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Abstract

Free energy calculations based on molecular dynamics (MD) simulations show considerable 

promise for applications ranging from drug discovery to prediction of physical properties and 

structure-function studies. But these calculations are still difficult and tedious to analyze, and best 

practices for analysis are not well defined or propagated. Essentially, each group analyzing these 

calculations needs to decide how to conduct the analysis and, usually, develop its own analysis 

tools. Here, we review and recommend best practices for analysis yielding reliable free energies 

from molecular simulations. Additionally, we provide a Python tool, alchemical–

analysis.py, freely available on GitHub at https://github.com/choderalab/pymbar–examples, 

that implements the analysis practices reviewed here for several reference simulation packages, 

which can be adapted to handle data from other packages. Both this review and the tool covers 

analysis of alchemical calculations generally, including free energy estimates via both 

thermodynamic integration and free energy perturbation-based estimators. Our Python tool also 

handles output from multiple types of free energy calculations, including expanded ensemble and 

Hamiltonian replica exchange, as well as standard fixed ensemble calculations. We also survey a 

range of statistical and graphical ways of assessing the quality of the data and free energy 

estimates, and provide prototypes of these in our tool. We hope these tools and discussion will 

serve as a foundation for more standardization of and agreement on best practices for analysis of 

free energy calculations.
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1 Introduction

1.1 Free energy calculations assist drug discovery

Complex chemical and biological systems pose a key challenge for modern molecular and 

computational science. We seek computational models which can provide quantitative 

predictions, not just qualitative insight. Researchers seek to answer questions such as “how 

much?”, “how big?”, “how tight?” and so on, and increasingly apply physically-detailed 

computation to help answer these questions. Models seek to mimic or simulate the processes 

in question, helping reveal and provide new understanding of mechanisms and phenomena 

which might be challenging or impossible to probe experimentally [20, 23, 38, 43].

Free energy calculations [11, 7, 25, 9, 18] provide a good example of a computational 

technique which provides a quantitative answer to a specific question – in this case, “what is 

the free energy difference between the two thermodynamic end states of the system?” This 

question arises, for example, in drug discovery [16] where drugs need to be ranked by, 

among other criteria, their binding affinity [9] to a target protein. To use free energy 

calculations to answer this question, one must first build a model of the system, and then 

identify the end states between which the free energy difference is to be computed.

1.2 Free energy calculations begin with a definition of the end states

The thermodynamic end states (for example, Fig. 1 states 1 and 2) are the key starting point 

in free energy calculations. In principle, free energy differences between the end states can 

be computed simply from simulations conducted in one or both states [11]. But in practice, 

this is typically not possible for biomolecular systems on reasonable timescales. To compute 

accurate free energy differences between states, their phase space integrals must have 

sufficient overlap which in practice is attainable only when both states are extremely similar. 

When this is not the case, it can be impossible to directly compute the free energy difference 

between end states 1 and 2. In such cases, we can instead compute free energy differences 

between a series of intermediate states which do have sufficient overlap, leading from state 1 

to state 2. These intermediate states are typically artificial, unphysical states constructed to 

link the physical states of interest, and form part of a thermodynamic cycle (see Fig. 1) 

linking the two end states of interest. For most free energy calculations relevant to binding, 

solvation, and solubility, this alternate, unphysical pathway involves effectively deleting 

and/or inserting some atoms, while possibly also making parameter changes to those and 

other atoms.

1.3 The thermodynamic cycle depicts alternate paths between the end states

The thermodynamic cycle for standard hydration free energy calculations is comprised of 

the four legs joining the four states of interest (Fig. 1): (2) a molecule interacting with a box 

of water, (1) the same molecule present alone in the gas phase, (4) the molecule in water but 

Klimovich et al. Page 2

J Comput Aided Mol Des. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not interacting with the surrounding water, and (3) the non-interacting molecule again alone 

in the gas phase. We thus compute the solvation free energy by modifying the solute 

molecule in each of its environments. To do so, we compute the free energy of turning off 

the solute’s non-bonded interactions with its environment (called decoupling) or turning off 

both internal non-bonded interactions and interactions with the environment (called 

annihilation) (Fig. 1)1. Specifically, we compute the free energies associated with Figure 1, 

1 → 3 and 2 → 4, turning off the molecule’s interactions in gas phase and in water, 

respectively. Most commonly, both of these transformations are carried out by first scaling 

(usually linearly) the solute charges to zero and then turning off the solute’s Lennard-Jones 

(LJ) interactions (usually via the “soft-core” scheme [2]). These transformations are done in 

a series of steps by introducing a parameter λ which modulates the potential energy of the 

system, so that as λ goes from 0 to 1 the potential energy transitions between that of the 

initial state and that of the target final state. Simulations are then run at a set of different λ 

values connecting the two states. In other words, each of the two transformation pathways is 

subdivided into a variety of individual steps, where each step involves a transition between 

two λ values. The number and spacing of λ values is chosen to assure adequate overlap 

between the conformational spaces of the two states being considered. These intermediate 

states, and their corresponding λ values, are normally said to be alchemical, since they 

correspond to unphysical states, often involving a change in the chemical identity of the 

species considered.

Following alchemical transformation of the molecule in gas and solution, it remains to 

connect the two end states ((3) and (4) in Fig. 1). However, the free energy of the non-

interacting molecule does not depend on the nature of its environment, and so the transfer 

free energy of the non-interacting molecule between environments is 0. Thus, there is no 

associated free energy change going from states (3) to (4) in Fig. 1.

