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Flies may act as potential vectors for the spread of resistant bacteria to different environments. This study was intended to evalu-
ate the presence of Escherichia coli strains resistant to cephalosporins in flies captured in the areas surrounding five broiler
farms. Phenotypic and molecular characterization of the resistant population was performed by different methods: MIC deter-
mination, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylotyping. The presence of ex-
tended-spectrum beta-lactamase (ESBL) genes, their plasmid location, and the mobile genetic elements involved in their mobili-
zation were studied. Additionally, the presence of 35 genes associated with virulence was evaluated. Out of 682 flies captured, 42
yielded ESBL-producing E. coli. Of these isolates, 23 contained blaCTX-M-1, 18 contained blaCTX-M-14, and 1 contained blaCTX-M-9.
ESBL genes were associated mainly with the presence of the IncI1 and IncFIB replicons. Additionally, all the strains were
multiresistant, and five of them also harbored qnrS. Identical PFGE profiles were found for E. coli isolates obtained from
flies at different sampling times, indicating a persistence of the same clones in the farm environment over months. According to
their virulence genes, 81% of the isolates were considered avian-pathogenic E. coli (APEC) and 29% were considered extraintes-
tinal pathogenic E. coli (ExPEC). The entrance of flies into broiler houses constitutes a considerable risk for colonization of
broilers with multidrug-resistant E. coli. ESBLs in flies reflect the contamination status of the farm environment. Additionally,
this study demonstrates the potential contribution of flies to the dissemination of virulence and resistance genes into different
ecological niches.

Escherichia coli is a commensal bacterium commonly found in
nature and in the lower intestine of warm-blooded organisms.

However, some serotypes can cause enteric and extraintestinal
infections in humans and animals (1). For instance, avian-patho-
genic E. coli (APEC) is the major cause of colibacillosis in poultry
production. It is a syndrome that causes respiratory infections
associated with airsacculitis, pericarditis, and septicemia, result-
ing in a large economical burden for the poultry industry due to
the loss of production and mortality (2). Hybridization studies
detected APEC-specific DNA sequences presenting a high level of
homology with DNA sequences of human extraintestinal patho-
genic E. coli (ExPEC) strains (3). Both types have virulence deter-
minants in common, suggesting that APEC could serve as a reser-
voir and a source of virulence for ExPEC (4). Moreover, it has
been suggested that APEC strains are potential zoonotic patho-
gens (5).

Antimicrobials are the common treatment for avian colibacil-
losis caused by APEC. During the last years, increased resistance to
frontline antimicrobials, such as fluoroquinolones and third-gen-
eration cephalosporins, has been reported for E. coli isolates from
poultry (1). Additionally, the emergence of bacteria resistant to
critically important antimicrobials is a major concern in human
and veterinary medicine. The presence of isolates producing ex-
tended-spectrum beta-lactamases (ESBLs) and plasmid-mediated
AmpC beta-lactamases among E. coli isolates from broilers has
increased substantially in the last decade (6). Generally, the genes
encoding beta-lactamases are located on plasmids, which can be
transferred to other bacteria (7).

The persistence of E. coli in the environment has been de-
scribed in the literature (8). However, the relevance of wildlife
vectors in the persistence and spread of ESBL-producing E. coli in

the farm environment has not been studied thoroughly (9, 10). In
particular, flies are one of the most important vectors of human
diseases worldwide (11). They have the capacity to horizontally
transfer pathogens from different environments (12), posing a
high risk to human health (13). Due to their movements, their
capacity to fly long distances, and their attraction to decaying or-
ganic materials and food, houseflies amplify the risk of human
exposure to foodborne pathogens (14–16). Moreover, they may
also spread antibiotic resistance genes within microbial commu-
nities (17). The digestive tract of flies provides a suitable environ-
ment for the horizontal transfer of genes among bacteria, which
contributes to the spread of resistance and virulence genes (18).
Several studies have demonstrated that flies carry multidrug-re-
sistant bacteria in hospital environments and have also demon-
strated their role in the transmission of human pathogens within
hospitals (17).

