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The architecture and parameter initialization of wavelet neural network are discussed and a novel initializationmethod is proposed.
The new approach can be regarded as a dynamic clustering procedure which will derive the neuron number as well as the initial
value of translation and dilation parameters according to the input patterns and the activating wavelets functions.Three simulation
examples are given to examine the performance of our method as well as Zhang’s heuristic initialization approach.The results show
that the new approach not only can decide the WNN structure automatically, but also provides superior initial parameter values
that make the optimization process more stable and quickly.

1. Introduction

An artificial neural network (ANN) is a highly parallel
distributed network of connected processing units called
neurons. Due to their fascinating characteristics of robust-
ness, fault tolerance, adaptive learning ability, and massive
parallel processing capabilities, ANNs possess the capability
of learning from examples with both linear and nonlinear
relationships between the input and output signals, which
makes them a popular tool for time series prediction [1,
2], feature extraction [3, 4], pattern recognition [5, 6], and
classification [7, 8]. However, ANNs have limited ability
to characterize local features, such as discontinuities in
curvature, jumps in value, or other edges.

Instead of using common sigmoid activation functions,
the wavelet neural network (WNN) employing nonlinear
wavelet basis functions [9, 10], which are localized in both
the time space and frequency space, has been developed as
an alternative approach to nonlinear fitting problem. It has
been proven that families of wavelet frames are universal
approximators [11], which give a theoretical basis to their
use in the framework of function approximation and process
modeling.

There are two different WNN architectures: one type has
fixed wavelet bases possessing fixed dilation and translation

parameters (WNN-Type1). In this one only the output layer
weights are adjustable. Another type has the variable wavelet
base whose dilation and translation parameters and output
layer weights are adjustable (WNN-Type2). Several WNN
models have been proposed in the literatures. In [12], a four-
layer self-constructing wavelet network (SCWN) controller
for nonlinear systems control is described and the orthogonal
wavelet functions are adopted as its node functions. In [13],
a local linear wavelet neural network (LLWNN) is presented
whose connection weights between the hidden layer and
output layer of conventional WNN are replaced by a local
linear model. In [14], a model of multiwavelet-based neural
networks is proposed.The structure of this network is similar
to that of the wavelet network, except that the orthonormal
scaling functions are replaced by orthonormal multiscaling
functions.

A time series is a sequence of observations taken sequen-
tially in time [15]. Time series prediction is an impor-
tant research and application area. Much effort has been
devoted over the past several decades to the development
and improvement of time series prediction models. Besides
the well-known linear models such as moving average,
exponential smoothing, and the autoregressive integrated
moving average, nonlinear models including artificial neural
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network, wavelet neural network, and fuzzy system models
also become the well-established time series models. In this
paper, the wavelet neural network (WNN) is used as the time
series predictor, and the detailed researchworks are described
subsequently.

We adopt WNN-Type2 with adjustable translation and
dilation parameters and multiplication form of multidi-
mensional wavelets as the nonlinear model for time series
prediction in this paper. Key problems in designing of this
type of WNN consist of determining WNN architecture,
initializing the translation and dilation vectors, and choosing
learning algorithm that can be effectively used for training
the WNN. This study mainly focuses on the first two points.
In the practical applications, the number of hidden neurons
which determines the structure of the network is often set by
experience or the time-consuming trial-and-error tests, and
the initial values of parameters are often set randomly. Due
to the rapidly vanishing property of wavelet functions, the
random initialization scheme to the dilation and translation
parametersmay cause the wavelets’ effective response regions
out of interest which makes the learning performance very
instable. So it is inadvisable to adopt random initialization
scheme for dilations and translations in WNN. In [9],
Zhang proposes a heuristic initialization procedure which
considers the interesting domain of input patterns. But, in its
implementation, the wavelet functions used in WNN are not
considered, and the resolution reduced gradually according
to an established rule which does not take full consideration
of sample distribution.

