acute lymphoblastic leukemia 2302 16

[Riemenschneider, et al. 2006] PLAU Alzheimer’s disease 115 1

[Rogaeva, et al. 2007] SORL1 Alzheimer’s disease 148 2

[Liu, et al. 2007] HNT Alzheimer’s disease (late-onset) 1094 12

[Liu, et al. 2007] OPCML Alzheimer’s disease (late-onset) 486 7

[Durand, et al. 2007] SHANK3 autism spectrum disorders 3345 26

[Frayling, et al. 2007] FTO body mass index 6935 38

[Seal, et al. 2006] BRIP1 breast cancer 1912 21

[Cox, et al. 2007] CASP8 breast cancer 67 1

[Easton, et al. 2007] FGFR2 breast cancer 5404 39

[Easton, et al. 2007] LSP1 breast cancer 7108 55

[Easton, et al. 2007] MAP3K1 breast cancer 359 5

[Erkko, et al. 2007] PALB2 breast cancer 11251 77

[Easton, et al. 2007] TOX3 breast cancer 10741 65

[Sun, et al. 2007] CASP8 cancer (multiple types) 67 1

[Hata, et al. 2007] AGTRL1 cerebral infarction 3045 15

[Kubo, et al. 2007] PRKCH cerebral infarction 4309 27

[Pare, et al. 2007] EDN1 coronary artery disease 1816 2

[Rioux, et al. 2007] ATG16L1 Crohn’s disease 5657 45

[Rioux, et al. 2007] FAM92B Crohn’s disease 14848 119

[Rioux, et al. 2007] NCF4 Crohn’s disease 3566 31

[Rioux, et al. 2007] PHOX2B Crohn’s disease 3349 10

[Shaw-Smith, et al. 2006] MAPT developmental delay, learning disability 176 1

[Duffy, et al. 2007] OCA2 eye color 621 8

[Chan, et al. 2006] MSH2 hereditary nonpolyposis colorectal cancer 141 2
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Reference Gene Trait Rank
(genome)

Rank
(locus)

[Gao, et al. 2007] CHD7 idiopathic scoliosis 3936 26

[Dempfle, et al. 2006] VDR idiopathic short stature 361 2

[Duerr, et al. 2006] IL23R inflammatory bowel disease 946 4

[Lucae, et al. 2006] P2RX7 major depressive disorder 5105 31

[Dieterich, et al. 2007] AURKC male infertility 399 3

[Papassotiropoulos, et al. 2006] WWC1 memory performance 1630 16

[Tarpey, et al. 2006] AP1S2 mental retardation 4944 27

[Bierut, et al. 2007] DLG4 nicotine dependence 4 1

[Bierut, et al. 2007] GABARAP nicotine dependence 1559 10

[Miyamoto, et al. 2007] GDF5 osteoarthritis 20 1

[Tosh, et al. 2006] MICA paucibacillary leprosy 358 9

[Tosh, et al. 2006] MICB paucibacillary leprosy 784 32

[Bogdanova, et al. 2007] ANXA5 pregnancy loss 744 3

[Cargill, et al. 2007] IL23R psoriasis 1767 4

[Chen, et al. 2006] ACSL6 schizophrenia 2361 17

[Chen, et al. 2006] CDC42SE2 schizophrenia 3879 29

[Choudhury, et al. 2007] FXYD6 schizophrenia 4077 39

[Chen, et al. 2006] RAPGEF6 schizophrenia 1691 7

[Graham, et al. 2006] CD28 systemic erythematosus lupus 253 5

[Graham, et al. 2006] CTLA4 systemic erythematosus lupus 233 5

[Graham, et al. 2006] ICOS systemic erythematosus lupus 379 9

[Romeo, et al. 2007] ANGPTL4 triglyceride levels 366 4

[Zeggini, et al. 2007] CDKAL1 type 2 diabetes 6107 32

[Zeggini, et al. 2007] CDKN2A type 2 diabetes 2755 9

[Zeggini, et al. 2007] CDKN2B type 2 diabetes 16521 75

[Zeggini, et al. 2007] FTO type 2 diabetes 7615 45

[Zeggini, et al. 2007] HHEX type 2 diabetes 4338 20

[Zeggini, et al. 2007] IDE type 2 diabetes 129 2

Genet Epidemiol. Author manuscript; available in PMC 2015 May 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hutz et al. Page 23

Reference Gene Trait Rank
(genome)

Rank
(locus)

[Zeggini, et al. 2007] IGF2BP2 type 2 diabetes 1403 12

[Zeggini, et al. 2007] SLC30A8 type 2 diabetes 2829 18

[Dewan, et al. 2006] HTRA1 wet age-related macular degeneration 1645 20

Average (± s.e.m.) 3000+483 20+3

Additional 19 gene-trait associations

[Broderick, et al. 2007] SMAD7 colorectal cancer 954 11

[Shen, et al. 2007] LRP8 coronary artery disease 10108 42

[Sulem, et al. 2007] SLC24A4 hair and eye color 16356 62

[Sulem, et al. 2007] KITLG hair color 387 2

[Willer, et al. 2008] GALNT2 HDL cholesterol levels 9698 68

[Willer, et al. 2008] MMAB HDL cholesterol levels 11712 95

[Willer, et al. 2008] MVK HDL cholesterol levels 364 4

[Willer, et al. 2008] CELSR2 LDL cholesterol levels 7940 22

[Willer, et al. 2008] PSRC1 LDL cholesterol levels 14850 112

[Willer, et al. 2008] SORTl LDL cholesterol levels 435 6

[Mio, et al. 2007] COL11Al lumbar disc herniation 170 2

[Stefansson, et al. 2007] BTBD9 restless legs syndrome 4803 44

[Plenge, et al. 2007] C5 rheumatoid arthritis 231 5

[Plenge, et al. 2007] TRAF1 rheumatoid arthritis 389 4

[Stokowski, et al. 2007] SLC24A5 skin pigmentation 1389 9

[Stokowski, et al. 2007] SLC45A2 skin pigmentation 133 2

[Willer, et al. 2008] ANGPTL3 triglyceride levels 187 6

[Willer, et al. 2008] MLXIPL triglyceride levels 273 2

[Willer, et al. 2008] TRIB1 triglyceride levels 14856 116

Average (± s.e.m.) 5012+1383 32+9
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