1.4 The interactions can be decoupled

Changes in electrostatic interactions are often separated from changes in LJ interactions to 

avoid inaccuracy in the free energy estimate and sampling challenges. Specifically, if 

electrostatic interactions are retained while an atom’s LJ interactions are being removed, the 

associated charge becomes more and more exposed, and can create huge electrostatic forces 

leading to large and expensive-to-converge free energy differences. In extreme cases this 

can result in the lack of separation between positive and negative charges, which is 

especially problematic, potentially leading to numerical instabilities and simulation crashes 

[3, 31]. An additional benefit of separating these transformations is it provides a mechanism 

to maintain optimally efficient linear scaling of the charge interactions [27] with λ while 

using alternative scaling schemes for LJ interactions. Specifically, to avoid situations when 

the derivative ∂U/∂λ (needed for the TI analysis) would have been discontinuous, the 

1Annihilation and decoupling can be thought to differ primarily in how they handle charge and Lennard-Jones parameters. 
Specifically, annihilation involves actually setting solute partial charges to zero, while decoupling involves turning off charge 
interactions with environment. Likewise, annihilation involves actually setting the Lennard-Jones parameters to zero, while 
decoupling involves turning off interactions with environment. Our current explanation is specific to the more general case, 
annihilation, but in case of decoupling no gas transformation 1 → 3 is needed and the overall transformation reduces to the single leg 

2 → 4, i.e. the hydration free energy change is found as the negative of , with the possible exception of an anaytical 
standard state correction depending on the experimental reference state employed.
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potential for LJ transformations is typically treated via the soft-core potential [2, 42, 36, 39]. 

Although we focus here on the decoupled scheme, our general analysis would apply to the 

combined case (the one that would require no electrostatic decoupling [5, 12]) as well.

1.5 The intermediate lambda states can be controlled by lambda vectors

The MD packages like GROMACS [33] and DESMOND [37] can handle free energy 

calculations via multiple λ values controlling progress of different interaction types so that, 

for example, Coulomb, LJ, and restraining transformations can be controlled separately. 

Each step along the transformation path is associated with a unique set of λ values that is 

often referred to as the λ vector. For the thermodynamic cycle in Fig. 1 the λ vector has two 

components that control the Coulomb and LJ interactions. Each of the transformation paths 

1 → 3 and 2 → 4 can then be presented as a train of intermediate coupled states (λcoul, λLJ), 

the initial and final states being (0, 0) and (1,1) as depicted in Fig 2. If λ controls the 

strength of Coulomb and LJ interactions with the solute’s environment, then as λ progresses, 

solute-solvent interactions gradually decrease until, at the end state, the system consists of 

pure solvent, overlaid by a parallel system consisting of the non-interacting, isolated solute 

with full internal interactions. In calculations where internal solute non-bonded interactions 

are removed as well, the solute end state is slightly different, consisting of an assembly of 

atoms which interact only via their bonded interactions.

Once λ states are selected, equilibrium simulations are carried out, storing the necessary 

information for analysis (typically ∂U/∂λ, the derivative of the potential with respect to λ, 

and ΔUi,j the potential energy differences between states at the different λ values evaluated 

from individual trajectories).

1.6 The automated analysis should be an essential part of the free energy calculations

Free energy calculations have typically been an experts-only endeavor, and one reason for 

this is that both their setup and analysis require, as a rule, substantial manual intervention. 

Analysis often involves in-house scripts and as more researchers get involved with the free 

energy calculations, standard analysis tools become increasingly important both to help 

ensure best practices are followed, and to avoid duplication of effort.

Our focus here is on the analysis of free energy calculations, which typically consists of a 

series of sequential steps. These free energy calculations themselves can be conducted with 

a variety of different sampling techniques, and our focus here is primarily on the analysis 

stage, regardless of sampling technique.

Here we present what we believe are current best practices for analysis of alchemical free 

energy calculations. Conceptually, we break analysis into four main stages:

1. subsampling the data to retain uncorrelated samples

2. calculating free energy differences along with the corresponding statistical errors 

via a variety of TI-and FEP-based methods

3. producing textual and graphical outputs of the computed data

4. inspecting for
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– for convergence and identifying the equilibrated portion of the simulation

– good phase space overlap for all pairs of adjacent lambda states

2 Analysis concepts, theory, and free energy estimation

We focus our attention on the analysis of a model free energy calculation—in this case, we 

choose a hydration free energy calculation of 3-methylindole as an illustrative example. 

Subsequent discussion will assume the reader already has run a free energy calculation and 

wishes to analyze the resulting data. In our case, we have run this free energy calculation in 

GROMACS, and we provide a Python tool which implements the procedures described here 

for GROMACS, SIRE (http://siremol.org/Sire/Authors.html), and AMBER [6] data files, 

with examples. However, except for reading the input data, our code is independent of the 

specific simulation package, and can easily be adapted to work with any data format 

containing the quantities needed by the free energy estimators used here (∂U/∂λ for TI-and 

ΔUi,j for FEP-based estimators). Thus, while our example here uses the case of the 

GROMACS simulation package, our prototype tool, freely available on GitHub https://

github.com/choderalab/pymbar-examples, can easily be modified to work with other 

simulation packages.

2.1 Obtaining input data

As noted, the key input information needed for full, general analysis of free energy 

calculations includes potential energy differences between (at least) adjacent lambda values, 

as well as ∂U/∂λ values at all lambda values. To be specific, we will give an example of the 

calculation with GROMACS-formatted input files. In particular, GROMACS currently (v3.3 

through v5.0) store all energies to binary energy files, but also write out all the potential 

energies and differences thereof needed for analysis to human-readable text files with 

the .xvg file format. In GROMACS, these are formatted as shown in Fig. 3. For standard 

simulations (in contrast to expanded ensemble simulations discussed below), there are 

several such files-one for each λ value. In GROMACS, the precise number of ∂U/∂λ fields 

varies with the number of different types of λ value which are utilized, which corresponds to 

the number of dimensions in the λ vector.2

Expanded ensemble simulations [22, 21, 24, 29, 26] are an approach which allows for 

simultaneous exploration of both λ and coordinate space in a single simulation, potentially 

allowing for faster sampling across alchemical states provided that the kinetic barriers that 

divide conformations important are lower at other λ states. In expanded ensemble 

simulations, a single simulation samples all states, and thus produces a single energy file. At 

each time step, the simulation is in one specific λ state, which is stored in the second field of 

the output energy file only in the expanded ensemble case. This allows determination of 

which λ state stored ∂U/∂λ and ΔUi,j values belong to.