The objective of this study was to assess the potential contribu-
tion of flies to the spread of ESBL/AmpC-producing E. coli in the
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farm environment. For this purpose, isolates, resistant genes, and
mobile genetic elements involved in the transmission of resistant
genes were fully characterized. The genomic relationship among
strains and the virulence content associated with APEC and
ExPEC strains were also evaluated.

MATERIALS AND METHODS
Study design. The study was conducted in five broiler farms (farms 1 to 5)
each one with one or two houses, located in the Catalonia region (Spain).
Broiler house capacities ranged from 15,000 to 46,000 birds per house.
Only farm 2 presented cats at the premises. Minimum and maximum
distances between farms were 15 km and 200 km, respectively. From May
to November 2012, each broiler farm was visited twice per rearing cycle to
capture flies (6 to 8 visits per farm in total). Overall, 23 broiler flocks were
reared in the 5 study houses during the study period. Fly sampling was
performed when chickens were �14 and 28 days old. At each visit, up to
50 flies were collected, always outside the same broiler houses (within a
10-m periphery). Overall, 682 flies were captured individually, placed into
disposable sterile plastic bags, and transported refrigerated (to be kept
alive) to the laboratory. Once at the laboratory, flies were anesthetized
with CO2, identified to the genus or species level, and subsequently pro-
cessed for Campylobacter isolation (our unpublished data) and thereafter
for cephalosporin-resistant E. coli isolation. Each individual fly was asep-
tically macerated in plastic bags with 2.5 ml Bolton broth (CM0983 with
selective supplement [SR0183] and laked horse blood [SR0048]; Oxoid,
Basingstoke, United Kingdom) and incubated at 42°C for 24 h in 2-ml
screw-cap tubes. A 10-�l loop of broth was plated onto MacConkey agar
(Oxoid, Basingstoke, United Kingdom) supplemented with ceftriaxone (1
mg/liter). Three lactose-positive colonies from each plate were selected
and confirmed to be E. coli by PCR (19). Subsequently, one representative
was selected for further studies.

Phylogeny, pulsed-field gel electrophoresis, and multilocus se-
quence typing. Isolates were discriminated into phylogenetic groups by
PCR (phylogroup A, B1, B2, C, D, E, or F), as previously described by
Clermont et al. (20, 21).

Pulsed-field gel electrophoresis (PFGE) was performed to analyze the
genomic relatedness among E. coli isolates. PFGE of chromosomal DNA
digested with the restriction enzyme XbaI was carried out according to
PulseNet protocols (22). Salmonella enterica serovar Braenderup H9812
was used as a size marker. The results were analyzed by Fingerprinting II
Informatix software (Applied Maths, Sint-Martens-Latem, Belgium). Iso-
lates were considered to have a different pattern when at least one band
difference was detected. The analysis of the bands generated was per-
formed by using the Dice coefficient and unweighted-pair group method
with arithmetic averages (optimization of 1.25% and position tolerance of
1.25%).

Multilocus sequence typing (MLST) was performed to determine the
potential evolutionary relatedness between isolates. MLST was carried out
by gene amplification and sequencing of seven housekeeping genes (adk,
fumC, gyrB, icd, mdh, purA, and recA), according to protocols and primers
specified on the E. coli MLST website (http://mlst.ucc.ie/mlst/dbs/Ecoli)
and as previously described (23). Sequences were analyzed with Vector
NTI Advance 11 (InforMax, Inc., Bethesda, MD). The allelic profiles of
the gene sequences and the sequence types (STs) were obtained via the
electronic database at the E. coli MLST website.

