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A fully compartmentalized genome-scale metabolic model of Saccharomyces cerevisiae that accounts for 750 genes and
their associated transcripts, proteins, and reactions has been reconstructed and validated. All of the 1149 reactions
included in this in silico model are both elementally and charge balanced and have been assigned to one of eight
cellular locations (extracellular space, cytosol, mitochondrion, peroxisome, nucleus, endoplasmic reticulum, Golgi
apparatus, or vacuole). When in silico predictions of 4154 growth phenotypes were compared to two published
large-scale gene deletion studies, an 83% agreement was found between iND750’s predictions and the experimental
studies. Analysis of the failure modes showed that false predictions were primarily caused by iND750’s limited
inclusion of cellular processes outside of metabolism. This study systematically identified inconsistencies in our
knowledge of yeast metabolism that require specific further experimental investigation.

Supplemental material is available online at www.genome.org. The reaction and metabolite lists, metabolic network
maps, and gene-protein-reaction associations for Saccharomyces cerevisiae iND750 can be found at http://
systemsbiology.ucsd.edu.

Metabolic networks are commonly reconstructed either by hand
or through the use of automated reconstruction tools based on
comparative genomic analysis (Covert et al. 2001). A manual
assembly is preferred because it allows for the inclusion of dis-
parate data sources, such as genome annotations, gene expres-
sion experiments, enzymatic assays, and physiological data,
rather than exclusively genomic data (Covert et al. 2001). Ge-
nome-scale metabolic networks have been manually recon-
structed for several microorganisms, including Escherichia coli
(Pramanik and Keasling 1997; Edwards and Palsson 2000; Reed et
al. 2003), Helicobacter pylori (Schilling et al. 2002), Haemophilus
influenzae (Edwards and Palsson 1999), and Saccharomyces cerevi-
siae (Förster et al. 2003a). These models have been shown to be
useful for predicting optimal growth phenotypes in various me-
dia conditions, even for cases in which the organisms have been
genetically modified (Kauffman et al. 2003; Price et al. 2003).

The metabolic network reconstructed by Förster and Famili
(Förster et al. 2003a) was the first genome-scale model of yeast. It
included 708 open reading frames (ORFs), corresponding to
∼12% of the ORFs identified in the S. cerevisiae genome according
to the Saccharomyces Genome Database (SGD; http://
www.yeastgenome.org). The Förster–Famili model was also the
first genome-scale model to capture one of the most important
properties of a eukaryotic cell: compartmentalization. The 842
reactions5 included in the model were localized to the cytosol,
mitochondria, or extracellular space. Predictions from this model
have been verified by comparison with various sets of physiologi-
cal data (Famili et al. 2003), gene essentiality data (Förster et al.

2003b), and growth perturbation experiments (P.C. Fu, N.C. Du-
arte, I. Famili, and B.Ø. Palsson, in prep.). Based on these studies,
the following modifications and extensions have been made to
improve the Förster–Famili model: (1) the localization of gene
products were reevaluated to allow for five additional cellular
compartments (peroxisome, nucleus, Golgi apparatus, vacuole,
endoplasmic reticulum); (2) the functional assignments of the
gene products were revised so that they are consistent with newly
published results and are described in terms of elementally and
charge balanced reactions, imposing cell-wide proton balance;
and (3) associations between the genes, their products, and the
metabolic reactions they catalyze were introduced in order to
incorporate expression and genomic data.

The culmination of these changes is iND750; a fully com-
partmentalized S. cerevisiae metabolic model that summarizes our
current understanding of the relationship between the ORFs,
transcripts, and proteins that define the metabolic capabilities of
yeast. The name “iND750” was chosen based on a new conven-
tion for naming computational models described in Reed et al.
(2003). Briefly, the letter “i” designates an in silico model, “ND”
are the initials of the scientist who reconstructed the network,
and “750” is the total number of genes accounted for in the
model. Similarly, the model of Förster and Famili is referred to as
iFF708.

Genome-scale metabolic models such as the one described
in this work can be used to calculate experimentally verifiable
phenotypic predictions. One of the key scientific uses of these
models is to enable systematic improvement of our current
knowledge of metabolic networks by comparing model predic-
tions to experimental data. This process corresponds to the no-
tion of iterative model development (Palsson 2000), in which the
comparisons between in silico predictions and in vivo data are
used to identify potential improvements to the model, which
then in turn can be used to design new experiments. In particu-
lar, quantitative data on growth rates of individual gene dele-
tions strains under a number of experimental conditions can be
directly compared with in silico gene deletions in order to probe
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5If different isozymes are counted as separate reactions, there is a total of 1175
reactions in the Förster-Famili model; the set of reactions discussed here is a
count of the unique enzymatic and transport reactions determined from the
published reaction list.
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specific subcomponents of the metabolic network in detail.
These comparisons enable identification of potential problem
areas in the network, allow verification of hypothesized meta-
bolic reactions, and suggest specific experiments that can be used
to verify components of the network, such as the enzymatic
function of particular genes.

For yeast, the availability of whole-genome scale collections
of gene deletion strains (both haploid and diploid) has resulted
in a proliferation of high-throughput phenotyping studies (Win-
zeler et al. 1999; Birrell et al. 2001; Fleming et al. 2002; Giaever et
al. 2002; Jorgensen et al. 2002; Steinmetz et al. 2002). Of particu-
lar interest to metabolism are those studies that specifically test
growth on different media (Giaever et al. 2002; Steinmetz et al.
2002) because the relevant conditions can be recreated in silico
and the model’s predictions are at least qualitatively comparable
to the experimental results. In an earlier study (Förster et al.
2003b), the predictions of iFF708 (Förster et al. 2003b) were com-
pared with experimental data on gene essentiality (Winzeler et al.
1999), that is, whether a deletion strain grows when grown in
rich media under aerobic conditions. The significantly improved
genome-scale model of S. cerevisiae described in this article and
the availability of gene deletion data for multiple relevant media
conditions, that is, multiple carbon sources in addition to rich
media (Giaever et al. 2002; Steinmetz et al. 2002), allows us to
evaluate the predictive capability of iND750 as well as systemi-
cally suggest a number of potential improvements and exten-
sions to our current model. In particular, the comprehensive
gene-protein-reaction associations introduced in iND750 allow
metabolic reactions to be removed from the model in an in silico
deletion study according to the logical relationships among
genes, transcripts, proteins, and reactions, a feature that was not
available for simulations with the previous model (Förster et al.
2003a). The results of the present study illustrate the power of
model-driven data analysis in connecting specific genotypic
changes to phenotypic predictions in order to systematically im-
prove our understanding of a biological system.