2Whenever there is an additional field corresponding to the pV energy term it will be added to the potential energy of corresponding 
state.
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2.2 Alchemical analysis techniques can be divided into families

As noted, a variety of methods can take output from alchemical free energy calculations and 

yield free energy differences. Conceptually, these methods can be divided into two 

categories based on the quantity used to compute ΔG: thermodynamic integration [17] (TI) 

methods and free energy perturbation [44] (FEP) methods.

In TI, the free energy change along the path composed of K states is computed as a weighted 

sum of the ensemble averages of the derivative of potential energy function with respect to 

the coupling parameter λ:

(1)

where Wi are the weighting factors that depend on the numerical integration scheme used 

[28].

Several different schemes are available for numerical integration in TI. In our provided tool, 

alchemical-analysis.py, we implement TI-1 and TI-3 [28] which differ in how they 

interpolate between data points for integration. TI-1 uses the trapezoidal rule (a first-order 

polynomial), while TI-3 uses a (natural) cubic spline. The relative performance of these 

different TI methods will depend on the nature of the underlying data and the shape of the 

 curve being integrated – and thus, it depends on the alchemical path chosen.

Perturbation-based methods include a broad range of techniques loosely related to FEP. In 

our prototype tool, these include Deletion Exponential Averaging (DEXP), Insertion 

Exponential Averaging (IEXP), Gaussian Deletion (GDEL), Gaussian Insertion (GINS), 

Bennett Acceptance Ratio (BAR), Unoptimized Bennett Acceptance Ratio (UBAR), Range-

based Bennett Acceptance Ratio (RBAR), and Multistate Bennett Acceptance Ratio 

(MBAR). Some of them, like BAR [1] and MBAR [35], are in common use and are deeply 

entrenched in the parlance of the field, while others either do not have customary, generally 

accepted names, or remain little-known. For these methods we will use naming conventions 

suggested by Paliwal and Shirts [28]. The first two, DEXP and IEXP, are based on the 

exponential averaging scheme of the potential energies between two adjacent states—the so-

called Zwanzig relationship [44]:

(2)

Depending on the direction of the transformation the process can be interpreted as either 

“deletion” or “insertion”, hence the first letters in the acronyms. Typically, one of these 

processes, DEXP, proceeds in the direction of increasing entropy, while the other, IEXP, 

proceeds in the direction of decreasing entropy.

If potential energy differences are distributed in a Gaussian manner (GINS and GDEL [28]), 

then the Zwanzig relationship reduces to [14, 13]:
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(3)

where  Again, here, the estimator is referred to as either GDEL 

when ΔUij is used in the direction of increasing entropy, or GINS when ΔUij is used in the 

direction of decreasing entropy.

Methods based directly on the Zwanzig relationship, such as those just discussed, yield 

alternate estimations for the free energy difference depending on the direction of the 

transformation. These discrepancies originate from undersampling in the tail regions of the 

ΔUij distributions [32], which yields biased free energy estimates. BAR [1] eliminates the 

bias in ΔG estimation by including both forward, ΔUij, and reverse, ΔUji, potential energy 

differences in the analysis. In BAR, the free energy change between intermediate states i and 

j (comprised of Ni and Nj microstates, respectively) is found by solving numerically the 

implicit function of ΔUij:

(4)

where .

In addition to this full version of BAR, there are two BAR-related methods that are 

advantageous in that there is no need to retain all potential energy differences for 

postprocessing. These methods focus on accumulating the averages in eq 4 as the simulation 

progresses. This is achieved by either setting the constant C = β−1 ln(Nj/Ni) and thus 

avoiding the self-consistency procedure entirely (UBAR [28]), or picking a range of starting 

values of C and obtaining a range of ΔGij estimates from which the one having minimum 

variance is chosen as an input value for the constant C thus making the self-consistent 

solution essentially precalculated (RBAR [28]). UBAR can have issues when the free energy 

is significantly different from zero, while RBAR is essentially as accurate as BAR as long as 

the true value of C is within ≈ 1 – 2kBT of the one of the range of trial C values.

MBAR [35] constitutes a further development of the BAR method. In BAR, the free energy 

change between the two adjacent states is computed to yield the minimum variance given 

data collected at that single pair of states alone, while MBAR finds the best estimate of free 

energy changes between all states simultaneously by optimizing the matrix of the ΔG 

variances, thus making use of all available data. MBAR can also be considered [35] as a 

limiting case of the WHAM [19] method in which the histogram width is set to zero.

2.3 Cross-comparison of different analysis techniques can highlight problems

TI and perturbation-based analysis techniques have different limitations. Specifically, the 

accuracy of TI is not a direct function of overlap in energy distributions but instead is a 

function of the average curvature  [30]. On the other hand, perturbation-based 
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techniques do not depend on smoothness of the integrand, but rather on overlap in the 

sampled energy distributions. Given these differences in input information and limitations, 

consistency checks across these method families can be a valuable tool for identifying 

analysis or sampling problems.

In our experience, comparing results from different methods can serve as a warning sign of 

either insufficient sampling or a λ spacing which is too wide, so it is useful to have a family 

of analysis methods. Fig. 4 shows hydration free energies for 3-methylindole computed via a 

variety of methods. As seen from Fig 4(b), the discrepancies between results from the 

alternate interpolation schemes are most prominent in the vicinities of the rapid change in 

the  derivative (the van der Waals lambda states 3–4, 4–5, 5–6, and 7–8). A good 

practice, thus, is to ensure dense lambda spacing for these regions.

In general, approaches based on Zwanzig’s relation are expected to break down earlier (in 

terms of phase space overlap) than other approaches, so IEXP and DEXP will tend to 

become inconsistent even when data may still be sufficient to obtain accurate free energy 

estimates from many of the other methods (see Fig. 3). In our work, we primarily look for 

disagreement between TI-based methods and BAR-based methods.

