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Abstract

Preclinical evaluation of candidate human immunodeficiency virus (HIV) vaccines entails 

challenge studies whereby non-human primates such as macaques are vaccinated with either an 

active or control vaccine and then challenged (exposed) with a simian-version of HIV. Repeated 

low-dose challenge (RLC) studies in which each macaque is challenged multiple times (either 

until infection or some maximum number of challenges is reached) are becoming more common 

in an effort to mimic natural exposure to HIV in humans. Statistical methods typically employed 

for the testing for a vaccine effect in RLC studies include a modified version of Fisher’s exact test 

as well as large sample approaches such as the usual log-rank test. Unfortunately, these methods 

are not guaranteed to provide a valid test for the effect of vaccination. On the other hand, valid 

tests for vaccine effect, such as the exact log-rank test, may not be easy to implement using 

software available to many researchers. This paper details which statistical approaches are 

appropriate for the analysis of RLC studies, and how to implement these methods easily in SAS or 

R.
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1 Introduction

Preclinical proof-of-concept vaccine trials using animal models limit the risk, time and cost 

of clinical trials involving human subjects by providing preliminary evidence of potential 

safety and efficacy of an investigational vaccine [1, 2]. A large portion of the preclinical 

studies of human immunodeficiency virus (HIV) vaccines have been conducted using 

macaques because the disease progression of simian immunodeficiency viruses in macaques 

is similar to that of HIV in humans [2]. The virus challenge in these preclinical trials has 

historically been administered via a single high-dose intravenous or mucosal inoculation, 

often resulting in a high probability of infection for all unvaccinated macaques [3, 4]. Such 

high infection rates do not mirror the low probability of heterosexual HIV transmission per 

sexual act or low per month probability of late postnatal HIV transmission via breastfeeding 

[5, 6, 7]. Moreover, vaccines may not be equally efficacious against high-dose and low-dose 

challenges, such that vaccines efficacious against low-dose challenges (and hence of 
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possible utility) may be discarded due to not demonstrating efficacy in high-dose challenge 

studies [8].

As an alternative, repeated low-dose challenge (RLC) studies have been employed more 

recently; see e.g. [3, 9, 10]. In these studies, each macaque is challenged and infection status 

assessed. If the animal is uninfected, another challenge is administered and infection status 

assessed again. This process continues until infection or a pre-specified maximum number 

of challenges is reached. Simulation studies examining the power of RLC studies to detect 

vaccine effects have demonstrated that these trials are viable alternatives to traditional single 

high-dose challenge studies [8, 11].

A standard analysis used for the single-dose challenge study entails performing Fisher’s 

exact test on a 2 × 2 contingency table of infection status by treatment assignment where cell 

counts are the number of the macaques in each category (i.e., vaccinated and infected, 

vaccinated and not infected, control and infected, control and not infected). For the RLC 

setting, Regoes et al. [8] proposed Fisher’s exact test be conducted on a 2 × 2 contingency 

table of infection status by treatment assignment, where the cell counts are the number of 

challenges across all macaques within each category. Alternative analytic approaches 

implemented in this setting include the exact log-rank test as well as non-exact (i.e., large 

sample) approaches including the log-rank test and Cox proportional hazard modeling [9, 

12, 13, 14]. Unfortunately, some of these analytic approaches are not appropriate in the RLC 

setting because the assumptions required for these methods to provide a valid test for a 

vaccine effect are not met. On the other hand, other analysis methods which are valid may 

not be easy to implement using software available to clinical researchers.

This paper describes appropriate analytic approaches for RLC studies. The methods 

presented are motivated by two important aspects of the data generated in RLC studies: (i) 

the number of challenges until infection can be viewed as a discrete failure time subject to 

right censoring, and (ii) sample sizes are often very small such that large sample frequentist-

based analytic approaches may yield incorrect inference. The outline of this paper is as 

follows. Section 2 introduces notation and Section 3 reviews randomization-based inference, 

a mode of inference appropriate for randomized studies with small sample sizes. Section 4 

provides details regarding why Fisher’s exact test as described above does not provide a 

valid test of RLC studies. Valid analytic approaches for RLC studies are discussed in 

Section 5 and compared in a simulation study in Section 6. In Section 7 some of the 

different methods are illustrated using data from a recent RLC study. Section 8 concludes 

with a discussion. Sample SAS and R code as well as select simulation results are provided 

in the Supplemental Information document.