Antimicrobial susceptibility testing. Disc diffusion was performed
according to CLSI guidelines, using the following discs (Oxoid, Basing-
stoke, United Kingdom): cefoxitin at 30 mg; cefepime at 30 mg; ceftazi-
dime at 30 mg; cefotaxime at 30 mg; cefotaxime-clavulanic acid at 30 and
10 mg, respectively; and ceftazidime-clavulanic acid at 30 and 10 mg,
respectively. The synergies between cefotaxime and cefotaxime-clavulanic
acid and between ceftazidime and ceftazidime-clavulanic acid were used
as suggestive evidence of ESBL production; cefoxitin was used for the
detection of AmpC-type beta-lactamase (24). Additionally, all isolates
were tested for antimicrobial susceptibility using a MIC-based broth mi-

crodilution (VetMIC GN-mo; National Veterinary Institute, Uppsala,
Sweden) for the following antimicrobial agents: ampicillin (1 to 128 mg/
liter), cefotaxime (0.016 to 2 mg/liter), ceftazidime (0.25 to 16 mg/liter),
nalidixic acid (1 to 128 mg/liter), ciprofloxacin (0.008 to 1 mg/liter), gen-
tamicin (0.12 to 16 mg/liter), streptomycin (2 to 256 mg/liter), kanamycin
(8 to 16 mg/liter), chloramphenicol (2 to 64 mg/liter), florfenicol (4 to 32
mg/liter), trimethoprim (1 to 128 mg/liter), sulfamethoxazole (8 to 1,024
mg/liter), tetracycline (1 to 128 mg/liter), and colistin (0.5 to 4 mg/liter).
E. coli ATCC 25922 was used as a control strain. Isolates were considered
to be wild-type (WT) or non-WT isolates based on epidemiological cutoff
values according to EUCAST guidelines (http://www.eucast.org/) (25).

Resistance genes. All strains were tested by PCR for the presence of the
blaCTX-M, blaSHV, blaTEM, and blaCMY-2 genes as described previously by
Hasman et al. (26). Sequencing of both strands of amplicons was per-
formed. The presence of the aac(6=)-Ib-cr, qnrA, qnrB, qnrS, qepA, and
oqxAB genes conferring resistance to fluoroquinolones was also assessed
(27).

Plasmid DNA analysis. One isolate from each PFGE clonal cluster was
selected for plasmid characterization. The presence of plasmid replicons
HI1, HI2, I1, X, L/M, N, FIA, FIB, W, Y, P, FIC, A/C, T, FIIA, and K was
assessed by PCR-based replicon typing methods described previously (28,
29), including screening for the IncR replicon (30). The detection of plas-
mids and sizing were carried out on all the isolates by PFGE of total DNA
digested with S1 nuclease (31). Restriction fragments from S1-PFGE gels
(i.e., PFGE gels digested with S1 nuclease) were transferred onto positively
charged nylon membranes and hybridized with specific probes for blaCTX-

M-1 and blaCTX-M-9 and with specific probes for each previously identified
replicon.

Detection of virulence-associated genes. All 42 strains were tested for
a pool of 35 virulence-associated genes (see Table 2), including 7 adhesins,
4 siderophores, 9 toxins, 8 capsule synthesis-associated genes or protec-
tins, and 7 miscellaneous genes, by PCR using primers described previ-
ously (32, 33). The five virulence factors for ExPEC detection (pap, sfa/foc,
afa/dra, iutA, and kpsM II) (34) together with the five potential APEC
virulence genes (iutA, hlyF, iss, iroN, and ompT) (35) were included in the
PCR analysis. Virulence scores were calculated as the sum of all virulence
genes detected for each isolate; pap, sfa/foc, clbB-clbN, and kpsM II were
counted only once, regardless of the number of elements or subunits
identified (maximum possible score of 27).

Statistical analysis. Differences in the prevalences of phylogroups and
STs between the distinct groups were determined by Fisher’s exact test.
The associations between groups were assessed by calculation of the odds
ratio (OR) with 95% confidence intervals (CIs). The null hypothesis was
rejected for data with P values of �0.05. Statistical analyses were per-
formed by using GraphPad Prism, version 3.1, software (GraphPad Soft-
ware, Inc., San Diego, CA). Virulence scores were compared by the Mann-
Whitney U test.