2.4 The free energy change is often broken down into components

Alchemical transformations are usually comprised of several conceptual steps which modify 

different terms in the potential. For example, solvation or binding free energy calculations 

are often separated at least into electrostatic and Lennard-Jones components. Thus, the free 

energy associated with modifying each of these terms in the potential can be computed 

separately, which can provide some qualitative insight. However, it is important to note that 

the free energies of each component are path-dependent observables. ΔGCoul will change in 

value depending on in what order the electrostatic transformation is carried out, so it cannot 

be directly considered the electrostatic component of the free energy. In GROMACS, since 

λ is a vector, multiple steps can be handled within a single set of simulations, and our 

alchemical-analysis.py tool automatically handles separation of different free energy 

components. It automatically identifies the number of charging states and prints out along 

with the total free energy change its breakdown into free energy components, ΔGCoul and 

ΔGvdW. The van der Waals contribution is computed as ΔGTotal −ΔGCoul, where ΔGCoul is 

the free energy change between states differing only in their charge state (in GROMACS, 

controlled by coul-lambda or fep-lambda). Whenever there are other types of 

transformations involved (for example, λ controlling restraints holding a ligand in a binding 

site in a binding free energy calculation [4]) the difference ΔGTotal −ΔGCoul will not equal 

ΔGvdW.3

3Our Python tool does not currently separate out a restraining component of the free energy, because restraining transformations are 
not always separable from other transformations. Unlike Coulombic transformations, most of the other transformation types can be 
(and are [25, 34]) performed simultaneously (to decrease the number of the simulation runs), i.e. they are coupled, which makes 
component separation impossible.
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2.5 Analysis should be carried out on uncorrelated samples

In general, the free energy expressions above are intended to be applied to a set of 

uncorrelated samples of the relevant observables, but simulation data will be stored more 

frequently. Thus, we typically need to re-sample the relevant energy derivatives ∂U/∂λ 

and/or energy differences ΔUi,j to obtain uncorrelated samples. Particularly, samples used 

for computing the averages in eqs (1)–(4) are statistically independent samples. There are 

several techniques to identify and retain independent samples [11, 40, 10] and we find 

analysis of autocorrelation times to be particularly useful in this regard.

Autocorrelation analysis begins with calculation of the autocorrelation function, which is 

fairly standard procedure in time series analysis. For a discrete set of N samples occurring 

time δt apart, the autocorrelation function of the observable A at a given point i is found as

(5)

where δA(i) defines the deviation of the current observable from its mean

(6)

In our script we use ∂U/∂λ as the observable A, although any of the potential energy 

differences ΔUi,j can be used as well.

The autocorrelation time τ is defined as the integral of CA(i), and becomes noisy at long 

times, especially at more than half of the simulation time. To obtain reliable estimate of τ, 

the simulation time should, as a general rule of thumb, exceed 50τ. Once the correlation 

time is found, a set of independent samples is built up by picking every gth (where g = 1 + 

2τ) sample out of the original set. A detailed derivation can be found elsewhere [8].

3 Analysis outputs and visualization

3.1 Time-reversed convergence plots reveal non-equilibrated regions

The trajectory snapshots to be analyzed must be sampled at equilibrium. To get rid of any 

non-equilibrated region of the trajectory its location should first be identified. Automatic 

identification of non-equilibrated regions remains a major research challenge, and in fact 

equilibration may have occurred prior to start of data collection depending on the 

equilibration protocol. So assessment of equilibration remains a major task for the researcher 

conducting free energy simulations, but automated tools can provide at least some help. A 

standard approach is to look at convergence of the free energy estimate as a function of 

simulation time, as in Fig. 5.

While convergence analysis is normally applied on data in the order in which it was 

collected, the same analysis can also be applied to time-reversed data, as in the work of 

Yang et al. [41]. Yang et al. focused on automatic detection of equilibration based on 
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reverse cumulative averaging starting with the end point of the simulation. Our approach is 

slightly different, and we simply compare forward and reverse free energy estimates. That 

is, we might compare an estimate of the free energy change based on the first 10% of the 

data with an estimate based on the last 10% of the data. This results in two ΔG estimates for 

each observation time, one using data collected starting from the beginning of the trajectory 

and moving forwards, and the other using data collected starting from the end and moving 

backwards (Fig. 5).

Fig. 5 and 6 show convergence of free energy estimates obtained both from normal and 

time-reversed data. We include the forward estimate as this is the conventional way to 

examine the data and assess convergence, but we actually find the estimate with time-

reversed data more helpful. In a favorable case, both sets of data should converge rapidly to 

within uncertainty of the final value (Fig. 5(a)). However, consider a hypothetical case 

where the free energy calculations were begun before the system is at equilibrium, and the 

first 40% of the data is in fact non-equilibrium. What would we expect in this case?

In the case where a substantial amount of data at the beginning of a set of simulations is not 

equilibrated, it is reasonable to assume that any free energy estimate based on this data 

would differ substantially from an estimate based on data from the equilibrated region. Thus 

as we examine free energy estimates from both normal and time-reversed data, both will 

reach the same final value but from opposite directions. We would expect that the time-

reversed estimate will be steady (within uncertainty) around some value and then leave this 

value to reach a different final ΔG value as un-equilibrated data begins being included in the 

free energy estimate, while the forward estimate will exhibit some overall trend as the un-

equilibrated data from the beginning of the simulation starts to carry less and less weight. 

This also means that forward and reverse ΔG estimates will tend to approach the final value 

from opposite directions-i.e. if the forward estimate ascends to the final value, the reverse 

estimate will descend to it. Thus the two free energy estimates have at least partial reflection 

symmetry around the line ΔG = ΔG final.