2 Notation

Suppose there are n macaques in a study. In the single challenge study, let di(z) denote the 

potential infection outcome when macaque i is assigned z, where z = 0 denotes control and z 

= 1 denotes vaccine. Let di(z) = 1 if the macaque becomes infected after the single challenge 

and di(z) = 0 otherwise. Prior to the study each macaque has two potential outcomes, only 
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one of which is observed during the trial. Let Zi denote the treatment randomly assigned to 

macaque i and let  denote the observed outcome.

For RLC studies, let t̃i(z) denote the number of challenges until infection were macaque i 

assigned z and challenged indefinitely. In practice, a maximum number of challenges is 

typically pre-specified, which we denote by  for macaque i. Often  will be the same 

for all macaques, but to maintain generality we allow for  to depend on i. We do 

however assume that  is the same regardless of randomization assignment Zi. Let 

, i.e., the number of challenges macaque i would receive if assigned 

z. Let  denote the potential infection indicator, where di(z) = 1 if 

macaque i would become infected during the study when assigned z and di(z) = 0 otherwise. 

Denote the observed number of challenges and infection indicator by  and 

.

3 Randomization-Based Inference

Because pre-clinical challenge studies typically randomize a small number of macaques, 

randomization-based statistical methods are ideal for inference about the effect of 

vaccination. Randomization-based inference is based on distributions created from the 

randomization process rather than assuming random sampling from an infinite population or 

that particular parametric distributions hold [15, 16, 17]. Under randomization-based 

inference the potential outcomes (i.e., (di(1), di(0)) for a single challenge experiment or 

(ti(1), ti(0), di(1), di(0)) for a RLC experiment) are considered fixed, discrete features of the 

finite population of n macaques and Zi is considered a random variable. As observed 

outcomes are functions of treatment assignment, they are also considered random.

Consider the null hypotheses that vaccine has no effect on any of the n macaques for a single 

challenge study:

(1)

Likewise, the null hypothesis in a RLC study is:

(2)

These types of null hypotheses are sometimes referred to as sharp null hypotheses of no 

effect [18]. Under a sharp null the potential outcomes for each macaque are the same under 

either treatment assignment.

Under either null (1) or (2) the observed outcomes become fixed regardless of treatment 

assignment. Moreover, all potential outcomes are observed for each macaque, which allows 

exact characterization of the sampling distribution of any chosen test statistic by computing 

the statistic for each possible re-randomization of the macaques. The resulting p-values are 

considered exact in that they are based on calculating the exact distribution of the test 

statistic as opposed to relying on asymptotic approximations. Such tests are often referred to 

as permutation tests. See §2 of [17] for additional details.
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4 Fisher’s Exact Test

Fisher’s exact test is commonly employed for the analysis of 2 × 2 tables to assess the sharp 

null hypothesis that treatment has no effect on any individuals. In this section, we explain 

why Fisher’s exact test provides a valid test for a single challenge study, but does not 

provide a valid test in the RLC setting.

4.1 Single Challenge Study: Valid Use of Fisher’s Exact Test

Suppose a single challenge study is conducted where four macaques are randomized such 

that two receive vaccine and two receive control. Assume without loss of generality the 

observed treatment assignments are Z1 = Z2 = 1 and Z3 = Z4 = 0. Further suppose only one 

macaque, i = 1, escapes infection from the single challenge 

. The observed data can be summarized in the 2 × 2 table

(3)

Infected Non-infected

Vaccine 1 1 2

Control 2 0 2

3 1 4

which in general can be written

(4)

Infected Non-infected

Vaccine ∑iZi

Control ∑i(1-Zi)

n

where here and in the sequel ∑i denotes .

Conducting Fisher’s exact test relies on the assumption the row and column margin totals 

are fixed. In single challenge studies, the fixed row margin assumption follows from the 

number of macaques assigned each treatment being fixed by design, and the fixed column 

assumption follows from the number of infected and non-infected macaques being the same 

regardless of treatment assignment under the sharp null (1). For the example given in (3), 

only one other table is possible under the assumption the margins are fixed. This other table 

can be constructed by switching the rows of (3) such that there is one non-infected control 

macaque and zero non-infected vaccine macaques. The probability of each of these two 

possible tables under the null (1) is obtained by recognizing that any cell in the table has a 
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hypergeometric distribution when the margins are fixed. Given the 4 margins from table (3), 

the probability of each of the two possible 2 × 2 tables is 0.5, and therefore the one-sided p-

value for this example is 0.5.