RESULTS

Reconstruction of iND750
An earlier metabolic model of S. cerevisiae (referred to here as
iFF708; Förster et al. 2003a) served as a starting point for the
reconstruction of iND750, a fully compartmentalized yeast
model that requires a cell-wide proton balance and includes as-
sociations among its genes, proteins, and reactions. This section
summarizes our changes to iFF708 as well as key properties of
iND750.

Before genes and reactions from iFF708 were included in
iND750, it was verified that they were consistent with recently
published reports. The extent of the changes that were made to
iFF708 to form iND750 is reflected in Table 1, which compares
the number of genes, reactions, and metabolites in the two mod-
els. Nearly all of the genes in iFF708 are accounted for in iND750.
The additional genes primarily encode tRNA synthetases (26
genes) and ATPases found in the vacuole and Golgi apparatus
(13). Both models also share a large number of metabolites, al-
though the compartmental location of the metabolites has not
been considered in this comparison. Most of the metabolites
added to iND750 are found in reactions that have been ex-
panded, that is, reactions that were lumped in iFF708 and are
now included as individual steps or with distinct metabolites in
the new model. For example, the replacement of a generic ce-
ramide metabolite with two specific moieties led to the introduc-
tion of ∼20 additional metabolites in subsequent reactions. The
most notable difference between the models is in their reaction

sets. Of iND750’s 1149 reactions (counting isozymes as separate
reactions, iND750 includes a total of 1489 reactions), only 56%
are the same as those in iFF708, even after accounting for
changes required for elemental and charge balancing of the re-
actions. Most of these changes are the result of iND750’s five
additional compartments; many of the reactions that were pre-
viously listed as cytosolic were reassigned to a new compartment,
and >80 reactions were added to represent the metabolite ex-
change for these five compartments. Also, as mentioned earlier,
many types of metabolic reactions were expanded, especially in
fatty acid degradation, in which four individual steps in iND750
replaced the one lumped reaction for each fatty acid included in
iFF708. Other changes that are not noted in Table 1 include the
following: the introduction of a systemic definition of the asso-
ciations among genes, proteins, and reactions; the removal of
redundant compound abbreviations and duplicated reactions; and
updates to gene names and Enzyme Commission (EC) numbers.

iND750 accounts for eight cellular localizations, three of
which were included in iFF708 (extracellular space, cytosol, and
mitochondria) and five additional compartments (peroxisome,
nucleus, Golgi apparatus, endoplasmic reticulum, and vacuole).
To evaluate the connectivity of these compartments, iND750’s
646 distinct metabolites were analyzed according to their com-
partmental location (Fig. 1). Most notably, ∼90% of the metabo-
lites appear in cytosolic reactions. Half of these metabolites are
unique to the cytosol; this large percentage is not surprising be-
cause reactions were assigned to the cytosol by default (unless
there was evidence to the contrary.) The cytosol contains nearly
all of the metabolites shared between two compartments because
the metabolites must pass through it to be exchanged between
the compartments. The seven other compartments vary signifi-
cantly in their number of metabolites and connectivity. For ex-
ample, >75 metabolites can be found in the mitochondria, ex-
tracellular space, and peroxisome. All of the metabolites in the
extracellular space are shared with other compartments, whereas
the mitochondria and peroxisome have a defined set of unique
metabolites that do not appear in other compartments. The
nucleus, Golgi apparatus, endoplasmic reticulum, and vacuole
have <35 metabolites, almost all of which can be found in mul-
tiple compartments.

Developing a fully compartmentalized S. cerevisiae network
required the addition of many intercompartmental transport re-
actions. Table 2 shows the 297 transport reactions included in
iND750. The majority of these reactions represent transport
across the plasma and mitochondrial membranes (for a note on
the representation of these membranes, see Methods). The pri-
mary transport mechanisms across the plasma membrane and
the intracellular membranes are noticeably different. Nearly two-
thirds of the metabolites exchanged between the cytosol and the
extracellular space occur by symport, typically a primary metabo-
lite and proton transported in the same direction, whereas most

Table 1. Comparison of iFF708 and iND750

iFF708 iND750 % Conserved

Genes 708 750 94
Metabolitesa 584 646 90
Unique reactionsb 842 1149 56c

aThe total number of metabolites irrespective of their compartmental
locations.
bThe number of unique reactions (isozymes are not counted as sepa-
rate reactions).
cReactions that differ in protons and water molecules are considered
to be conserved.
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of the metabolites exchanged between the intracellular compart-
ments are transported by diffusion. The membranes also vary in
their number of gene-associated reactions. The plasma mem-
brane has the largest proportion of gene-associated reactions
(∼50%), whereas the nuclear, endoplasmic reticular, Golgi appa-
ratus, and vacuolar membranes do not have any. As a result,
many of the transport reactions across the intracellular mem-
branes had to be inferred based on reactions known to take place
in these compartments.

All of the compartments in iND750 were assumed to have a
pH of 7.2. Consequently, the charge and formulae of all metabo-
lites were determined by their ionization form at this pH. By
including water molecules and protons in iND750’s reactions,
>99% could be written so that they were both elementally and
charge balanced. The few imbalanced reactions are typically
those catalyzed by enzymes with a mechanism that is not fully
understood, such as biotin synthase (E.C. 2.8.1.6). Structuring
the reactions in this manner forces the proton production and
consumption to be balanced within each compartment and thus
in the entire cell. This global proton balancing has implications
for cellular growth, as has been demonstrated for E. coli grown on
various carbon sources (Reed et al. 2003).

Unlike iFF708, which does not systematically represent the
relationship between its genes and reactions, iND750’s gene-
protein-reaction associations can be viewed as graphical repre-
sentations of the logical relationships between its ORFs, tran-
scripts, proteins, and reactions. For example, proteins classified
as multifunctional can catalyze more than one reaction (Fig. 2A).
Distinct proteins that can individually catalyze a reaction are
defined as isozymes (Fig. 2B). Multimeric proteins are defined as
those formed by more than one transcript (Fig. 2C). Finally, a
protein complex is a set of proteins that are required to catalyze
a reaction (Fig. 2D). A catalog of all of iND750’s gene-protein-
reaction associations can be found in the Supplemental material.
A similar genome-scale set of gene-protein-reaction associations
has been established for Escherichia coli (Reed et al. 2003).