In the present paper, inspired by the localization character
of wavelet functions and considering the multiplication form
ofmultidimensional wavelets in the hidden neuron formulti-
variable inputs, we present a novel initialization approach by
the help of a new clustering method forWNN.This approach
can determine the unit number of hidden layer and initialize
the translation and dilation vectors simultaneously. After
performing the training process by gradient descent method,
we can see that, besides the capability of neuron number
determination, WNN with our initialization method gives
more satisfactory and stable results for time series prediction
compared to Zhang’s heuristic initialization method which is
used for this model in some literatures [9, 16, 17].

The paper is organized as follows. A brief review of
wavelet and wavelet-based function approximation is given
in Section 2, followed by the introduction of the architec-
ture of wavelet neural network in Section 3. The detailed
description of the clustering based initialization approach
and the training algorithm are given in Sections 4 and
5. Three simulation experiments on time series prediction
problems and the comparison results with Zhang’s heuristic
initialization method are presented in Section 6. Finally,
some conclusions are drawn in the last section.

2. Wavelet-Based Function Approximation

Wavelets in the following form,
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is the continuous wavelet transform of 𝑓(𝑥).
Superior to conventional Fourier transform, the wavelet

transform (WT) in its continuous form provides a flexible
time-frequency window, which narrows when observing
high frequency phenomena and widens when analyzing low
frequency behavior.Thus, time resolution becomes arbitrarily
good at high frequencies, while the frequency resolution
becomes arbitrarily good at low frequencies. This kind of
analysis is suitable for signals composed of high frequency
components with short duration and low frequency compo-
nents with long duration, which is often the case in practical
situations.

As the parameters 𝑎 and 𝑏 are the continuous values,
the resulting continuous wavelet transform (CWT) is a
very redundant representation and impracticable also. This
impracticability is the result of the redundancy.Therefore, the
scale and shift parameters are evaluated on a discrete grid
of time-scale leading to a discrete set of continuous wavelet
functions:
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The continuous inverse wavelet transform (3) is discretized as
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If there exist two constants 𝑐 > 0 and 𝐶 < +∞ such that, for
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where ‖𝑓‖ denotes the norm of function 𝑓(𝑥) and ⟨𝑓, 𝑔⟩

denotes the inner product of functions 𝑓 and 𝑔, and the
family {𝜓

𝑎𝑖 ,𝑏𝑖
} is said to be a frame of 𝐿

2

(𝑅). It has been
proved that families of wavelet frames of 𝐿2(𝑅) are universal
approximators.

Inspired by the wavelet decomposition of 𝑓(𝑥) ∈ 𝐿
2

(𝑅)

in (6) and a single hidden layer network model, Zhang and
Benveniste [9] had developed a new neural network model,
namely, wavelet neural network (WNN).
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Figure 1: Architecture of wavelet neural network.

3. Architecture of Wavelet Neural Network

A brief review of wavelet decomposition theory has been
given in Section 2, where functions with univariable were
concerned. For themodeling ofmultivariable processes, mul-
tidimensional wavelets must be defined. In the present work,
multidimensional wavelets are defined as the multiplication
of single-dimensional wavelet functions:

Ψ
𝑗
(x) = 𝜓(

x − b
𝑗

a
𝑗

) =

𝑛

∏

𝑘=1

𝜓(
𝑥
𝑘
− 𝑏
𝑗𝑘

𝑎
𝑗𝑘

) , 𝑗 = 1, 2, . . . , 𝑁,

(8)

where x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
T is the input vector and b

𝑗
= (𝑏
𝑗1
,

𝑏
𝑗2
, . . . , 𝑏

𝑗𝑛
) and a

𝑗
= (𝑎
𝑗1
, 𝑎
𝑗2
, . . . , 𝑎

𝑗𝑛
) are the translation and

dilation vectors, respectively.
Generalized from radial basis function neural network,

WNN is in fact a feed-forward neural network with one
hidden layer, wavelet functions as activation functions in
the hidden nodes, and a linear output layer. As a result, the
network output y = (𝑦

1
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2
, . . . , 𝑦
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)
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1
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2
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) define the connect-

ing weights and the bias terms between the hidden layer and
the output layer, respectively. 𝑁 is the number of units in
hidden layer.These wavelet neurons are usually referred to as
wavelons.The architecture of aWNN is illustrated in Figure 1.