To see that Fisher’s exact test can be viewed as a randomization-based or permutation test as 

described in Section 3, note there are  possible treatment assignment combinations 

which are all equally likely, each occurring with probability 1/6. Under the sharp null (1), 

the potential treatment assignments and corresponding observed outcomes are:

(5)

Vaccine Control

Z1Z2Z3Z4 #Infected #Not infected #Infected #Not infected

1100 1 1 2 0

1010 1 1 2 0

1001 1 1 2 0

0110 2 0 1 1

0101 2 0 1 1

0011 2 0 1 1

where the randomization assignment given in the first row is observed. The Fisher’s exact 

test p-value of the null hypothesis (1) versus a one-sided alternative that the vaccine has a 

protective effect is calculated as the proportion of assignments that result in an outcome at 

least as extreme as the observed data (in the direction of the alternative). This proportion 

includes assignments where the number of infected vaccine macaques is ≤ 1, i.e., the first 

three rows of (5). Therefore the one-sided p-value is 3/6 = 0.5.

4.2 RLC Studies: Invalid Use of Fisher’s Exact Test

Now suppose for the example in Section 4.1 that the macaque that was not infected after a 

single exposure was subsequently exposed a second time (i.e., ). Suppose after the 

second exposure the macaque remained uninfected. Thus now the observed data are 

 and  for i = 2, 3, 4. Regoes et al. [8] proposed 

applying Fisher’s exact test to the following table:

(6)

Infected Non-infected

Vaccine

Control
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Infected Non-infected

Note here the table entries correspond to the number of challenges that resulted in infection 

or not. This is a modification of the usual fashion in which Fisher’s exact test is applied. 

Ordinarily Fisher’s exact test is applied to a table where each individual (macaque) 

contributes only once to a table entry. In contrast, in table (6) a macaque that is challenged 

more than once contributes multiple times to the table entries. For our example this table 

equals

(7)

Infected Non-infected

Vaccine 1 2 3

Control 2 0 2

3 2 5

Applying Fisher’s exact test to (7) entails enumerating all other possible 2 × 2 tables with 

the same margins as (7); there are two such other tables. Then the probabilities of observing 

the table given in (7) and two other tables are calculated. One of these other tables is

(8)

Infected Non-infected

Vaccine 2 1 3

Control 1 1 2

3 2 5

However, if the sharp null (2) is true, it is not possible to ever observe table (8). Under the 

sharp null, only one macaque ever escapes infection from a challenge (namely macaque 1). 

To the contrary, according to table (8), there exists a scenario where a macaque in the 

vaccine arm is not infected after a challenge and also a macaque in the control arm that is 

not infected after a challenge. Thus the sampling distribution of Fisher’s exact test under the 

null includes a table that cannot be observed. In general, under this set-up Fisher’s exact test 

p-values are computed utilizing the incorrect set of potential tables, such that non-zero 

probabilities of observation are assigned to tables that are not actually observable under any 

possible treatment assignment and conversely zero probabilities may be assigned to tables 

that are observable. The problem is that for table (6) the fixed margins assumption does not 

hold under the sharp null (2) because the numbers of challenges per treatment group (row 

margins) are not necessarily fixed. For example, if macaque 1 were assigned to the control 

arm, then the second row total of (6) would be 3, not 2 as in (7); and so the row totals are not 

fixed, but rather are randomly 3 or 2 according to the group to which macaque 1 is randomly 
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assigned. Because the sampling distribution of the test under the null is being computed 

incorrectly, there is no assurance that the type I error rate will be correct. Indeed Hudgens et 

al. [10] showed empirically that using Fisher’s exact test in this fashion can lead to type I 

error rates greater than the nominal significance level.

To illustrate further, consider the example above but suppose that the uninfected vaccine 

macaque in (3) was subsequently challenged multiple times and ultimately remained 

uninfected after 20 challenges such that (6) equals

(9)

Infected Non-infected

Vaccine 1 20 21

Control 2 0 2

3 20 23

Applying a one-sided Fisher’s exact test to this table in order to test for vaccine benefit 

yields a p-value of 0.012, leading to rejection of the null at significance level α = 0.05. 

There are  possible randomizations (as in (5)). Under the sharp null, three of these 

randomizations will yield table (9) and one-sided p = 0.012 for Fisher’s exact test; the other 

three randomizations will yield a table with the macaque remaining uninfected after 20 

challenges allocated to the control group and one-sided p = 1. Thus a one-sided Fisher’s 

exact test applied in this fashion will reject at the α = 0.05 significance level with probability 

3/6 = 0.5 under the null, i.e., the actual type I error rate is an order of magnitude greater than 

the nominal significance level!