RESULTS

During the course of the study, a total of 682 flies were captured
from the environments surrounding five different broiler farms.
The 42 ESBL producers were collected from farm 1 (9%; n � 193),
farm 2 (3%; n � 138), farm 3 (15%; n � 109), and farm 4 (4%; n �
134). Finally, all flies collected from farm 5 (n � 108) were nega-
tive for ESBL-producing E. coli. Most of the fly species were clas-
sified as Musca domestica (n � 615), followed by Ophyra spp. (n �
33), Stomoxys calcitrans (n � 15), Muscina stabulans (n � 7),
Fannia canicularis (n � 6), and others (n � 6). A total of 42
ESBL-producing E. coli strains were isolated mainly from M. do-
mestica (n � 41), and 1 was isolated from Muscina stabulans.

PFGE, phylogeny, and MLST. XbaI PFGE analysis revealed a
total of 29 different PFGE restriction profiles among the 42 E. coli
isolates (Fig. 1). The number of fragments generated ranged from
14 to 21, and their sizes varied from 20 to 1,135 kb. In almost all
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cases, epidemiologically related isolates belonged to the same
farm, except for three isolates (F1F8M17, F3F6M21, and F3F6M7)
from farms 1 and 3 that presented identical fingerprints (Fig. 1).

Four different phylogroups were represented among the 42
isolates. Of these, 15 were of group A (36%), 18 were of group B1
(43%), 7 were of group C (17%), 1 was of group E (2%), and 1 was
of an unknown group (2%) (Fig. 1).

MLST analyses identified 21 STs belonging to 11 different
clonal complexes (Fig. 1). The most common clonal complex was
the ST10 clonal complex (n � 10), containing four different ST
types (ST10, ST48, ST195, and ST617), followed by the ST446
clonal complex (n � 7; all ST602) and the ST23 clonal complex
(n � 7), comprising four different ST types (ST88, ST90, ST410,
and ST650). Only two different complexes were represented by
more than one phylogenetic group (phylogroups A and E for ST10
and phylogroups C and A for ST23).

Antimicrobial susceptibility testing and resistance genes.
Disc diffusion demonstrated that all isolates presented the ESBL
phenotype. All the strains were multiresistant (resistant to �3
antimicrobial families). Furthermore, 79% of the isolates had a
non-WT phenotype for more than eight antimicrobials. MIC de-
termination confirmed that all strains had a non-WT phenotype
for cephalosporins (100% resistance to cefotaxime and 83% resis-
tance to ceftazidime), with 23 isolates yielding amplicons for
blaCTX-M-1, 18 yielding amplicons for blaCTX-M-14, and 1 yielding
amplicons for blaCTX-M-9. Out of the 42 isolates, 33 harbored the

blaTEM gene. None of the isolates were positive for blaSHV or
blaCMY-2. In addition, 93% of the isolates had a non-WT pheno-
type for nalidixic acid, and 98% had a non-WT phenotype for
ciprofloxacin. The presence of qnrS genes was detected in five
isolates obtained from farms 1 and 2. The genes aac(6=)-Ib-cr,
qnrA, qnrB, qepA, and oqxAB were not found in this collection.
Additionally, 100% of the strains had a non-WT phenotype for am-
picillin, trimethoprim, and tetracycline; 98% had a non-WT pheno-
type for sulfamethoxazole; 86% had a non-WT phenotype for strep-
tomycin; 45% had a non-WT phenotype for chloramphenicol; 36%
had a non-WT phenotype for gentamicin; 17% had a non-WT phe-
notype for kanamycin; and 2% had a non-WT phenotype for colistin.
All isolates had a non-WT phenotype for florfenicol.

Localization of blaCTX-M. The replicons IncFIB and IncI1 were
detected in the majority of the isolates (90% and 83%, respec-
tively), being associated or not with any of the CTX-M genes.
However, IncP, IncK, IncY, Inc FIA, IncHI1, IncH12, and IncN
were also detected (Table 1).