Gene Deletion Study
The genome-scale compartmentalized
metabolic model of S. cerevisiae described
above was validated and interrogated in de-
tail by comparing model predictions for de-
letion strain phenotypes with published re-
sults from two large-scale growth phenotyp-
ing studies (Giaever et al. 2002; Steinmetz et
al. 2002) for seven different media condi-
tions. The media conditions included in
this study were aerobic growth on glucose
minimal media (MMD) and on rich media
with six different carbon sources: glucose
(YPD), galactose (YPGal), glucose-ethanol-
glycerol mixed media (YPDGE), glycerol
(YPG), ethanol (YPE), and lactate (YPL).
Four of the carbon sources allow fermenta-
tive growth (MMD, YPD, YPGal, and
YPDGE) and three allow only nonfermenta-
tive growth (YPG, YPE, and YPL). In addi-
tion to the seven media conditions de-
scribed above, one of the experimental
studies (Giaever et al. 2002) also separately
reported genes for which deletions strains
could not be constructed (essential genes)
and genes with deletion that leads to a slow
growing strain on rich media (slow growth
genes). The data sets from the two different
experimental studies are partially overlap-
ping, because the genes with deleterious

phenotypes under the YPD condition in Steinmetz et al. (2002)
should agree with the essential/slow growth genes in Giaever et
al. (2002). However, because the experimental designs and data
analysis methods used in the two studies were different, the two
gene lists do not necessarily always agree.

In silico gene deletions were performed by using established
procedures using flux balance analysis (FBA; Varma and Palsson
1994; Bonarius et al. 1997; Price et al. 2003) as described in the
Methods section. The media conditions for the simulations were
set to match the experimental conditions as closely as possible
(see Methods). The experimental data was obtained from the two
different data sources (Giaever et al. 2002; Steinmetz et al. 2002)
and preprocessed as described in the Methods section. Lists of
essential and slow growth genes (as described above) as well as
phenotyping data for the MMD and YPGal media were obtained
from Giaever et al. (2002), and the phenotyping data for the
remaining conditions were obtained from Steinmetz et al. (2002).
To make the in vivo data and in silico predictions comparable,
both were converted from continuous-value relative fitness
scores to a discrete viable/retarded growth assessment for each
gene deletion strain and condition as described in the Methods.
This data transformation was done as it was not expected that the
in silico predicted growth rates would necessarily quantitatively
match in vivo fitness scores obtained from the experimental
data. In addition, the two experimental studies used different
approaches to measure the fitness of each deletion strain so that
these two different fitness scores had to be made comparable.

To facilitate analysis of the results, each in silico phenotype
prediction was classified into one of four categories following the
convention used in Förster et al. (2003b): True positive (TP; ex-
perimentally and in silico viable), true negative (TN; experimen-
tally and in silico growth retarded), false positive (FP; experimen-
tally growth retarded, in silico viable), and false negative (FN,
experimentally viable, in silico growth retarded). Deletion phe-
notype predictions for at least one condition were done for 682
of the total of 750 genes in the model, and the predictions were

Figure 1 Distribution of S. cerevisiae iND750’s 646 unique metabolites in its eight compartments.
The number of metabolites found in each compartment is shaded based on its connectivity.
Metabolites that are unique to a particular compartment are shown in white; metabolites found in
two compartments are shaded in grey; and metabolites found in three or more compartments are
shaded in black.
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classified as described above. No experimental deletion data were
available for the remaining genes.

The number of model predictions in each of the four cat-
egories described above for each growth condition as well as the
overall totals for all conditions taken together are shown in Table
3. A total of 4154 comparisons between in silico and in vivo
deletions were analyzed in this study, representing, to date, the

largest evaluation of the predictive power of genome-scale meta-
bolic models. The overall correct prediction rate was 82.6%,
which is similar to that obtained in more limited studies with
other organisms as well as yeast (Edwards and Palsson 1999,
2000; Schilling et al. 2002; Förster et al. 2003b). The TP rate (TP
predictions/total number of in vivo normal growth phenotypes)
was 96.6%, indicating that the model correctly captures the built-

Figure 2 Examples of gene-protein-reaction associations that represent the detailed logical relationships between open reading frames (ORFs),
transcripts, proteins, and reactions in the model. (A) A multifunctional protein, such as Ole1p, can catalyze more than one reaction. (B) Pyc1p and Pyc2p
are examples of isozymes, or proteins that can catalyze the same reaction independently. (C) Idhp is an example of a multimeric protein; it is formed
by the association of two transcripts. (D) Proteins Pxa1p and Pxa2p form a protein complex. Both proteins are required to catalyze the reactions. All the
gene-protein-reaction associations in Saccharomyces cerevisiae iND750 are found in the Supplemental materials as well as at http://
systemsbiology.ucsd.edu.

Table 2. Comparison of Transport Reactions Included in iND750

No. of
reactions

Transport mechanism (# gene-associated)

Diffusion Symport Antiport Other

Extracellular Transport 113 36 (9) 74 (46) 3 (1) 0
Mitochondrial Transport 101 65 (0) 21 (2) 14 (13) 1 (1)
Peroxisomal Transport 39 19 (2) 6 (0) 5 (0) 9 (9)
Nuclear Transport 23 18 (0) 5 (0) 0 0
Endoplasmic Reticular Transport 10 9 (0) 1 (0) 0 0
Vacuolar Transport 7 5 (0) 2 (0) 0 0
Golgi Apparatus Transport 4 3 (0) 0 1 (0) 0

The transport mechanisms have been classified as diffusion (exchange of only a primary metabolite), symport (a primary
and secondary metabolite transported in the same direction), antiport (a primary and secondary metabolite transported in
opposite directions), or other (ABC transporters and ADP/ATP exchange reactions). For each membrane/mechanism
combination, the number of gene-associated reactions is shown in parentheses next to the total number of reactions in that
category.
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in redundancy in metabolism in that most gene deletions have
no phenotypic effect under most conditions. However, the FP
rate (FP predictions/total number of in vivo deleterious pheno-
types) was 77.0%, showing that less than one-fourth of slow
growth phenotypes were predicted correctly.