A reviewer suggested additional intuition why Fisher’s exact test as formulated in this 

fashion is not valid. In particular, table (9) is the same table that would have been observed 

had there been 20 different vaccinated macaques which each escaped infection from a 

challenge. However, it is impossible for us to have observed 20 infections among these 20 

hypothetical macaques; rather, at most one infection could have in fact been observed.

5 Analytic Approaches

If the maximum number of challenges  is the same for all macaques, i.e.,  for all 

i and some constant c > 1, then data from the RLC setting can be represented by the 

following 2 × (c + 1) table:
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In this case, exact methods for a 2 × (c + 1) table can be employed (e.g., see Agresti [19] 

Chapter 3.5). For example, the null (2) can be tested using Fisher’s exact test for 2 × (c + 1) 

tables, although this approach may often have unacceptably low power. In order to test for 

vaccine benefit, an exact trend test with rank based scores (Wilcoxon or logrank), such as 

the Cochran-Armitage exact trend test in SAS PROC FREQ [20, 21], may be employed and 

generally will be more powerful than Fisher’s exact test.

However, in many RLC studies  is not the same for all macaques; e.g., see [22]. If 

varies across macaques, then table (10) cannot be used to summarize the data. In this case, 

survival analysis methods for analyzing right-censored discrete time to event data can be 

employed to test for a vaccine effect. Methods frequently employed include the logrank test 

as well as model-based approaches that typically use large-sample approximations based on 

the asymptotic distribution of the likelihood ratio test (LRT), score test, or Wald test 

statistics. These statistics and the corresponding large sample p-values can be obtained via a 

variety of statistical packages. Randomization-based p-values for these test statistics can be 

obtained using standard packages as well, but options are more limited. The remainder of 

this section details these tests, including asymptotic distributions used for large-sample p-

values and methods for obtaining randomization-based (i.e., exact) p-values.

5.1 Log-Rank Test

The Mantel-Cox log-rank test is a popular test employed in survival analysis to assess 

whether there is a difference in the failure time distributions between two groups when there 

is right censoring. For the RLC setting, the log-rank test can be derived by constructing a 

series of 2 × 2 tables after each challenge. For challenge t, let 

denote the number of macaques at risk and  denote the 

number infected in study arm z = 0, 1. Let Nt = Nt(0) + Nt(1) denote the total number at risk 

and Dt = Dt(0) + Dt(1) be the total number of infections due to challenge t. At each time t 

(i.e., challenge) construct the following table

(11)

Infected Non-infected

Vaccine Dt(1) Nt(1) − Dt(1) Nt(1)

Control Dt(0) Nt(0) − Dt(0) Nt(0)

Dt Nt − Dt Nt

Conditional on the row and column totals, under the null hypothesis (2) that the vaccine has 

no effect Dt(1) has a hypergeometric distribution with expectation E{Dt(1)} = Nt(1)Dt/Nt 

and variance . The log-rank test 

statistic is then defined as  where 

. Dividing LR squared by the sum of the conditional variances, 
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the statistic  is identical to the stratified Cochran-Mantel-

Haenszel statistic where the strata are defined by time (i.e., challenge).

5.2 Model-based Tests

Suppose the n macaques are envisaged to be a random sample from an infinite (super) 

population of macaques such that ( , , Zi) for i = 1, …, n are considered iid copies of 

the random variables (Tobs, Dobs, Z). Denote the probability a macaque becomes infected at 

challenge t when assigned z by ft(z) = Pr(Tobs = t|Z = z). Define the corresponding survival 

and hazard functions by  and pt(z) = Pr(Tobs = t|

Tobs ≥ t,Z = z) = ft(z)/St(z). Consider the following model

(12)

or equivalently logit{pt(z)} = αt + zβ where αt = logit{pt(0)} and logit(x) = log{x/(1 − x)}. 

Model (12) is often referred to as the Cox discrete logistic model [23]. Under this model, for 

− ∞ < β < 0 the vaccine is said to have a “leaky effect” because vaccination affords some 

but not complete protection from infection. Note the formulation of model (12) relies on the 

potentially strong assumption that all macaques within a treatment group have the same 

probability of being infected at each challenge; relaxing this assumption is discussed in 

Section 5.4 below.