All blaCTX-M-1 isolates hybridized with a plasmid of �110 kb
containing an IncI1 replicon, except for the following exceptions:
two isolates (F1F8M15 and F3F7M23) contained both IncI1 and
IncFIB in a 120-kb plasmid, and one extra isolate (F1F8M25) con-
tained IncI1 together with IncFIB in two plasmids of 120 and 190
kb (Table 1). Additionally, isolate F4F7M48 carried a second copy
of the gene on a large plasmid of 300 kb (Table 1). The IncI1 and
IncFIB replicons were identified on blaCTX-M-14-carrying plasmids

FIG 1 PFGE dendrogram illustrating the phenotypic and genotypic relationships of the strains, phylogenies, and cephalosporin resistance genes. PFGE,
pulsed-field gel electrophoresis; Phylo., phylogroup; ESBL, extended-spectrum beta-lactamase gene; FQ, fluoroquinolone resistance genes; ST, sequence type;
Cplx, clonal complex; U, unknown; Am, ampicillin (WT, �8 mg/liter); Ctx, cefotaxime (WT, �0.25 mg/liter); Caz, ceftazidime (WT, �0.5 mg/liter); Nal,
nalidixic acid (WT, �16 mg/liter); Ci, ciprofloxacin (WT, �0.064 mg/liter); Gm, gentamicin (WT, �2 mg/liter); Sm, streptomycin (WT, �16 mg/liter); Km,
kanamycin (WT, �8 mg/liter); Cm, chloramphenicol (WT, �16 mg/liter); Ff, florfenicol (WT, �16 mg/liter); Tm, trimethoprim (WT, �2 mg/liter); Su,
sulfamethoxazole (WT, �64 mg/liter); Tc, tetracycline (WT, �8 mg/liter); Cs, colistin (WT, �2 mg/liter). a, isolates were named based on the numbers assigned
to the farm (F), flock (F), and fly (M).
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of different sizes. The isolate carrying blaCTX-M-9 exhibited three
different replicons (IncI1, IncFIB, and IncP) on the same plasmid
(Table 1).

Detection of virulence genes. The prevalences of 35 viru-
lence-associated genes, including the genes associated with
APEC and ExPEC, are illustrated in Table 2. The virulence
genes detected with the highest prevalences were fimH (100%),
traT (88%), clbB (76%), and cvaC (48%). The presence of astA
(29%), tsh (29%), papEF (26%), and kpsM III (24%) was con-
firmed for an intermediate percentage of the isolates. In con-
trast, the presence of fyuA (14%), ireA (14%), papC (10%),
papA (7%), papG (7%), kpsM II (5%), sfa/focDE (2%), kpsM
II-K2 (2%), kpsM II-K5 (2%), ibeA (2%), malX (2%), usp (2%),
and fliCH7 (2%) was confirmed for a lower number of strains.
None of the isolates were positive for afa/draBC, cnf1, cdtB, sat,
hlyD, stx1, stx2, kpsM II-K1, and clbN. A total of 12 (29%)
isolates from this study were identified as ExPEC according to

the ExPEC definition. Additionally, 79%, 88%, 88%, 76%, and
86% of the strains yielded amplicons for iroN, ompT, hlyF,
iutA, and iss, respectively; these genes have been described as
the minimal predictors of APEC virulence. A total of 34 (81%)
isolates were considered APEC, since they harbored between 4
and 5 of these genes. Moreover, 11 (26%) of the isolates were
considered ExPEC and APEC at the same time.

Statistical analysis. No significant differences in the numbers
of virulence genes found between phylogroups were observed.
Phylogroups A, B1, and C exhibited virulence scores of between
7.8 and 9.7 (Table 2). Phylogroup C/ST23 clonal complex (mean,
9.8; range, 6 to 11), phylogroup A/ST10 clonal complex (mean, 10.6;
range, 10 to 12), and phylogroup B1/ST446 complex (mean, 9.6;
range, 9 to 12) isolates exhibited similar virulence scores but dif-
ferent gene contents (data not shown). Significant differences in
virulence scores between phylogroup A/ST10 clonal complex iso-
lates and phylogroup A/non-ST10 clonal complex isolates were