The correct prediction rates for each media condition (after
correcting the MMD and YPGal data to include the slow growth
predictions) were very similar, ranging from 84.0% for MMD to
86.6% for YPG. Surprisingly, the FP rate on glucose (YPD) was
higher than the rate on other substrates even though the mecha-
nisms of glucose utilization are much better established than
those of, for example, glycerol or lactate. Most of the FP predic-
tions were for genes defined as essential or slow growth on rich
media, for which the FP rates were 68.6% and 80.7%, respec-
tively. Largely the same set of genes were responsible for the false

predictions in all media conditions, indicating that most of the
model inaccuracies were not condition dependent. However,
there were a number of false predictions unique to each condi-
tion, ranging from two (YPG) to 17 (MMD). These unique false
predictions are particularly useful for model improvement as
they may potentially suggest specific improvements to the model
as described in the Discussion.

To further investigate the sources of the false predictions, we
analyzed their distribution with respect to cellular compartments
and metabolic subsystems. The overall false prediction rates as
well as FN and FP rates for genes in particular cellular compart-
ments are shown in Figure 3A. Genes localized to the nucleus and
mitochondria had the highest false prediction rate (28.6% and
27.4%), whereas this rate was much lower (13.5%) for cytosolic
genes. Figure 3B shows the false prediction rates for genes asso-

Figure 3 False prediction percentages for genes in particular cellular compartments (A) and particular metabolic subsystems (B). The overall error rate
is the percentage of false predictions out of all of the predictions. The false-negative (FN) rate is the percentage of FN predictions out of all predictions
in which the experimental data show normal growth. The false-positive (FP) rate is the percentage of FP predictions out of all predictions in which the
experimental data show retarded growth. Genes that participate in transport functions between compartments are classified according to Table 2.
Compartments with at least 10 genes and metabolic subsystems with at least 15 genes are included.

Table 3. Overall Results for the Comparison Between In Silico and In Vivo Gene Deletions

Essential
(118)

Slow
(83)

MMD
(564)

YPGal
(564)

YPD
(565)

YPDGE
(565)

YPG
(565)

YPE
(565)

YPL
(565)

All
(4154)

TP 0 0 439 476 474 465 466 461 466 3247
FP 81 67 74 69 73 64 62 60 61 611
TN 37 16 35 7 3 17 23 23 22 183
FN 0 0 16 12 15 19 14 21 16 113
Total 118 83 564 564 565 565 565 565 565 4154
Unique false 81 3 17 4 15 7 2 6 4 139a

Correct rate 31.4 19.3 84.0 85.6 84.4 85.3 86.5 85.7 86.4 82.6
TP rate — — 96.5 97.5 96.9 96.1 97.1 95.6 96.7 96.6
FP rate 68.6 80.7 73.4 85.5 96.1 79.0 72.9 72.3 73.5 77.0

The results for MMD and YPGal media include the slow growth predictions determined separately as experimentally
deleterious phenotypes. Unique false is the number of false predictions that were specific to the particular experimental
condition. Correct rate is the percentage of correct predictions out of all of the predictions. The true-positive rate (TP) is
the percentage of TP predictions out of all predictions in which the experimental data shows normal growth. The
false-positive (FP) rate is the percentage of FP predictions out of all predictions in which the experimental data shows
retarded growth.
aTotal number of genes with a false prediction under only one condition in the whole study.
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ciated with major metabolic subsystems included in the model.
The highest false prediction rates were obtained for genes in-
volved in quinone biosynthesis (45.3%), followed by phospho-
lipid biosynthesis (39.3%) and branched chain amino acid bio-
synthesis (37.5%). Subsystems with high false prediction rates
also included oxidative phosphorylation (31.4%), mirroring the
tendency for mitochondrial gene deletions to be falsely predicted
as seen in Figure 3A. The lowest false prediction rates were ob-
tained for genes involved in extracellular transport (3.2%), his-
tidine metabolism (5.0%), and glutamate metabolism (5.1%).
Overall, the distribution of the false predictions can be seen to be
quite uneven, with a few metabolic subsystems accounting for
the majority of the problems.

The reasons for the false prediction for each of the 246 genes
with false predictions under one or more conditions were indi-
vidually evaluated by both studying relevant literature on previ-
ously determined mutant phenotypes for the gene and by inter-
rogating its role in the metabolic model. The results of this evalu-
ation for each of the media conditions separately as well as for all
false positives and false negatives, for false predictions under a
unique condition, and for all false predictions together are
shown in Figure 4. The primary sources of false predictions were
organized into 10 different categories (detailed in the caption for
Fig. 4). Overall, more than half of the false predictions can be
accounted for by the involvement of the genes in other cellular
processes in addition to metabolism (33.7%) and problems in the
biomass composition assumed in the in silico deletion study
(17.5%). Interestingly, the reasons for FP and FN predictions were
quite different, with majority of the FPs arising for the above-
mentioned reasons, whereas the majority of FNs could be traced
to uncertainty in the in silico media composition (50.0%) and
issues related to the gene-protein-reaction relationships in the
model (18.4%). The different media conditions had similar dis-
tribution of the sources of false predictions, but the majority of
the false predictions that arose because of missing in silico bio-
mass components were related to essential genes. The sources of
false predictions for genes with a unique false prediction under
one experimental condition were also quite different from the
overall pattern, with a particularly high fraction of false predic-
tions with no clear reason for the false assessment (25.5%).

DISCUSSION

The new genome-scale metabolic model iND750 is an expansion
of the initial genome-scale metabolic reconstruction of S. cerevi-
siae (Förster et al. 2003a). Unlike its predecessor, iND750 is fully
compartmentalized, accounting for eight localizations (extracel-
lular space, cytosol, mitochondria, peroxisome, nucleus, Golgi
apparatus, endoplasmic reticulum, and vacuole). The expanded
network also includes gene-protein-reaction associations that
represent the logical relationships among iND750’s 750 genes
and their corresponding transcripts, proteins, and functional ac-
tivities. Finally, the 1149 unique reactions that describe iND750’s
metabolic capabilities have been formulated so that they are both
elementally and charge balanced to allow for the enforcement of
a cell-wide proton balance. It was verified separately that iND750
is capable of predicting whole-cell functions such as P/O ratios
and byproduct secretion rates under a variety of conditions with
similar or improved accuracy compared with iFF708 (Famili et al.
2003; data not shown).