Typically interest is primarily focused on the treatment effect β and not the baseline log odds 

αt. Considering α1, α2, … to be unknown nuisance parameters, inference for β alone can be 

based on the partial likelihood function

(13)

where t is the set of Dt macaques infected at challenge t and t is the set of all possible 

subsets of macaques of size Dt chosen without replacement from the set of Nt macaques at 

risk at t. Inference about β then proceeds by applying the usual large sample maximum 

likelihood methods based on (13). Moreover, it is straightforward to show that the score test 

for the partial likelihood (13) equals LRCMH given in the previous section.

Alternatively, estimates of the parameters in model (12) can be obtained using a standard 

(i.e., full) likelihood approach by fitting a logistic regression model with treatment and 

challenge number as covariates [24, 25, 26]. This full likelihood approach provides 

estimates of both β and α1, …, αcmax. Estimates of β obtained by maximizing the full 

likelihood will tend to be similar but not identical to the maximum partial likelihood 

estimates. The full likelihood function can be expressed as

(14)
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which can be expressed as a function of (α1, …, αcmax, β) by replacing pt(Zi) with logit−1(αt 

+ Ziβ) and . with  Maximum likelihood based inference may 

not be valid in small sample settings such as RLC challenge experiments. The usual 

maximum likelihood approaches are particularly suspect if the number of parameters, in this 

case cmax + 1, is large relative to the sample size n. Likelihood-based inference may be more 

reliable if additional assumptions are made which limit the number of parameters, provided 

such assumptions are reasonable. For instance, a special case of model (12) entails the 

additional assumption that, conditional on treatment assignment Zi, the probability of 

infection does not vary across challenges. In this case α1 = α2 = ⋯ = αcmax, which we 

denote by α. Similarly, denoting the per contact infection probability by p(z), i.e., pt(z) = 

p(z) for all t, the (full) likelihood reduces to

(15)

which can be expressed as a function of (α, β) by replacing p(Zi) with logit−1(α + βZi).

The partial likelihood (13) or full likelihoods (14) or (15) can be used to test the null 

hypothesis β = 0 that the vaccine effect has no effect using either the LRT, score, or Wald 

statistics. These test statistics are all asymptotically  under the null. Note that the null 

hypothesis here β = 0 of no vaccine effect is implied by (but does not imply) the sharp null 

that (2) holds in the infinite (super) population. The null β = 0 can be interpreted as the 

vaccine having no effect per challenge on average, where the average is being taken over the 

infinite population of macaques; a special case of the vaccine having no average effect is 

when the sharp null (2) holds in the population.

5.3 Implementation

Large sample p-values for the LRT, score (log-rank) test, or Wald test described in the 

previous section can be obtained via a variety of statistical software packages. For example, 

p-values for the LRCMH log-rank test statistic can be obtained in SAS [21] using PROC 

FREQ, LIFETEST or PHREG, or in R [27] using mantelhaen.test or the functions 

survdiff or coxph from the survival package [28]. Full likelihood based approaches 

can be implemented using a myriad of SAS procedures or R functions, e.g., using PROC 

LOGISTIC in SAS or glm in R.

Exact randomization-based p-values using the LRT, score (log-rank), and Wald statistics can 

be obtained in the same fashion as described in Section 3 and illustrated with Fisher’s exact 

test in Section 4.1. Unlike large sample p-values which rely on asymptotic approximations 

that may be dubious in small sample studies, exact p-values are valid for any sample size 

and thus are attractive for use in RLC experiments which usually entail a limited number of 

macaques. Unfortunately, however, built-in procedures for calculating such randomization-

based p-values are somewhat limited.

StatXact [29] includes a procedure for obtaining randomization-based p-values for the log- 

rank test statistic. While the exact log-rank test employed in StatXact is a valid 
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randomization- based test, the test statistic is not exactly equivalent to LR or LRCMH in the 

discrete time setting [30]. Rather, the exact ‘log-rank test’ in StatXact is based on Savage 

scores and therefore is only equivalent to the LR when there is no censoring and there are no 

tied failure times (the latter of which will be unlikely in many RLC studies). An exact p-

value based on LR can be obtained in StatXact by manually calculating log-rank scores for 

each individual and then conducting a general permutation test [30]. Both approaches are 

valid and the difference in the resulting p-values are typically minimal.

Because StatXact is a specialized commercial software package for performing exact infer- 

ence, it is less frequently available to analysts and investigators as compared to SAS or R. 