TABLE 1 Identification and characterization of the plasmid locations of blaCTX-M-1, blaCTX-M-14, and blaCTX-M-9 among 29 CTX-M-producing
E. coli isolatese

Gene and isolatea ST Clonal complex Replicon(s)b Plasmidc Inc type(s)d Plasmid size (kb)

blaCTX-M-1

F1F8M8 10 10 I1, FIB pST10-1 I1 110
F1F8M10 48 10 I1, FIB pST48-1 I1 110
F1F8M17 88 23 I1, FIB, P pST88 I1 110
F1F8M15 90 23 I1, FIB pST90 I1, FIB 120
F1F8M25 155 155 I1, FIB, P pST155-1 I1, FIB 120

pST155-2 I1, FIB 190
F1F8M34 162 469 I1, FIB pST162 I1 110
F1F8M3 165 165 I1, FIB, P pST165-1 I1 110
F1F8M19 195 10 I1, FIB, P, K pST195 I1 110
F1F8M2 212 I1, FIB, Y, P pST212 I1 110
F1F8M11 650 23 I1, FIB, P pST650 I1 110
F3F6M10B 88 23 I1, FIB, P pST88 I1 110
F3F6M10A 165 165 I1 pST165-2 I1 120
F4F7M23 155 155 I1, FIB pST155-3 I1, FIB 110
F4F7M48 617 10 I1, FIA, FIB pST617-1 50

pST617-2 300
F2F8M3 226 226 pST226 50

blaCTX-M-14

F4F7M38 48 10 I1, FIB pST48-2 I1 90
F4F5M4 117 FIB pST117 FIB 145
F4F6M16 398 398 FIB pST398 75
F4F7M24 410 23 HI1, HI2, I1, FIB, P pST410 I1 110
F4F5M8 602 446 HI1, HI2, I1, FIB, P pST602-1 I1 110
F4F5M2 602 446 HI1, HI2, I1, FIB, P pST602-1 I1 110
F4F5M17 602 446 HI1, HI2, I1, FIB, P pST602-1 I1 110
F4F7M41 602 446 HI1, HI2, I1, FIB, P pST602-2 I1 90
F4F5M11 876 HI1, HI2, I1, FIB, P pST876 90
F2F7M18 58 155 I1, FIB pST58 90
F2F7M9 101 101 FIB pST101 90
F2F8M39 641 86 I1, N pST641 I1 100
F3F7M17 354 354 FIA, FIB pST602-2 FIB 90

blaCTX-M-9

F1F8M14 10 10 I1, FIB, P pST10-2 I1, FIB, P 120
a Isolates were named based on the numbers assigned to the farm (F), flock (F), and fly (M).
b Replicon identifications are based on positive amplifications from the PCR-based replicon typing method.
c Plasmids were named based on the source strain sequence type and plasmid size.
d In all E. coli isolates, replicons from plasmids containing the different bla genes were identified by PCR-positive amplification and by Southern hybridization of the S1-digested
fragments.
e One representative for each PFGE cluster is shown. p(ST number), plasmid location; Inc, identified replicon.
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observed (P � 0.0001). The virulence factors that were signifi-
cantly different were characteristic of APEC (iss, iutA, iroN, and
astA) and ExPEC (papEF and kpsM III) (Table 2).

DISCUSSION

M. domestica is an arthropod distributed worldwide and the most
abundant fly species in animal production and food at homes and
restaurants. Flies are suspected reservoirs and vectors for human
and animal pathogens due to their contact with animal manure,
food, and humans. They can pick up bacteria present in those sites
and transport them to the kitchen (36). Some studies have sug-
gested that flies can also play an important role in the dissemina-
tion of antimicrobial resistance genes within the bacterial com-
munity (37, 38). In our study, the presence of multidrug-resistant
E. coli isolated from flies, and in particular ESBL-producing E. coli,
demonstrates the capacity of houseflies to disseminate and trans-
port resistance genes located in mobile genetic elements. Addi-
tionally, five of the isolates also harbored plasmid-mediated quin-
olone resistance genes. qnrS genes were previously associated with
the same plasmids harboring ESBL genes (39). The continuous
increase in the prevalence of antimicrobial-resistant bacteria has
been associated with the use of these drugs to treat human and
animal infections, and the presence of ESBL-producing E. coli in
flies suggests that animals and the farm environment are colo-
nized and inhabited by these microorganisms. Flies are a reservoir
of resistant bacteria and can contribute to the spread of resistance
genes between different ecological niches.