4. Initialization Approach of
Wavelet Neural Network

Before training theWNN, some factors should be determined
in advance, which are the number of wavelons and initial
value of parameters (𝑎

𝑗𝑘
, 𝑏
𝑗𝑘
, 𝑤
𝑖𝑗
, and 𝑦

𝑖
). The former is fixed

once the structure of network was determined, while the
latter is adjusted by the training algorithm. All these factors
are crucial for the performance of network in simulating the
real model. In this section, a brief description of wavelet
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Figure 2: Mexican Hat wavelet.

window is presented firstly, and then a novel initialization
method based on the dynamic clustering is proposed, which
could provide the number of hidden neurons and the initial
values of translation anddilation parameters at the same time.

4.1. Wavelet Window in Time Domain. A mother wavelet
function 𝜓(𝑥) defined by (2) will have sufficient decay, which
can be considered as “local response.” In other words, 𝜓(𝑥)

is a window with center in 𝜇 and radius 𝜎 in time domain,
which can be computed by [20]
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As a result, its translated and dilated version 𝜓
𝑎,𝑏

= 𝜓((𝑥 −

𝑏)/𝑎) will be concentrated in the region of [𝑏 + 𝑎𝜇 − 𝑎𝜎, 𝑏 +

𝑎𝜇 + 𝑎𝜎] in the time domain.
In this paper, the Mexican Hat wavelet function with

symmetric graph (Figure 2) is employed, which is given by
the following equation:
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From (10), the center and radius of Mexican Hat wavelet
window in the time domain can be derived as

𝜇
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= 1.08012345. (12)

4.2. Initialization by a Novel Clustering Approach for WNN.
The structure of our network is illustrated in Figure 1. Sup-
pose the input data for network training are 𝑀 vectors with
𝑛 components: {x
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Remark 1. (i) Vector th = (th
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)
T in the above

procedure is crucial to the clustering result. Large elements of
th will lead to a coarse partition, namely, a small 𝐽, whereas
th with small value will lead to a large 𝐽. In practice, a
reasonable th should be determined by the input patterns. In
our experiments, we prefer to adopt vector th as in formula
(15) to control the cluster scale, which offers moderate results
in most times. Consider
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in step (3) are derived from “local response” property of
activation wavelet functions Ψ(x) = ∏
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in the wavelons. As a result, patterns satisfying that each
feature activates corresponding 1-D wavelet function will be
identified as a class.

(iii) After the clustering procedure of (1)–(4), the cor-
responding results help us to determine the number of
wavelons inWNNas𝑁 = 𝐽 and the initial value of translation
and dilation vectors as
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𝛽 in (17) is a relaxation parameter which satisfies 𝛽 ≥ 1; 𝜎 is
the window radius of wavelet function 𝜓(𝑥).

(iv) In order to avoid the dilation parameters being zeros,
the radius vector of the cluster with single element should be

redefined. The minimum value strategy is employed which
can be described as 𝑟
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5. Training Algorithm

Gradient descent method is implemented for training the
WNN in this paper. Parameters (𝑎
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, 𝛾
4

are the learning rates which should be set on the basis of
specific experiment.

6. Simulation Examples

In this section, WNN model with two different initialization
schemes is applied to three time series prediction problems,
namely, the prediction of Mackey-Glass, Box-Jenkins, and
traffic volume time series. The performance of WNN with
the clustering based initialization approach (WNN-CIA)
described in Section 4 is compared to Zhang’s heuristic
initialization approach (WNN-HIA) in each simulation.

Because the architecture of WNN-HIA must be decided
in advance, in order to compare directly, we adopt the same
architecture with WNN-CIA in the experiments. Relaxation
parameter 𝛽 in (17) of WNN-CIA is set as 2.5 in all
simulations and the Mexican Hat function defined in (11) is
employed as the wavelet function in the hidden neurons of
all models. Root mean square error (RMSE) given by (20)
of the training/testing set is used as index for comparing
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Table 1: Comparison results of WNN with two initialization methods for Mackey-Glass time series.