To illustrate this, we created a hypothetical case of un-equilibrated data by taking our well-

converged simulations of 3-methylindole and adding Gaussian noise to the first 40% of the 

time series at all lambda values. Fig. 5(b) shows this case where the ΔUi,j distributions of the 

first 40% of the time series have been contaminated with the Gaussian noise centered at the 

original mean of each distribution but with a standard deviation of 5 kBT units. This is a 

deliberately artificial example, but it provides a clear demonstration of how this analysis can 

be useful. This “un-equilibrated” data at the beginning of of the timeseries changes the 

behavior of the ΔGreverse(t) function in the expected way – it remains stable essentially 

within uncertainty of a constant value (20 kcal/mol) over a plateau region extending to 

around t = 0.6ttotal (i.e., until the reverse estimate begins to include the first 40% of the 

data). After this point, the non-equilibrated data adversely affects the reverse ΔG estimates 

and both the normal and time-reversed free energy estimates converge to the wrong ΔG 

value (the correct value is seen in Fig. 5(a)). This graph then suggests a simple solution: We 

can recover the correct free energy estimate if we simply recognize the region of non-

equilibrated data and discard it. Fig. 6 shows the convergence plot obtained via this 

procedure, with the first 40% of the data removed from the analysis. As expected, the 
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elimination of the non-equlibrium region from the analysis restores the well-behaved 

character of the ΔGreverse(t) function, with all data points in both directions essentially lying 

within uncertainty of the final value.

Our discussion here has assumed that all of the data, after equilibration, is collected at 

equilibrium from the same distribution so that the forward and reverse free energy estimates 

agree within error after convergence. But what if there samples are instead collected from 

multiple metastable states, such as if the system undergoes a conformational transition? One 

can imagine a situation where the first and last halves of the data were sampled in two 

different metastable states. This could result in a convergence plot which displays the same 

behaviors as in the case of unequilibrated data. Thus, our analysis in this subsection refers to 

the case of adequate sampling, where all relevant metastable states are covered and there is 

sufficient number of transitions between them within each time block considered in the 

convergence plot. When this is the case, the deviation of the free energy estimates is entirely 

due to the presence of unequilibrated data. However, if the populations of different states 

differ drastically from block to block (i.e. if the transition time between metastable states is a 

reasonable fraction of the total simulation time) the technique described here will not 

discriminate between discrepancies caused by unequilibrated data and those caused by an 

unconverged free energy estimate. In other words, in the limit of adequate sampling, this 

technique can help to identify unequilibrated data. However, when sampling is not adequate, 

it will simply indicate a problem which can be due to slow convergence/inadequate 

sampling of metastable states (slow transitions between states), or to unequilibrated data.

3.2 Practical recommendations for using the convergence plot

In our view, then, the convergence plot is of great value for detecting potentially un-

equilibrated data, provided the data to be analyzed was adequately sampled, i.e. with an 

adequate number of transitions between metastable states and reasonably correct populations 

in all time blocks. Whenever the time-reversed free energy estimate shows an extended 

plateau, then after some time begins to exhibit an overall trend in time (as in Fig. 5(b)), it 

suggests that the new data being included which leads to that trend may be non-equilibrated. 

Thus this should be considered a substantial warning sign, and data collected prior this point 

should perhaps be discarded.4 In contrast, if both forward and reverse estimates quickly 

approach the same value as in Fig. 5(a), and there is no plateau in the time-reversed data 

from which the free energy estimate departs as more data is included, then this measure 

suggests no concern.

3.3 The overlapping distribution method identifies regions with poor phase-space overlap

In addition to looking for consistency between free energy estimates from several methods 

discussed in Section 2.3, the Overlapping Distribution Method (ODM) [11,32]—introduced 

by Bennett [1] under the name of the Curve-Fitting Method— provides another useful 

technique for spotting trouble. It is a helpful tool for assessing consistency, when combined 

with another free energy estimator.

4Remember, the time-reversed ΔG estimates are plotted in a backward manner, so that if the point in question is encountered at the 
time t′ = 0.6ttotal, the portion of the data to be discarded as non-equilibrated is from t = 0 up to t = ttotal −t′ = 0.4ttotal.
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We start with the equation 19 from the Bennett paper [1]:

(7)

where Pi+1(ΔU) and Pi(ΔU) are the distributions of the potential energy differences between 

adjacent states obtained when sampling at state λ = i + 1 and λ = i, respectively. The free 

energy change between the states, ΔGi,i+1, and corresponding potential energy difference, 

ΔU, are written in reduced units.

This equation can be rewritten as

(8)

where the new distribution functions gi+1 and gi were obtained by taking natural logarithm 

of both sides of Eq. 8 and splitting the ΔU term

(9)

(10)

where C is an arbitrary constant.

If the difference Δgi,i+1 = gi+1 − gi is plotted versus ΔU, there should be a range of the ΔU 

values over which Δgi,i+1 oscillates about the free energy estimate obtained by a standard 

technique such as BAR, provided there is an overlap between the two distributions and the 

sampling was sufficient.

This analysis, shown in Fig. 7(a), means that we can graphically inspect the difference 

Δgi,i+1 over a range of the ΔU values and it should appear relatively constant. If not, it is a 

substantial warning sign. All the subplots of Fig. 7(a) exhibit good behavior: the Δgi,i+1 

function oscillates about the ΔGBAR estimate (shown in purple, with a width corresponding 

to the uncertainty in ΔGBAR). In contrast, the Δgi,i+1 function depicted on the subplot 4–6 of 

Fig. 8(a) behaves abnormally. Figure 8 was obtained by processing exactly the same data 

but with the lambda state 5 left out from the analysis. This resulted in the deterioration of the 

distribution overlap between states 4 and 6, which the ODM helps highlight: the Δgi,i+1 

function is not continuous and does not exhibit saw-like behavior over a substantial interval 

of the ΔUi,i–1 values as it does in Fig. 7(a). This tells us that the estimated free energy 

change for the 4–6 pair of states is getting less reliable, which is a problem.