After successfully reconstructing iND750, a large-scale phe-
notyping experiment was performed in silico to comprehen-
sively evaluate its performance. The network’s predictions of
growth phenotypes of knockout strains for seven different media
conditions were found to agree with 3430 of the 4154 pheno-
types reported in two large-scale in vivo deletion studies. The
overall prediction performance in this study (82.6% correct phe-
notypes) was lower than that obtained in the previous study
(Förster et al. 2003b) with iFF708 (85%), in which data on gene
essentiality only was used. When predictions by the two models
were compared in detail, it was found that iND750 made correct
predictions on gene essentiality in six cases that were incorrectly
predicted by iFF708. On the other hand, iND750 made incorrect
predictions for two genes with essentiality that was correctly pre-
dicted by iFF708. The main reasons for the overall lower predic-
tion accuracy of iND750 were the larger number of media con-
ditions considered in this study and the inclusion of a number of
new genes in iND750 that have a role in other cellular processes
in addition to metabolism.

The results of the in silico deletion study showed surpris-
ingly large variability in the false prediction rates between genes

in different compartments. The nuclear
and mitochondrial compartments had
the highest overall error rate, and most of
these errors were FP predictions. Because
the mitochondria were shown to have a
distinct set of metabolites (Fig. 1), it
seems surprising that iND750 may not
have fully captured its unique role in cel-
lular growth. Further analysis of the fail-
ure modes in terms of pathways revealed
that these false predictions might be due
to the fact that the model does not accu-
rately represent mitochondrial mainte-
nance. Also, in this model, we have as-
sumed that the outer mitochondrial
membrane is like a sieve, allowing free
diffusion of metabolites; however, there
is evidence to suggest that the permeabil-
ity of outer mitochondrial membrane
may be regulated (Mannella 1992). This
variation in permeability may have im-
portant implications for controlling en-
ergy metabolism (Vander Heiden et al.
2000). Peroxisomal reactions were one of
the most significant additions to iFF708
as the peroxisome has its own defined set

Figure 4 Breakdown of the false predictions by the source of false prediction. The reasons for false
predictions are as follows: transcriptional regulation (regulation), model structure, accumulation of
toxic intermediate in vivo (accumulation), dead ends in the model (dead end), discrepancy in the
experimental data (exp discrepancy), gene–protein reaction associations (isozyme), unknown, in silico
media composition (media), in silico biomass composition (biomass), and other cellular processes not
included in the model (other). Results are shown for each experimental condition, including essential
genes (essential) and slow growth genes (slow) on rich media. In addition, the distributions of the
sources of false predictions are shown for false-positive (FP), false-negative (FN), and unique false
predictions (unique) separately.
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of metabolites and plays a crucial role in the degradation of fatty
acids. The high correct prediction rate obtained for peroxisomal
genes (96.9%) indicates that the model fairly accurately accounts
for the metabolic function of this important cellular compartment.

Because iND750 represents the current understanding of
metabolism in yeast as completely as possible within a stoichio-
metric model, analysis of its failure modes is important because
they can be used to highlight inconsistencies in the body of
information used in the reconstruction. The 10 categories of
sources of false predictions described in the caption for Figure 4
are discussed in detail below, with appropriate examples given
for each category. The classifications of each false prediction into
these categories as well as detailed explanations for the false pre-
diction are included in the Supplemental material to this article.
In many cases, the false predictions led to direct suggestions of
how to potentially improve the model or of specific experiments
that could be performed to further improve our understanding of
yeast metabolism. In the following, we will focus on examples
that were not described in the earlier study (Förster et al. 2003b)
or on examples in which the interpretation of the reason for the
false prediction has changed due to a more complete model or
data available under multiple experimental conditions.

Model Structure
Analysis of the sources of false predictions revealed five genes for
which the false predictions are probably due to missing or extra-
neous functionalities in the model. POS5 (coding for a mitochon-
drial NADH/NADPH kinase) deletion resulted in a FP prediction,
because the model can produce NADPH in mitochondria using
other mechanisms, whereas it has been recently shown experi-
mentally that Pos5p is the major source of mitochondrial
NADPH (Outten and Culotta 2003). The FP predictions for ERG2,
ERG3, and ERG6 are due to a bypass in the model in ergosterol
metabolism that allows direct synthesis of ergosterol from zymo-
sterol. Although this bypass has been suggested to exist in yeast
(Parks 1978), based on the current study it appears that this al-
ternate route in yeast does not bypass Erg2p, Erg3p, and Erg6p.
The mitochondrial pyrophosphatase PPA2 deletion is a FP, be-
cause the model can use a cytosolic pyrophosphatase instead and
transport phosphate and pyrophosphate between the two com-
partments. If this transport capacity were limited, as it is likely to
be in vivo, the PPA2 deletion would result in a lower growth rate
due to limitation in mitochondrial metabolism. All these false
predictions directly suggest potential changes to the actual struc-
ture of the model and also possibly the need to reevaluate our
understanding of the specific parts of yeast metabolism as in the
case of the ergosterol biosynthetic pathway.

Gene-Protein-Reaction Associations
The false predictions relating to gene-protein-reaction associa-
tions are primarily due to either potentially missing isozymes
(FNs) or the existence of a dominant isozyme with activity that
can not be fully compensated for by the other isozymes (FPs). The
Gal2p galactose transporter is an example of the latter class, as it
is known that other hexose transporters can also transport galac-
tose (Wieczorke et al. 1999), but based on the comparison be-
tween simulation results and experimental data, it appears that
these transporters are insufficient to maintain maximal galactose
uptake. A typical example of the latter class is the FN prediction
for Bat2p transaminase, which was found to be due to the lack of
valine transamination functionality of the Bat1p isozyme in the
model. This function has not been experimentally proven (Kispal
et al. 1996), but based on the results presented here, it appears
likely that BAT1 gene product can catalyze valine transamination
in addition to other transamination reactions. The false predic-
tions that were due to gene-protein-reaction associations suggest

modifications to the model that relate to how the gene-to-
enzymatic function mapping occurs in vivo.

Regulatory Mechanisms
The lack of incorporation of regulatory mechanisms in the model
could only clearly explain false model predictions for two of the
genes—CDC19 (pyruvate kinase) and ADH1 (alcohol dehydroge-
nase). Both of these genes have isozymes that are capable of
catalyzing the same reaction but are known to be down-regulated
under the particular condition in which the FP prediction was
done. The lack of regulatory restraints in the current model could
also partially explain the observed general pattern of higher false
prediction rates for conditions with glucose as the main carbon
source, as one would expect that the model would otherwise be
more accurate for glucose than for less well characterized carbon
sources. Because of the extensive metabolic reprogramming in
glucose-grown cells using different glucose repression mecha-
nisms, regulation plays a more significant role on glucose-
containing media than on other media conditions. In future gen-
erations of constraint-based metabolic models, transcriptional
regulation will be at least qualitatively incorporated in the mod-
els (Covert and Palsson 2002) so that regulatory effects will be
more accurately accounted for.