Model Structure Number of parameters Mean of RMSE Std. of RMSE
Training Testing Training Testing

WNN-CIA 4-9-1 82 0.01398 0.01377 0.00188 0.00203

WNN-HIA [9]

4-8-1 73 0.02915 0.03073 0.00976 0.01079
4-9-1 82 0.02789 0.02912 0.00899 0.00953
4-10-1 91 0.02906 0.03059 0.01097 0.01174
4-11-1 100 0.02700 0.02819 0.00871 0.00940

Table 2: Some test results of differentmodels forMackey-Glass time
series.

Method RMSE for testing set
Cascade correlation NN 0.06
Back-propagation NN 0.02
Sixth-order polynomial 0.04
Linear prediction method 0.55
Product T-norm [22] 0.0907
Genetic algorithm and fuzzy system [23] 0.049

performances of WNN with different initialization schemes.
Consider

RMSE = √𝐸 = √
1

𝑀

𝑀

∑

𝑙=1

𝑞

∑

𝑖=1

(𝑦
𝑙𝑖
− 𝑓
𝑙𝑖
)
2

. (20)

6.1. Prediction of Mackey-Glass Time Series. The Mackey-
Glass chaotic time series is generated from the following delay
differential equation:

𝑑𝑥 (𝑡)

𝑑𝑡
=

𝑎𝑥 (𝑡 − 𝜏)

1 + 𝑥10 (𝑡 − 𝜏)
− 𝑏𝑥 (𝑡) . (21)

Here we predict the 𝑥(𝑡 + 6) using the input variables 𝑥(𝑡),
𝑥(𝑡 − 6), 𝑥(𝑡 − 12), and 𝑥(𝑡 − 18). Parameters in (21) are set
as 𝑎 = 0.2, 𝑏 = 0.1, 𝜏 = 17, and 𝑥(0) = 1.2 which make the
equation show chaotic behavior. One thousand input-output
data points are extracted from the Mackey-Glass time series
𝑥(𝑡), where 𝑡 = 118 to 𝑡 = 1117. The first 500 data pairs
of the series are used as training data, while the remaining
500 data pairs are used to validate the proposed network.
After performing the proposed clustering based initialization
method proposed in Section 4.2, we get that the number of
wavelons is𝑁 = 9.

For the performance comparison of WNN-CIA with
WNN-HIA, some different architectures are employed for
WNN-HIA. Table 1 shows the mean and standard deviation
(std.) of RMSE for training and testing data obtained when
100 runs were performed by each model. The models are
trained for 500 epochs in each run. Some results of different
models for testing set are shown in Table 2.The RMSE reduc-
tion curve during training and testing of gradient descent
algorithm corresponding to the best WNN-CIA model is
drawn in Figure 3. Figures 4 and 5 show the prediction
output of the best WNN-CIA model and the corresponding
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Figure 3: RMSE values obtained during training and testing for
Mackey-Glass time series.

prediction error for training and testing datawith the training
and testing RMSE as 0.0080 and 0.0078.

FromTable 1, it can be seen that the performance ofWNN
with structure and initial parameters derived by the proposed
initialization approach is much better than that of WNN-
HIA, evenwhenmore parameters are employed in themodel.