To further highlight the problem, we exacerbate the overlap by throwing away yet another 

intermediate state, lambda state 6, from the analysis and re-examine the Δgi,i+1 function 

(Fig. 10). This time, there is only one point on the graph for subplot 4–6, and the point is far 

from the unusually wide (because of the greater uncertainty) ΔGBAR estimate, indicating 

clear and severe problems with overlap in this case.
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In general, low overlap does not necessarily make the ΔG estimate completely wrong or 

substantially untrustworthy. However, it does substantially increase the corresponding 

variance, as only few samples contribute to the free energy estimate. Users themselves must 

decide what level of uncertainty in the free energy estimate can be tolerated, and whether the 

poor efficiency identified by this method might suggest restructuring the spacing or number 

of intermediate states before collecting additional data.

Figure 9 shows the free energies obtained from the analysis with different states omitted. 

The free energy change estimated between states 4 and 7 through the intermediate states 5 

and 6 (−0.028 ± 0.332 kJ/mol) and 6 only (0.601 ± 0.651 kJ/mol) are within statistical noise. 

However, the 4–7 ΔG estimate without any intermediate states yields 3.986 ± 2.512 kJ/mol 

which is almost two standard deviations away from the original value of −0.028 ± 0.332 kJ/

mol. On the case of extremely poor overlap (as in Fig. 10), the FEP-based methods tend to 

underestimate the variance, making free energy estimates untrustworthy.

Despite its ability to identify lambda regions with poor and good overlap, the overlapping 

distribution remains a qualitative method. If one needs to translate “poor overlap” and “good 

overlap” into concrete numbers, the overlap matrix, discussed in the next subsection, should 

be employed.

3.4 The overlap matrix is a quantitative estimator of the phase-space overlap

The overlap matrix is a helpful tool in finding the magnitude of the phase space overlap and 

we recommend using it as a consistency check whenever the free energy estimate relies on 

the overlap, as in the case of the FEP-based methods.

If we define the weight of each of the N samples xn (collected from all K states) in the ith 

lambda state as:

(11)

then the covariance matrix Θ of the vector of reduced free energies βG can be written (From 

Eq. D6 of Ref. [35]) as

(12)

where + is the Moore-Penrose pseudoinverse, N is a diagonal matrix with its elements Nii the 

number of samples collected in state i, and O is the overlap matrix, defined as:

(13)

We note that  in eq (11) is the probability pi(xn) of sample xn occuring when 

simulating state i. The unnormalized probability of sample xn is the Boltzmann weight 

 and since  is the normalizing constant.

The overlap matrix is a K × K matrix with entries:
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(14)

The N samples were collected with N1 samples from the p1(x) distribution, N2 samples from 

the p2(x) distribution, and so forth. This combination of the K distributions is known as a 

mixture distribution, and can be written mathematically as:

where .

We next note that the Monte Carlo estimate of the integral ∫ A(x)p(x)dx, where A is some 

function of x, is , where the samples xn are drawn from the probability 

distribution p(x). This means that each element of the overlap matrix can be seen as a Monte 

Carlo estimate of the integral:

where the averages are over the probability distribution of samples in state j. Oij can 

therefore be interpreted as the average probability of a sample generated in state j being 

observed in the ith state. This average is computed over samples collected from all of the 

states, not just the samples from state j. We can easily see that we must have Σi Oij= 1. 

Because Oij is a stochastic (or Markov) matrix, its eigenvalues are all real and positive, and 

the largest is 1. In fact, since it is a diagonal matrix (N) times a symmetric matrix (WTW), 

then all the eigenvalues are real and positive.

We can then write (using the standard notation for the eigenvalue decomposition):

Klimovich et al. Page 14

J Comput Aided Mol Des. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this case, because it is a diagonal matrix, we can give a simple formula for the 

pseudoinverse; (Λ−1 –I)+ is a diagonal matrix with one zero diagonal entry (corresponding to 

the largest eigenvalue, which is 1), and the other entries corresponding to the ith eigenvalue 

λi being λi/(1 – λi). The uncertainty in any free energy difference between states i and j is Θij 

= Θii + Θjj − 2Θij which makes it difficult to write explicit formulas of the variance in terms 

of the overlap matrix. In general, uncertainties in free energy differences will be larger when 

the eigenvalues λi/(1 – λi) are large, which will occur when the eigenvalues are close to 1. 

Because of the factor of N−1, any variance can be made arbitrarily low with enough samples. 

Clearly, the most efficient choices of λ points to simulate will be ones leading to smaller 

eigenvalues in the overlap matrix.

When will these eigenvalues be close to one? Again, it is difficult to completely generalize, 

but for stochastic matrices, i.e. matrices with the form of O with rows summing to 1, the 

smallest K – 1 eigenvalues approach one when the matrices can be nearly decomposed into 

independent block matrices. The absence of eigenvalues close to one indicates that the 

matrix is more connected.

3.5 Practical recommendations for using the overlap matrix

We cross-checked the overlap matrix with the overlapping distribution method (Fig. 7, 8, 

and 10) and arrived at several recommendations for trustworthy free energy calculations. 

First, trustworthy results should in general have at least a tridiagonal overlap matrix-that is, 

all pairs of adjacent states should have substantial overlap, and no element should be zero in 

the main diagonal and the first diagonals above and below the main one. Second, these 

nonzero elements should be appreciably different from zero. In our experience, with enough 

samples, values as low as 0.03 (Fig. 8) seems to be tolerable to yield a reliable free energy 

estimate (as long as the resulting error is sufficiently low), though obviously the number of 

samples required for an accurate estimate increases with decreasing overlap. Anything 

below that number should serve as a caution sign as the FEP-based methods tend to 

underestimate the variance when the phase space overlap is that low; in this case, not only 

will the estimated variance increase but the free energy estimate itself will likely be 

substantially incorrect, perhaps by far more than the estimated variance.