Dead Ends in the Model
For eight genes with FP predictions, the reaction catalyzed by the
gene product leads to a dead end in the model, whereas in vivo
the product of the reaction clearly is necessary for cellular func-
tion. This result indicates that either the model is missing some
metabolic functions or there are gaps in the literature in under-
standing specific metabolic subsystems. Many of the dead ends
are in phospholipids metabolism in which the corresponding
genes participate in the biosynthesis of complex phospholipids
that are not used within the model, but that are probably con-
verted to essential membrane phospholipids. Not all the dead
ends in the model result in false predictions so that the eight-
gene subset provides direct suggestions for further experimental
work necessary for understanding the role of the currently un-
used metabolites in yeast cellular function.

Accumulation of Toxic Intermediates
In a few cases, the primary reason for a FP prediction by the model
appears to be the accumulation of a toxic intermediate in vivo
when a particular enzyme further down the pathway is removed.
For example, although folate biosynthesis is not required in rich
media, genes involved in the biosynthetic pathway (FOL1/FOL2/
FOL3/DFR1) are essential, which is most likely due to toxicity of
dihydropteorate (DHP), a precursor in the pathway (Bayly and
Macreadie 2002). Similarly, in vivo MET22-null mutant accumu-
lates phosphoadenylyl sulfate (PAPS), which is cytotoxic (Tho-
mas et al. 1990). The in silico model does not account for non-
specific chemical toxicity effects because these are usually not
directly related to the metabolic function, but it is also possible
that the model allows balancing of a toxic intermediate even if
this would not happen in vivo and hence fails to predict the
deleterious phenotype.

Media Composition
Uncertainties in the in silico media compositions used to mimic
the experimental conditions were the primary source of 32 false
predictions, most of which were FNs. There are two separate
sources of errors that can be identified: (1) wrong media compo-
sition, and (2) incorrect numerical values of maximum uptake
rates of key nutrients. The former category includes examples
such as TPS1/2 (trehalose 6-phosphate synthase/phosphatase),
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which both are FP predictions on rich media due to the fact that
the in silico YP medium contains trehalose, and hence, these
genes that are essential for trehalose biosynthesis are not needed.
However, it has been shown that trehalose is indeed a major
component of the yeast extract medium (Zhang et al. 2003) so
that the FP prediction is probably due to the inability of the yeast
to use the trehalose in the media in the experimental deletion
studies. The latter category of errors is typically manifested as a
function of either the major carbon source or oxygen uptake rate
or both. For many genes involved in mitochondrial respiration,
either lowering or raising the oxygen uptake rate would result in
better predictive power. However, the maximum oxygen uptake
rates in a batch culture are hard to estimate as they depend both
on the degree of aeration provided and on the growth rate–
dependent limitations due to the Crabtree effect (for details, see
Methods). Most of the false predictions unique to a specific ex-
perimental condition could be traced back to uncertainties in the
in silico media composition or maximal uptake rates, indicating
that a more careful evaluation of these failure modes would re-
quire performing the in vivo deletion studies in well-defined me-
dia conditions that can be reproduced more accurately in silico.

Biomass Composition
As noted already in our earlier deletion study using iFF708
(Förster et al. 2003b), the biomass composition used in the model
is a major source of false predictions as it determines which me-
tabolites are considered to be essential for cellular function and
in what relative quantities these metabolites have to be pro-
duced. The biomass composition is derived primarily from ex-
perimental data on the composition of yeast cells growing in the
exponential phase, and it only includes the major biomass com-
ponents, as measuring trace components is difficult (Förster et al.
2003a). Typical examples of FP predictions by the model are all
genes involved in heme and quinone biosynthesis as these co-
factors are obviously essential for cellular function. However, al-
though the model uses these and other cofactors, they are re-
cycled in the reactions, and unless there is a drain of cofactors to
the biomass, they do not need to be synthesized de novo. An
example of FN predictions that relate to the in silico biomass
composition are certain genes in membrane lipid and steroid
biosynthesis. Although some of the lipids are essential, they can
often be used interchangeably by the cell so that any particular
type of lipid or sterol may not be essential as long as sufficient
overall amount of, for example, phospholipids is produced. Be-
cause the model biomass requires fixed amounts of certain types
of phospholipids and steroids, this leads to FN predictions. The
false predictions due to the biomass composition could be easily
corrected by including trace amounts of essential cofactors in the
biomass and allowing more flexible usage of phospholipids and
steroids, but it would be difficult to estimate exactly the relative
amounts of the metabolites required without further experimen-
tation.

Other Cellular Processes
The single most common source of false predictions in this study
was the involvement of metabolic genes in other cellular pro-
cesses that are not accounted for in the current model. As men-
tioned earlier, the model does not currently include mRNA and
protein synthesis, and thus, all pathways resulting in the biosyn-
thesis of various RNA species such as transfer RNAs are dead ends,
although these functions are clearly essential for cellular func-
tion. Because methods for incorporating protein synthesis into
the constraint-based modeling framework have been developed
(Allen and Palsson 2003; Allen et al. 2003), in future versions of
the model, these currently missing functionalities can be ac-
counted for. Another type of FP prediction that arises from the

involvement of metabolic genes in other cellular processes is the
role of these genes in overall cellular maintenance. For example,
FP predictions were made for all vacuolar ATPase components, as
their disruption in vivo results in major problems in pH balanc-
ing and the current model does not yet implement full pH bal-
ancing between compartments. Similarly, although the model
does correctly predict the phenotypes for deletions of ATP syn-
thase subunits on nonfermentable carbon sources, on ferment-
able carbon sources the model does not require the mitochon-
drial ATP synthase, although in vivo this functionality is required
for general mitochondrial maintenance. As the constraint-based
framework is extended to include other types of cellular processes
in addition to metabolism and regulation, it can be expected that
many of the false predictions will be corrected and that the com-
parison between in silico and in vivo gene deletions will provide
valuable assistance for the expanded model building.

Discrepancies in Experimental Data
There were 16 genes with false predictions for which apparent
discrepancies in experimental data were found. These included
cases such as PRO3, which is listed as an essential gene in one
study (Giaever et al. 2002) but appears to be nonessential in the
other study (Steinmetz et al. 2002). In addition to discrepancies
between the two genome-wide deletion studies, there were also
genes with a phenotype in the large-scale studies that disagreed
with the reported phenotype in the literature (e.g., THR1-null
mutant should only be a threonine auxotroph and should grow
on rich media). False predictions for cases in which apparent
discrepancies in experimental data were found were not further
analyzed as it was not clear which data set would be the most
trustworthy.