Accordingly, alternative approaches that may be more readily employed might be preferred. 

For example, the surv_test function from the R coin package [31] produces 

randomization-based p-values for a log-rank test statistic that is similar, but not exactly 

equivalent, to LRCMH [31, 32]. Alternatively, exact conditional logistic regression models 

using the SAS LOGISTIC procedure with an EXACT statement provide a randomization-

type p-value based on the score statistic. These exact p-values can also be obtained in R 

using mantelhaen.test or cmh_test from the coin package. Exact conditional logistic 

regression comprises generating the permutation or exact distribution for the parameter of 

interest based on the likelihood conditional on sufficient statistics for all other parameters in 

the model which are considered nuisance parameters [33]. In the simplest case where time is 

the only covariate in the model besides treatment, conditioning on sufficient statistics for 

time is equivalent to conditioning on the margins of the per-challenge 2 × 2 tables (11). Thus 

the conditional logistic regression score statistic is equivalent to LRCMH and the partial 

likelihood score statistic. Note, however, that the margins of the 2 × 2 tables (11) are not 

necessarily fixed (except at the first infection time t) under the sharp null (2). Thus while the 

exact conditional logistic regression approach relies on permutation type arguments for 

inference, the actual sampling distribution utilized is not equivalent to the re-randomization 

distribution described in Section 3 above. In practice, the exact conditional logistic 

regression score test and the exact logrank test tend to yield similar results. Besides being 

easily implemented in SAS, exact conditional logistic regression also allows for covariate 

adjustment and treatment effect estimation.

To our knowledge no built-in procedures in SAS or R provide randomization-based p-values 

based on Wald or LRT statistics. However, such p-values can be obtained via user-

developed code that calls the SAS PHREG or LOGISTIC procedures or the R coxph or glm 

functions for all possible treatment assignment permutations. In SAS possible re-

randomizations can be generated using simple data manipulations or by utilizing the 

MULTTEST procedure. In general computations can quickly become infeasible as the 

sample size, and hence the number of possible re-randomizations  increases. In cases 

where enumerating all possible re-randomizations is not computationally feasible, the exact 

p-value can be approximated using a Monte Carlo sampling approach.

Illustrative SAS and R code implementing the approaches described above is provided in the 

Supplemental Information document.
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5.4 Heterogeneity

The leaky vaccine effect model (12) assumes all macaques within a treatment group have 

the same probability of being infected at each challenge. This assumption can be relaxed to 

allow for heterogeneity in the per-exposure probability of infection [10, 34, 8, 11]. An 

extreme form of such heterogeneity might entail allowing for a subset of the population to 

be immune from infection. For example, the likelihood (15) can be modified to allow for an 

immune subset as follows

where θ is the probability that a macaque is immune (i.e., not susceptible to infection). 

Likelihoods can also be constructed allowing for an all-or-none vaccine effect such that a 

macaque susceptible to disease when receiving control is no longer susceptible (i.e., 

immune) when receiving vaccine, as well as a mixture vaccine effect where the vaccine may 

provide both all-or-none and leaky effects. There is currently no default SAS or R procedure 

that assume these likelihoods; however, user-developed code that manually defines (and 

optimizes) the likelihood function can be constructed to obtain the corresponding LRT, 

score, and Wald statistics. Large sample and exact p-values can then be computed 

accordingly.

6 Simulations

Simulations were conducted to compare the operating characteristics of the exact and large 

sample tests described above. RLC studies were simulated with macaques (i) randomized 

1:1 to either vaccine or a placebo control and then (ii) challenged repeatedly until infected or 

 challenges were administered. Simulations were conducted under three different sets of 

assumptions (“Scenarios”) about the rates of infection in the vaccine and placebo arms. In 

Scenario 1 a leaky vaccine effect was simulated where the probability of infection at each 

challenge for macaques receiving placebo was p0 = 0.5 and the probability of infection at 

each challenge for macaques receiving vaccine was p1 = ϕp0 for various fixed values of ϕ 

(described below). In Scenario 2 a leaky vaccine effect was also simulated but with animal 

heterogeneity in the per- exposure probability of infection, where the mean (over all 

macaques) probability of infection per challenge was p0 when receiving placebo and p1 = 