6.2. Prediction of Box-Jenkins Time Series. The gas furnace
data of Box and Jenkins (1970), that is, Box-Jenkins time
series, was recorded froma combustion process of amethane-
air mixture. It is well known and frequently used as a bench-
mark example for testing identification algorithms. During
the process, the portion of methane was randomly changed,
keeping a constant gas flow rate. The data set consists of 296
pairs of input-output measurements. The input 𝑢(𝑡) is the
gas flow into the furnace and the output 𝑦(𝑡) is the CO

2

concentration in outlet gas. The sampling interval is 9 s.
In this section, the data set used consists of 292 consec-

utive values of methane at time (𝑡 − 4) and CO
2
produced

in a furnace at time (𝑡 − 1) as input variables, with the
produced CO

2
at time (𝑡) as an output variable. Namely,

variables 𝑢(𝑡 − 4) and 𝑦(𝑡 − 1) are used to predict 𝑦(𝑡).
The data are partitioned in 200 data points as a training
set and the remaining 92 points as a testing set for testing
the performance of the proposed network. After performing
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Table 3: Comparison results of WNN with two initialization methods for Box-Jenkins time series.

Model Structure Number of parameters Mean of RMSE Std. of RMSE
Training Testing Training Testing

WNN-CIA 2-8-1 41 0.02023 0.05900 0.00086 0.00952

WNN-HIA [9]

2-7-1 36 0.02108 0.06220 0.00121 0.01516
2-8-1 41 0.02110 0.05964 0.00172 0.01420
2-9-1 46 0.02068 0.05616 0.00099 0.01339
2-10-1 51 0.02064 0.05579 0.00115 0.01064
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Figure 4: Prediction results for Mackey-Glass time series by WNN-CIA.
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Figure 5: Prediction errors for Mackey-Glass time series by WNN-
CIA.

the initialization method of WNN proposed in Section 4.2,
we get the number of wavelons 𝑁 = 8.

As is done in Section 6.1, different architectures are
employed for WNN-HIA for comparison with WNN-CIA
whose structure and initial parameters are derived by

Table 4: Some test results of different models for Box-Jenkins time
series.

Method Inputs RMSE for testing set
Surmann’s model [24] 2 0.400
Lee’s model [25] 2 0.638
Lin’s model [26] 5 0.511
Nie’s model [27] 4 0.412
ANFIS model [28] 2 0.085
FuNN model [29] 2 0.071

the proposed approach. Table 3 shows themean and standard
deviation of RMSE for training and testing data obtained
when 100 runs were performed by each model. The models
are also trained for 500 epochs in each run. Table 4 shows
some test results of different models. The RMSE reduction
curve during training and testing of gradient descent algo-
rithm corresponding to the best WNN-CIA model is drawn
in Figure 6. Figures 7 and 8 show the prediction output of
the best WNN-CIA model and the corresponding prediction
error for training and testing data with the training and
testing RMSE as 0.0186 and 0.0348.
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Table 5: Comparison results of WNN with two initialization methods for traffic volume time series.

Model Structure Number of parameters Mean of RMSE Std. of RMSE
Training Testing Training Testing

WNN-CIA 6-17-1 222 0.03201 0.05343 0.00462 0.01237

WNN-HIA [9]

6-16-1 209 0.03996 0.05692 0.01162 0.02125
6-17-1 222 0.03868 0.05561 0.01109 0.02266
6-18-1 235 0.03761 0.05373 0.01065 0.02035
6-19-1 248 0.03796 0.05567 0.01248 0.02312
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Figure 6: RMSE values obtained during training and testing for
Box-Jenkins time series.
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Figure 7: Prediction results for Box-Jenkins time series by WNN-
CIA.

From the data in Table 3, we can see that WNN-CIA
outperforms WNN-HIA when the same architectures are
employed. When more parameters are employed to WNN-
HIA, the performances of WNN-HIA gradually improve.
However, WNN-CIA model can make a more stable perfor-
mance than all WNN-HIA models in the experiments. In
order to further examine the effectiveness of the proposed
method, simulation experiments of a real-word example,
traffic volume time series prediction, are carried out.