Unknown Sources of False Predictions
There were 31 genes with predicted false phenotypes that could
not be explained by any of the reasons listed above, even after
careful evaluation of both the model and experimental data.
Many of the genes in this list are related to a few separate meta-
bolic subsystems with false phenotypic predictions under specific
media conditions, indicating that there may be important uni-
dentified biochemical mechanisms present in these systems. An
especially interesting example is the high number of false pre-
dictions related to methionine and homocysteine biosynthesis,
which have been extensively studied both in yeast and in higher
eukaryotes because of the role of homocysteine in cardiovascular
and neurodegenerative diseases (Lievers et al. 2003; Mattson and
Haberman 2003). The key gene in this system is MET6, which
codes for the methionine synthetase responsible for converting
homocysteine into methionine. This deletion has no phenotype
on rich media in vivo, but the model predicted the deletion to be
lethal due to inability to balance homocysteine in absence of the
methionine synthetase reaction. However, the model currently
accounts for all of the biochemical transformations with homo-
cysteine either as a reactant or product that are known to be
present in yeast, indicating that there may still be some un-
known mechanism by which homocysteine balancing is accom-
plished in vivo. The genes with false predictions with no clearly
identifiable reason for the false result provide clues to areas in
which further experimental work is clearly needed in order to
improve our understanding of eukaryotic metabolism.

Taken together, the detailed analysis of model failures pre-
sented above resulted in the 27 direct suggestions for improving
the current model listed in Table 4 either by changing its reaction
structure or the gene-protein-reaction associations. Some of these
suggestions are straightforward, such as making a component of
a complex nonessential for the enzymatic function, whereas oth-
ers, such as restricting phosphate transport across the mitochon-
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drial membrane, would be somewhat more challenging to imple-
ment. For all of the 27 cases, the model represents the current
knowledge on metabolic biochemistry, genetics, and physiology
as given the currently available information, and the changes
relate primarily to how the available information is interpreted.
These suggestions demonstrate how model-driven evaluation of
experimental data (in this case gene deletion phenotypes) can be
used to systematically fine tune the model and hence improve
our understanding of a particular biological system.

Conclusions
We have shown that multicompartmental in silico metabolic
models of eukaryotic cells with elementally and charge balanced
reactions can be successfully built. In addition, these models can
be used to compute growth phenotypes of organisms with al-
tered genotypes in various media conditions. The growth phe-

notypes computed with the compartmentalized eukaryotic
model were found to be consistent with 83% of the in vivo re-
sults. Detailed case-by-case analysis of the false predictions led to
the identification of gaps or inconsistencies in our knowledge
base that require either changes in the model structure or further
experimental investigation. This high correct prediction rate
demonstrates the growing predictive power of constraint-based
metabolic models even under variable environmental conditions
and the overall importance of network topology in determining
phenotypic consequences of genotypic changes.

METHODS

Model Reconstruction
The S. cerevisiae genome-scale metabolic network reconstructed
by Förster and Famili (iFF708; Förster et al. 2003a) was used as a

Table 4. Suggested Changes to Model Structure Based on the Gene Deletion Study

ORF Gene

Reason
for false

predictiona Suggested change and comments

YPL188W POS5 Mod Change the model so that only Pos5p can provide NADPH in mitochondria
YMR267W PPA2 Mod Force the model to use Ppa2p instead of the cytoplasmic isoforms by restricting phosphate

transport out of the mitochondria.
YMR202W ERG2 Mod Modify the interconversion between zymosterol and ergosterol biosynthesis to require ERG2.
YLR056W ERG3 Mod See ERG2.
YML008C ERG6 Mod See ERG2.
YDR178W SDH4 Iso Make Sdh4p a nonessential part of the succinate dehydrogenase complex.
YML123C PHO84 Iso There are multiple alternative isozymes for the phosphate transporters, but Pho84p should be the

dominant one.
YBR069C TAT1 Iso There are multiple alternative isozymes for amino acid transporters in the model, but they need to

be made less efficient than Tat1p.
YLR081W GAL2 Iso Model includes other isozymes (HXT genes) that are not nearly as efficient for gal transport, so

disabling their gal transport ability should result in a correct prediction.
YMR105C PGM2 Iso Pgm2p is major isoform of phosphoglucomutase; do not allow the minor isoform (Pgm1p) to fully

compensate for loss of Pgm2p.
YHR137W ARO9 Iso Aro8p should be able to compensate for ARO9 deletion on minimal media; modify the

gene-protein-reaction association to reflect this.
YGL125W MET13 Iso Met13p is the dominant isozyme; do not allow isozyme (Met12p) to compensate fully for the loss

of Met13p.
YHR046C INM1 Iso Add the gene product of YDR287W as an isozyme for Inm1p.
YHR001WA QCR10 Iso This subunit should be made a nonessential part of the cytochrome bc1 complex since it only plays

a structural role.
YFR033C QCR6 Iso Deletion of QCR6 does not have significant effect on the formation or stability of cytochrome bc

complex so that it should not play an essential role in complex formation.
YKL067W YNK1 Iso Null mutant retains 10% of nucleoside diphosphate kinase activity. Sources of remaining enzyme

activity are unknown. Reaction without gene associations should be added to the model to
represent these unidentified enzymes.

YLR304C ACO1 Iso The isozyme coded by YJL200C should not be able to fully compensate for ACO1 deletion.
YNL052W COX5A Iso Cox5Ap is the dominant isoform; Cox5Bp should not be able to fully compensate.
YKL148C SDH1 Iso Sdh1p should not be considered to be an essential part of the succinate dehydrogenase complex.
YGL008C PMA1 Iso This is the major isoform of the cytosolic ATPase, but in the model a minor isoform (which contains

Pma2p instead of Pma1p) can compensate for the function. Do not allow the minor isoform to
fully compensate for the loss of the major isoform.

YLR342W FKS1 Iso There are three alternate isozymes in the model, but Fks1p should be made the dominant isozyme.
YHR183W GND1 Iso This is the major isozyme (80% of activity); other isozymes should be made less efficient.
YLR044C PDC1 Iso There are three alternate isozymes in the model, but PDC1 deletion alone is sufficient to reduce

pyruvate decarboxylase activity significantly enough to result in a slow growth phenotype.
Should have Pdc1p as the major isozyme.