Some studies have suggested that there is a relationship be-
tween different E. coli phylogenetic groups and the virulence ca-
pabilities of the strains (38, 40). Commensal isolates belong
mainly to phylogenetic groups A, B1, and C (41, 42). In contrast,
the most virulent phylogroups described in the literature are phy-
logroup B2 followed by phylogroup D, which are mainly respon-
sible for extraintestinal infections (38, 40). None of the ESBL-
producing isolates from this study belonged to the B2 and D
phylogroups; most of them belonged to phylogroups A, B1, and C
and possessed quite high virulence scores. Furthermore, the
ESBL-producing E. coli A/ST10 clonal complex isolates from this
study had significantly higher virulence scores than isolates of
other STs from the same phylogroup. Similar results were ob-
tained in other studies, where phylogroup A/ST10 isolates of
APEC and ExPEC origins were described as emerging pathogens,
suggesting that this ST complex may have relevant zoonotic po-
tential (43, 44).

PFGE results demonstrated the same clonal groups in the same
farms, suggesting dissemination of epidemiologically related
clones within farm environments. An exception was the three
strains from farm 1 and 3 belonging to the same PFGE. These
farms were about 25 km apart. This observation would reinforce
what has been previously reported, that flies can travel long dis-
tances, spreading resistant bacteria (14–16). Additionally, identi-
cal fingerprints have been recovered from different flies belonging
to the same farm at different time points, including different
broiler cycles, demonstrating the capacity of these bacteria to sur-
vive and persist in the environment for long periods of time.

This study also demonstrated the presence of E. coli isolates
with virulence-associated genes characteristic of both APEC
(81%) and ExPEC (29%) and the capacity of flies to transport
them. Some of these virulence genes are also associated with mo-
bile genetic elements, highlighting the relevance of flies in the

transmission of virulence determinants in broiler farms and hos-
pital settings (17).

In the present study, we found that blaCTX-M-1 and blaCTX-M-14

are the most prevalent ESBL genes detected in E. coli isolates ob-
tained from flies captured in the areas surrounding broiler farms
(55% and 43%, respectively). This result is in agreement with data
from previous studies, which demonstrated that blaCTX-M-1 is one
of the most prevalent ESBL genes detected in Enterobacteriaceae of
broiler origin (45–48). Also in line with studies performed on
broiler farms, the most common replicons encountered in this
study were IncI1 and IncFIB (49, 50). Moreover, we have found
five isolates with the same ESBL gene harbored in two different
plasmids. Having two or more copies of a resistance mechanism in
different locations would ensure the maintenance and persistence
of these genes even if selective pressure enforces the loss of one of
these copies.

In conclusion, this study has demonstrated a very diverse pop-
ulation of multidrug-resistant E. coli recovered from flies at dif-
ferent broiler farms. ESBL-producing E. coli in flies reflects the
colonization status of the farm environment. Flies are probably
not the source but the result of the colonization of animals. These
isolates contained a high number of virulence-associated genes
and ESBL genes, which could be easily introduced and dissemi-
nated into farms through the flies and subsequently could poten-
tially colonize animals. Additional biosecurity measures, aimed at
blocking or reducing the entrance of flies into broiler houses,
should be undertaken. Otherwise, zoonosis control and antimi-
crobial resistance reduction may be frustrated. Flies are also con-
tributing to pathogen evolution since the transfer of resistance-
and virulence-associated genes between different strains could be
facilitated through flies.
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