4 Alchemical-analysis.py: A sample analysis tool implementing these 

protocols

We provide a Python tool, alchemical-analysis.py, which implements our recommendations 

and generates all the plots described above. This tool is versatile in handling several energy 

file formats from different versions of GROMACS varying in the number of the potential 
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energy differences between the states ΔUk,j, as well as SIRE and AMBER output files. It 

handles cases when all the potential energy differences are present as well as those with only 

differences between the adjacent states ΔUk,k±1, though in the latter scenario MBAR free 

energy estimates cannot be computed.

The data file parser is separated from the analysis proper into a subroutine which makes the 

tool indifferent to the origin of the data, as long as it contains the quantities the free energy 

estimators rely on, i.e. ∂U/∂λ and/or ΔUi,j. Thus, our tool can easily be adapted to handle 

data from other simulation packages. As of now, the tool has file parser subroutines for and 

can analyze, apart from GROMACS dhdl.xvg files, the ∂U/∂λ data files generated by 

SIRE and AMBER.

At minimum, alchemical-analysis.py plots and outputs the free energy differences evaluated 

for each pair of adjacent states for all methods. The plot (Fig. 4) provides a way of 

visualizing the results and assisting in locating any λ regions where the free energy changes 

rapidly. At minimum, two figures are produced, one depicting the bar plot showing the ΔG 

estimates (differentiated in colors) for all methods (Figure 4(a)), and the other showing free 

energy differences estimated with the TI methods depicted as an area under the interpolating 

curve joining the  points (Figure 4(b)). All the plots are created by the matplotlib 

software [15], which is a standard plotting package delivered alongside Python proper in 

scientific Python distributions like, for example, Enthought Canopy (http://enthought.com) 

and Anaconda (https://store.continuum.io/cshop/anaconda).

4.1 Tool execution and usage

Our tool is executed by the command python alchemical-analysis.py [options] 

with the list of options provided below. In general, plots and options are as described above, 

except when they relate to GROMACS in particular, in which case additional information is 

provided below.

Options include:

– Simulation temperature

– Directory with the input data

– Datafile prefix and suffix

– Time prior to which the data is to be discarded

– Names of the free energy estimators to be used

– The units the free energies are to be reported in

– Number of decimal places the free energies are to be reported with

– Graphical functionality (discussed above):

– The ΔGi,i+1 vs. λi,i+1 bar plot as in Fig. 4(a)
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–
The  vs. λ plot as in Fig. 4(b)

– The ΔG vs. time plot, as in Fig. 5

– The overlap matrix calculation, as in Fig. 7

– The consistency check based on the overlap distribution method, as in 

Fig. 10

The script outputs a text file, results.txt, with a table of free energy differences 

computed by means of various methods for each pair of adjacent states, as well as overall 

totals. This file also shows the ΔG breakdown into its components discussed in Section 2.4. 

Full precision data is dumped to a Python pickle file, results.pickle, where it is stored 

in a form a class with multiple instances whose names are self-explanatory.

5 Conclusion

Free energy calculations are still complicated and largely conducted only by experts, in part 

because even their analysis typically requires substantial expertise. Here we have reviewed a 

variety of best practices for analysis, and provide a prototype Python tool implementing 

these best practices.

Here, we highlight ten free energy analysis methods (two based on TI and eight more based 

on FEP, including MBAR). Running the full suite of analysis techniques provides a valuable 

consistency check and can help highlight convergence errors, sampling problems, and other 

issues. We also presented a number of useful ways to graphically evaluate free energy data 

(and provided examples generated by alchemical-analysis.py), including:

1. a bar plot of the free energy differences evaluated for each pair of adjacent λ states

2.
thermodynamic integration as a plot of  vs. λ

3. free energy estimates as a function of the simulation time in both the forward and 

reverse directions

4. the overlapping distribution method and the phase space overlap matrix

We believe analysis of calculations in the way highlighted here will provide researchers with 

a better assessment of the precision and convergence of their calculations, and aid 

nonexperts in getting a better handle on how to successfully understand their results and 

troubleshoot problems.
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Fig. 1. 
The thermodynamic cycle for a standard hydration free energy calculation. Here, the blue 

background represents water and the clear background represents gas. The goal is to find the 

free energy difference ΔGhydration between the two states: end state 1 (upper left) 

representing the solute in the gas phase, and end state 2 (upper right) depicting the solvated 

molecule. The ΔGhydration is found as a sum of the free energy changes between the end 

states 1 and 2 and the intermediate alchemical states, intermediate state 3 (lower left) and 

intermediate state 4 (lower right), introduced along the alternative pathway 1 → 3 → 4 → 2, 

which may include additional nonphysical states interpolating between the legs 1 → 3 3 → 

4, and 4 → 2. The black-and-white appearance of the solute molecule, at bottom, indicates 

the solute is in a state where it has no non-bonded interactions with its environment, and 

possibly also no internal non-bonded interactions as well. These scenarios are referred to as 

decoupling and annihilation, respectively, as discussed in the text. In the case of decoupling, 

the transformation pathway reduces to the single leg 2 → 4, and the hydration free energy is 

the negative of the free energy for this leg. In this case of annihilation, which also modifies 

internal solute interactions, both legs are necessary.
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Fig. 2. 
The transformations 1 → 3 and 2 → 4 from Fig. 1 can be thought of as a pathway from (0,0) 

(filled circle) to (1,1) (hollow circle) in the lambda vector space which is shown as a pale 

blue square on the Cartesian plane formed by the axes λvdWaals and λCoulomb, which control 

the solute van der Waals and Coulomb interactions, respectively. For the reasons discussed 

in the text, we start at point (0,0), which corresponds to the fully interacting molecule, and 

proceed through several alchemical intermediate states (with locations indicated by 

arrowheads) along the λCoulomb axis (red arrows) until we reach point (0,1) which 

corresponds to the electrostatically non-interacting molecule. Then, we modify λvdWaals 