ϕp0 when vaccine. Individual macaque probabilities of infection per challenge were 

obtained from a beta distribution as in Regoes et al. [8] with mean μ = p0 for the placebo 

group, mean μ = p1 for the vaccine group, and coefficient of variation (standard derivation/

mean) 0.5 for both groups. In Scenario 3 a leaky vaccine effect was simulated as in Scenario 

1 but with θ × 100 = 20% of the population immune to infection. For Scenarios 1 – 3, RLC 

trials were simulated for a range of values of n and . For each simulated RLC 

experiment, whether each test rejected the null hypothesis of no vaccine effect at the α = 

0.05 significance level was recorded in order to compute the empirical type I error rate and 

power. For all tests two-sided p-values were used to determine whether to reject the null.
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Figure 1 displays the empirical type I error rate and power of the randomization-based tests 

for various values of ϕ = 0.1, 0.2, …, 1 (ϕ = 1 under the null) based on 2,000 simulated RLC 

studies with n = 10 and  for all i. In all settings, likelihood-based test statistics were 

computed assuming the leaky effect model with no heterogeneity or immunity. P-values for 

the exact LRT and Wald tests were approximated using Monte Carlo methods with 4,000 

samples per test. As expected, all exact tests preserved the nominal type I error rate, even 

when the assumed likelihood was mis-specified (i.e., the likelihood for the simulated data 

did not correspond to the likelihood used as the basis for the test statistic). The full LRT was 

the most powerful test in all scenarios, although power for this test was lower when the 

leaky effect model was not the true underlying likelihood of the simulated data. The exact 

logrank test (not shown in Figure 1) yielded results very similar to the exact conditional 

logistic regression score test (shown in Figure 1). The Wald tests (both full and partial) 

consistently had the lowest power. Larger values of  did not substantially alter the 

relative power between the different tests. On the other hand, for larger n (i.e., n ≥ 20) 

empirical power was approximately equal among the exact tests (results not shown). Power 

of the exact logrank test for n = 10, 20, and 30 is displayed in the Supplemental Information 

document (Figure S1); power increased with n as expected in all three scenarios. The 

Supplemental Information document Figure S2 provides a comparison of the power of the 

exact Cochran-Armitage trend test (using Wilcoxon rank scores) with the conditional 

logistic regression score test; the results are very similar, suggesting the exact trend test is a 

suitable alternative to the exact conditional logistic regression score or logrank tests when 

the maximum number of challenges is the same across macaques.

Figure 2 displays the empirical type I error rate of the large sample tests for various values 

of  and n based on 10,000 simulated RLC studies. The type I error rate varied by test but 

in general tended to be inflated for most values of  and n, with the one exception being 

the partial Wald test. The inflation of the type I error rate tended to increase with  but 

decreased with n, suggesting the large sample tests might be employed provided the total 

sample size is at least 30.

Additional simulations were conducted to examine the empirical bias and coverage 

probabilities for point estimates and confidence intervals from fitting either a Cox discrete 

logistic model or an exact conditional logistic regression model to RLC study data generated 

under Scenario 1. Table S1 of the Supplemental Information document shows the two 

approaches give similar results in terms of bias. Confidence intervals from exact conditional 

logistic regression preserve the nominal coverage probability, whereas Cox model 

confidence intervals tend to undercover when the sample size is small (n = 10) or the 

vaccine is highly effective (odds ratio of infection per challenge near zero).

7 Application

Hessell et al. [9] presented analyses of a RLC study with four macaques in a control group 

and five macaques in each of two vaccine groups (b12 and LALA). All groups were initially 

challenged with a very low-dose challenge 3TCID50. After only one macaque (from the b12 

group) was infected after 11 challenges (infected at the sixth challenge), the challenge dose 

was escalated to 10TCID50. In the published analysis of the study, the macaque that was 

Nolen et al. Page 14

Stat Med. Author manuscript; available in PMC 2016 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



infected while being challenged with 3TCID50 was analyzed as though infected at the first 

10TCID50 challenge; otherwise the 3TCID50 challenges were ignored in the analysis. Of the 

four control macaques, three macaques were infected after two 10TCID50 challenges and 

one macaque was infected after four 10TCID50 challenges. Of the five b12 macaques, four 

macaques were infected after one (described above), six, 23, and 38 challenges and one 

macaque remained uninfected after 40 challenges.

Hessell et al. reported a significant difference between the b12 and control groups based on 

the version of Fisher’s exact test suggested by Regoes et al.; in this case the one-sided and 

two-sided Fisher’s exact test p-values both equal p = 0.002. However, as shown in Section 

4.2 above, this version of Fisher’s exact test is not guaranteed to control the type I error rate. 