6.3. Prediction of the Traffic Volume Time Series (A Real-Word
Example). Chen in [21] implemented the neural network
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Figure 8: Prediction errors for Box-Jenkins time series by WNN-
CIA.

time series models for traffic volume forecasting. In this
section, the data of hourly traffic volume for station 5 from
[21], which were collected on IR 271 and IR 90 in Cuyahoga
County, are used as the real-word time series to examine the
performance of WNN-CIA as well as WNN-HIA. There are
105 volumedata points collected from June 4, 4:00 pm, to June
8, 12:00 pm, for training purposes, with the remaining 9 data
points collected from 1:00 am to 9:00 am on June 9 reserved
for model accuracy checking. This is a one-step forecasting
with 6 anterior data points as input vector. Data normalizing
is done to transfer values of the raw time series into the
numbers in interval [0, 1]. After performing the initialization
method of WNN proposed in Section 4.1, we get the number
of wavelons𝑁 = 17.

Some same and different architectures are employed
for WNN-HIA for comparison with WNN-CIA. After 100
experiments with 500 epochs in each run, Table 5 shows
the mean and standard deviation of RMSE for training and
testing data for twoWNNmodels with different initialization
methods. Test results of different models are shown in
Table 6. The RMSE reduction curve during training and
testing of gradient descent algorithm corresponding to the
best WNN-CIAmodel is drawn in Figure 9. Figures 10 and 11
show the prediction output of the best WNN-CIAmodel and
the corresponding prediction error for training and testing
data with the training and testing RMSE as 0.0233 and 0.0335.
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Table 6: Some test results of differentmodels for traffic volume time
series.

Method Inputs RMSE for testing set
Linear prediction method 6 0.3090
Sixth-order polynomial 6 0.1381
Back-propagation NN [21] 6 0.1244
Back-propagation NN [21] 12 0.1220
Radial basis function NN 6 0.0743
Elman NN 6 0.1041
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Figure 9: RMSE values obtained during training and testing for
traffic volume time series.
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Figure 10: Prediction results for traffic volume time series byWNN-
CIA.

From Table 5, we can see that the performance of WNN
with the proposed clustering based initialization procedure
is also superior to that with heuristic initialization approach
even when more parameters are employed in WNN-HIA. It
demonstrates again the validity of our methods.

7. Conclusion

In this paper, a novel initialization procedure for WNN as
time series predictor is proposed, which behaves as
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Figure 11: Prediction errors for traffic volume time series byWNN-
CIA.

a dimensional clustering procession. Taking account of
the distribution of input patterns and the local response
property of wavelet functions, the input patterns can be
dynamically classified by the proposed approach. And then
the architecture as well as the initial values of translation
and dilation parameters of WNN model can be determined
accordingly. Simulation results demonstrate that, besides
the capability of neuron number determination, WNN with
our initialization method can provide satisfactory and stable
results for time series prediction.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are thankful that the research is supported by the
National Science Foundation of China (61275120) and Tian
Yuan Special Foundation (11426207).

References

[1] R. J. Frank, N. Davey, and S. P. Hunt, “Time series prediction
and neural networks,” Journal of Intelligent and Robotic Systems:
Theory and Applications, vol. 31, no. 1–3, pp. 91–103, 2001.

[2] U. Lotric and A. Dobnikar, “Predicting time series using
neural networks with wavelet-based denoising layers,” Neural
Computing and Applications, vol. 14, no. 1, pp. 11–17, 2005.

[3] R. Setiono andH. Liu, “Feature extraction via neural networks,”
in Feature Extraction, Construction and Selection, pp. 191–204,
Springer US, 1998.

[4] M. Egmont-Petersen, D. de Ridder, and H. Handels, “Image
processing with neural networks—a review,” Pattern Recogni-
tion, vol. 35, no. 10, pp. 2279–2301, 2002.

[5] C. M. Bishop, Neural Networks for Pattern Recognition, The
Clarendon Press, Oxford, UK, 1995.



Computational Intelligence and Neuroscience 9

[6] M. Balasubramanian, S. Palanivel, and V. Ramalingam, “Real
time face and mouth recognition using radial basis function
neural networks,” Expert Systems with Applications, vol. 36, no.
3, pp. 6879–6888, 2009.

[7] G. P. Zhang, “Neural networks for classification: a survey,”
IEEE Transactions on Systems, Man and Cybernetics Part C:
Applications and Reviews, vol. 30, no. 4, pp. 451–462, 2000.