(green arrows) until we reach our target state (1,1), corresponding to the non-interacting 

molecule. If instead transformation progress was controlled by a single λ value rather than a 

vector, the transformation path would have lain along the square diagonal (blue arrow).
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Fig. 3. 
Sample GROMACS free energy calculation data for the first ten snapshots of 3-

methylindole in water, as the data appears in the dhdl.1.xvg file, with the names for each 

field of a row given in the header. These are: time in picoseconds, the energy of the system 

(either potential or total, depending on the option used), the total energy derivative with 

respect to all the lambda types employed in the perturbation (∂U/∂λCoul and ∂U/∂λvdW), the 

total energy differences evaluated between the current lambda state of index 1 and the other 

states (ΔUi=1,j, j=0, 1, …, 10 in this case), which reduces to the difference in potential 

energy when there is no mass perturbation. Effective in GROMACS version 4.0, the default 

setting is to evaluate the ΔUi,j between the adjacent states only (for our example here – 

ΔU1,0, ΔU1,1, and ΔU1,2), and whenever all the differences are needed (which is essential for 

MBAR) the. mdp option calc-lambda-neighbors should be set to–1.
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Fig. 4. 
The hydration free energy calculation for 3-methylindole, analyzed by various methods, (a) 

A bar plot of the free energy differences evaluated between pairs of adjacent states via 

several methods, with corresponding error estimates for each method, (b) A plot of 

vs λ for thermodynamic integration, with filled areas indicating free energy estimates from 

the trapezoid rule, and silver curve indicating interpolation via cubic spline. Different ΔG 

components are shown in distinct colors: in red is the electrostatic ΔG component (λ indices 

0 to 3), while in green is the van der Waals ΔG component (λ indices 3 to 10). Color 

intensity alternates with increasing λ index. Alternate interpolation schemes disagree most 

around λ points where the slope of  changes suddenly, so these are regions where a 

more dense lambda spacing is desirable.
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Fig. 5. 
Free energy convergence with time, (a) Computed free energy differences (with error bars) 

are shown as a function of time to help assess equilibration and convergence. Here, we show 

free energy estimates resulting both from the normal (“forward”) time series, and what we 

would obtain if the data were analyzed in a time-reversed manner (“reverse”) using the same 

amount of data, as discussed in the text. If all of the data is collected at equilibrium from the 

same distribution, the reverse free energy estimates ought to agree within error (at least after 

they are converged) which is the case for the figure depicted on the left panel after time = 

0.3. (b) Here, Gaussian noise is added to the first 40% of the data to mimic including non-

equilibrated samples. Now, the reverse set of the free energy estimates shows an initial 

steady plateau (indicating data which is consistent with time) but then at later times, the 

estimate begins to differ from this initial estimate and converges to the wrong ΔG value. The 

vertical purple line indicates the boundary between the equilibrated and non-equilibrated 

regions.
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Fig. 6. 
Free energy convergence with time with the first 0.4 of the time series data skipped as non-

equilibrated. Discarding the corrupted data restores the agreement between the free energy 

estimates within the reverse data set.
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Fig. 7. 
The overlapping distribution method and the overlap matrix, (a) When the difference Δgi,i+1 

= gi+1 − gi of Eq. 8 is plotted as a function of ΔUi,i+1, the resulting graph can be used as a 

consistency inspector. Here, the function should oscillate about the horizontal purple strip 

(represents the BAR free energy change estimate; the width is dictated by the estimate error) 

over substantial range of abscissa values proving a good overlap between the ΔU 

distributions of two adjacent states. The overlap may not be continuous due to the 

discontinuity of either probability distribution function resulting in the lack of connection 

between the Δgi,i+1 points, (b) Overlap between the distributions of potential energy 

differences is essential for accurate free energy calculations and can be quantified by 

computing the overlap matrix O discussed in the text and visualized here. Its elements Oij 

are the probabilities of observing a sample from state i (ith row) in state j (jth column). 

According to the figure, the probability of observing, for example, a sample collected from 

state 2 having come from a simulation state 3 is 0.14. As discussed in the text, for the 

terminal states (here states 0 and 10) to be interconnected, the overlap matrix should be at 

least tridiagonal.
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Fig. 8. 
The overlapping distribution method and the overlap matrix for the case when the lambda 

state 5 is left out from the analysis, (a) Excluding lambda state 5 from the analysis results in 

the deterioration of the phase space overlap between states 4 and 6 which are now 

neighboring states. The Δgi,i+1 function is only partially continuous and does not exhibit 

oscillations or saw-like behavior over a substantial interval of the ΔUi,i+1 values as it does in 

Fig. 7(a). (b) Overlap matrix elements associated with the lambda states in question are 

significantly smaller than any other elements. The probability of finding a microstate 

sampled from state 4 in state 6 is 0.03; so is the probability of finding a microstate sampled 

from state 6 in state 4. This magnitude for the phase space overlap seems to be still tolerable 

in this particular case, as it does not affect the free energy estimate other than by increasing 

the estimated uncertainty.
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Fig. 9. 
The free energy estimates (in kJ/mol) obtained from the analysis of all lambda states (left), 

with the lambda state 5 left out from the analysis (center), and with the lambda states 5 and 6 

left out from the analysis (right). While the excluding of state 5 results in the increasing of 

the uncertainty for the ΔG4–7 estimate, the excluding of states 5 and 6 makes the ΔG4–7 

estimate untrustworthy.
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Fig. 10. 
The overlapping distribution method and the overlap matrix for the case when two lambda 

states in a row (5 and 6) are left out from the analysis, (a) Excluding lambda states 5 and 6 

from the analysis results in the significant deterioration of the phase space overlap between 

states 4 and 7 which are now neighboring states. There is not even a hint of oscillation or 

saw-like behavior of the Δgi,i+1 function. (b) The matrix elements associated with the 

lambda states in question are almost negligible. The probability of finding a microstate 

sampled from state 4 in state 7 is 0.01; so is the probability of finding a microstate sampled 

from state 7 in state 4. Such a low phase space overlap makes the free energy estimate 

ΔG4–7 untrustworthy
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