In contrast, the two-sided exact log-rank test (using surv_test from the R coin package) 

yields a two-sided p-value p = 0.14, implying the null (2) would not be rejected at the 0.05 

significance level. Similarly the score test from exact conditional logistic regression (using 

PROC LOGISTIC in SAS or cmh_test or mantelhaen.test in R) yields p = 0.11 and 

the Cochran-Armitage exact trend test with Wilcoxon rank scores (using SAS PROC FREQ) 

yields p = 0.17.

Inferences based on point estimates and exact confidence intervals (CIs) instead of 

hypothesis test p-values lead to similar conclusions. In particular, based on the 2 × 2 table 

(6) for the Hessell et al. RLC study data, the estimated odds ratio is  with exact 

95% CI (0.01, 0.41). Just as Fisher’s exact test may overstate significance, such exact CIs 

based on (6) are not in general guaranteed to provide nominal coverage. Alternatively, 

applying exact conditional logistic regression to these data yields  (95% CI 0.00, 

1.69), with the CI clearly including the null value of OR = 1.

Finally, we note that as an alternative to the published analysis, the 3TCID50 challenges 

could be included with  for the b12 macaque infected prior to dose escalation, 

 for the other four b12 macaques, and  for the four 

control macaques. In this case, the exact logrank, score, and trend tests yield identical results 

to those given above.

8 Discussion

In RLC studies with small sample sizes, randomization-based inference should be employed 

to ensure the type I error rate is appropriately controlled. On the other hand, asymptotic-

based methods should not be used in this setting in order to avoid misleading inferences. 

While randomization-based tests constructed using the LRT statistic tend to be the most 

powerful if the assumed likelihood is correct, such tests may require user-defined 

programming and also may require Monte-Carlo sampling for even moderate sample sizes. 

In contrast, randomization- based tests constructed using the log-rank statistic are easy to 

obtain in StatXact or using the surv_test function from the coin package in R. 

Alternatively, the score test from exact conditional logistic regression can be obtained in 

SAS using the LOGISTIC procedure with an EXACT option or in R using 

mantelhaen.test or the coin package function cmh_test. In simulations the empirical 
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power of these tests is approximately comparable to the power of the randomization-based 

test LRT when there is no heterogeneity or immune fraction. An added benefit of the exact 

conditional logistic regression approach in comparison to the exact log-rank test is that 

estimates of the vaccine effect can be obtained from the fitted model. Additionally, 

covariates of potential interest can easily be incorporated using this approach. Using either 

approach, the analyst should be mindful that the exact logrank test and the exact conditional 

logistic regression approach will both have reductions in their power to detect a vaccine 

effect in accordance with the extent to which the assumption of model (12) does not hold, in 

which case other tests and/or models may enable better power.

There are many possible future areas of study regarding the design, conduct, and analysis of 

RLC studies. For instance, time and resources might be saved if formal interim analyses 

were employed in RLC experiments as in clinical trials. Such interim analyses might be 

performed at one or more time points during the conduct of an RLC study to assess whether 

the experiment can be stopped early for futility or efficacy. Of course adjustments would be 

required for any repeated significance testing in order to preserve the overall type I error rate 

of the experiment. Another possible area of future study entails development of statistical 

methods for principled approaches to extrapolating findings from RLC studies to humans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Empirical type 1 error rate and power for the exact LRT {solid line (full=black, 

partial=gray)}, score test (dot/dashed line), and Wald test {dashed line (full=black, 

partial=gray)} as a function of relative risk (ϕ) for p0 = 0.5 probability of infection per 

challenge when not vaccinated, n = 10 macaques (five per arm), and  maximum 

challenges per macaque. Scenario 1 includes no heterogeneity or immunity, Scenario 2 

includes heterogeneity, and Scenario 3 includes immunity. The dotted horizontal line 

corresponds to the nominal significance level α = 0.05.
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Figure 2. 
Empirical type 1 error rate for large sample LRT {solid line (full=black, partial= gray)}, 

score/log-rank test (dot/dashed line), and Wald test {dashed line (full=black, partial=gray)} 

as a function of sample size n = N (i.e., N/2 per arm) for p0 = p1 = 0.5 probability of 

infection per challenge under Scenario 1 (no heterogeneity or immunity) and various values 

of cmax = Cmax. The dotted horizontal line corresponds to the nominal significance level α 

= 0.05.
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