[8] V. N. Ghate and S. V. Dudul, “Optimal MLP neural network
classifier for fault detection of three phase induction motor,”
Expert Systems with Applications, vol. 37, no. 4, pp. 3468–3481,
2010.

[9] Q. Zhang and A. Benveniste, “Wavelet networks,” IEEE Trans-
actions on Neural Networks, vol. 3, no. 6, pp. 889–898, 1992.

[10] J. Zhang, G. G. Walter, Y. Miao, and W. N. W. Lee, “Wavelet
neural networks for function learning,” IEEE Transactions on
Signal Processing, vol. 43, no. 6, pp. 1485–1497, 1995.

[11] I. Daubechies, Ten Lectures on Wavelets, vol. 61 of CBMS-NSF
Regional Conference Series in Applied Mathematics, Society for
Industrial and Applied Mathematics, Philadelphia, Pa, USA,
1992.

[12] C. J. Lin, “Nonlinear systems control using self-constructing
wavelet networks,” Applied Soft Computing Journal, vol. 9, no.
1, pp. 71–79, 2009.

[13] Y. Chen, B. Yang, and J. Dong, “Time-series prediction using a
local linear wavelet neural network,” Neurocomputing, vol. 69,
no. 4–6, pp. 449–465, 2006.

[14] L. Jiao, J. Pan, and Y. Fang, “Multiwavelet neural network
and its approximation properties,” IEEE Transactions on Neural
Networks, vol. 12, no. 5, pp. 1060–1066, 2001.

[15] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series
Analysis: Forecasting and Control, John Wiley & Sons, 2013.

[16] D. Veitch,Wavelet Neural Networks andTheir Application in the
Study of Dynamical Systems, University of York, 2005.

[17] R. Liu, Research on Computational Intelligence-Based Strctural
Reliability Design Optimization, Jilin University, 2006.

[18] S. G. Mallat, “A theory for multiresolution signal decomposi-
tion: the wavelet representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693,
1989.

[19] A. Grossmann and J. Morlet, “Decomposition of Hardy func-
tions into square integrable wavelets of constant shape,” SIAM
Journal on Mathematical Analysis, vol. 15, no. 4, pp. 723–736,
1984.

[20] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press,
1999.

[21] J. Chen, Characterization and Implementation of Neural Net-
work Time Series Models for Traffic Volume Forecasting, Univer-
sity of Toledo, Toledo, Ohio, USA, 1997.

[22] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by
learning from examples,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 22, no. 6, pp. 1414–1427, 1992.

[23] D. Kim and C. Kim, “Forecasting time series with genetic fuzzy
predictor ensemble,” IEEE Transactions on Fuzzy Systems, vol.
5, no. 4, pp. 523–535, 1997.

[24] H. Surmann, A. Kanstein, and K. Goser, “Self-organizing and
genetic algorithms for an automatic design of fuzzy control and
decision systems,” in Proceedings of the 1st European Congress
on Fuzzy and Intelligent Technologies (EUFIT ’93), Aachen,
Germany, 1993.

[25] Y. C. Lee, C. Hwang, and Y. P. Shih, “A combined approach to
fuzzymodel identification,” IEEETransactions on Systems,Man,
and Cybernetics, vol. 24, no. 5, pp. 736–744, 1994.

[26] Y. Lin and G. A. Cunningham III, “A new approach to fuzzy-
neural system modeling,” IEEE Transactions on Fuzzy Systems,
vol. 3, no. 2, pp. 190–198, 1995.

[27] J. Nie, “Constructing fuzzy model by self-organizing counter-
propagation network,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 25, no. 6, pp. 963–970, 1995.

[28] J. S. R. Jang and C. T. Sun, Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence,
Prentice-Hall, 1996.

[29] N. K. Kasabov, J. Kim, M. J. Watts, and A. R. Gray, “FuNN/2—
a fuzzy neural network architecture for adaptive learning and
knowledge acquisition,” Information Sciences, vol. 101, no. 3-4,
pp. 155–175, 1997.