YJR148W BAT2 Iso BAT2 single deletion should not be lethal as there is a mitochondrial isozyme (Bat1p); double
deletion should be lethal. Bat1p currently does not catalyze valine transamination so this
functionality should be added.

YCL009C ILV6 Iso Ilv6p is the regulatory subunit of phenylalanine transaminase. This subunit should be made
nonessential for the enzymatic function.

YAL038W CDC19 Reg Pyk2p isozyme should only be expressed under conditions of very low glycolytic flux.
YOL086C ADH1 Reg This isozyme (out of five) should be the only one active under severely glucose repressed

conditions.

aThe reasons for false predictions have been classified as model structure-related (Mod), gene-protein-reaction association-related (Iso), or tran-
scriptional regulation related (Reg). See Supplemental materials as well as http://systemsbiology.ucsd.edu for more details.
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basis for the development of iND750. Starting with the list of
ORFs included in iFF708, the corresponding gene names, Enzyme
Commission (EC) numbers, and reactions were all reevaluated to
check their consistency with recently published reports. Special
attention was given to compartmentalization, elemental and
charge balancing of reactions, and the relationships among
genes, proteins, and reactions, which are discussed below. The
updated metabolic network was then constructed by using the
SimPheny software package (Genomatica).

Compartmentalization
Because reactions in iFF708 were restricted to only the cytosol,
mitochondria, and extracellular space, the localization of each
gene product was revised to take into consideration the five ad-
ditional compartments included in iND750 (peroxisome, endo-
plasmic reticulum, Golgi apparatus, nucleus, and vacuole). Infor-
mation on the localization of the gene products was primarily
taken from the SGD (Weng et al. 2003) and Comprehensive Yeast
Genome Database (Mewes et al. 2002). If there was little or no
evidence that a gene product was found in a particular compart-
ment, then it was assumed to be located in the cytosol. An ad-
ditional assumption was also needed for membrane proteins be-
cause oftentimes there was no evidence regarding the location of
their catalytic domains. Unless there was evidence to the con-
trary, it was assumed that reactions catalyzed by membrane pro-
teins occurred in the cytosol. Finally, all of the compartments
were modeled as if there were only one boundary between the
cytosol and its lumen. For example, because the intercompart-
mental space of the mitochondria is considered to be equivalent
to the cytosol in its metabolite and ion concentrations (Voet et
al. 1999), proteins that are localized to these regions are consid-
ered cytosolic. Similarly, the cell wall and periplasmic space are
both treated as part of extracellular compartment.

Intercompartmental Transport
Additional transport reactions were needed to describe the ex-
change of compounds between the eight cellular compartments
of iND750. The transport processes across the plasma membrane
have been well studied; many genes have been identified that
encode transport proteins (for a comprehensive list, see Walker
1998; Dickinson and Schweizer 1999). These genes and their
documented transport mechanisms have been included in
iND750. In addition, many metabolites are known to diffuse
across the yeast cell wall (Walker 1998; Dickinson and Schweizer
1999). For those compartments in which there was little infor-
mation about transport processes, most of the exchange reac-
tions had to be inferred. A primary assumption was that a par-
ticular compound was transported across various membranes by
a similar process. For example, because tyrosine is known to cross
the plasma membrane via proton symport, it was also assumed to
be transported across the peroxisomal membrane by the same
mechanism. Transport reactions were also inferred based on the
known characteristics of some membranes, such as the nuclear
membrane, which contains pores that allow substrates <9 nm or
60 kD to pass freely (Allen et al. 2000). Consequently, most of the
compounds transported into and out of the nucleus are ex-
changed by simple diffusion.

Elemental and Charge Balancing
The reactions in iND740 are elementally and charge balanced.
The formula and charge of the metabolites were determined
based on their ionization state at a pH of 7.2. For simplicity, all of
the compartments were assumed to have the same pH. By intro-
ducing ionized compounds, water molecules and protons that
participate in the reactions are explicitly accounted for so that
the reactions had no net charge change and obeyed elemental
balances. Water molecules were allowed to freely diffuse into all
of the compartments. However, the protons could only enter and
leave the various compartments by participating in active trans-
port reactions. Thus, the production and consumption of pro-
tons had to be balanced within each compartment.

Gene-Protein-Reaction Associations
Unlike the iFF708, which only considered one-to-one associa-
tions between genes and reactions, the logical relationships
among genes, proteins, and reactions are all modeled in iND750.
To do this, the entry of each gene was examined to see if there
was any evidence that its gene product was multifunctional, an
isozyme, a protein subunit, or a participant in a protein complex.
Multifunctional proteins were defined as those that can catalyze
more than one reaction (Fig. 2A). Distinct proteins that could
catalyze the same reaction were labeled as isozymes (Fig. 2B).
Proteins were classified as multimeric if more than one transcript
was required to catalyze an enzymatic function (Fig. 2C). Key
words used to identify multimeric proteins were “chains” or
“subunits” of proteins. Proteins could also form complexes; this
is defined as a functional entity in which proteins from different
transcripts must act together to catalyze a reaction (Fig. 2D).
There were also more complex cases in which a protein belong-
ing to a complex was made up of subunits, such as in the fatty
acid synthase complex.

The reaction and metabolite lists, metabolic network maps,
and gene-protein-reaction associations for S. cerevisiae iND750
can be found in the Supplemental material as well as at http://
systemsbiology.ucsd.edu.

Gene Deletion Study

In Silico Gene Deletions
The constraint-based framework for computing metabolic phe-
notypes based on a description of the reaction stoichiometry of
the metabolic network of an organism has been described else-
where (Covert et al. 2001; Edwards et al. 2002), but the basic
computational approach used in this work is described briefly
below. The allowed solution space for steady-state metabolic
fluxes is determined by the null space of the stoichiometric ma-
trix, reaction directionality constraints (reversibility), and the
maximal reaction rates for each reaction (if known). These con-
straints describe a convex solution space, which contains all the
allowed flux distributions for the metabolic network. A particular
flux distribution under a particular environmental condition is
found by using flux-balance analysis (FBA), which hypothesizes
that the organism will optimize its metabolic fluxes to maximize
(or minimize) some objective function. In this study the objec-
tive function corresponds to the measured biomass composition.
The optimal solution is found by using standard linear program-
ming techniques.

To simulate the effect of a single gene deletion in the ge-
nome-scale metabolic model, the fluxes through the reactions
indicated by the gene-protein-reaction associations as being de-
pendent on the particular gene product were constrained to be
zero, and FBA was performed to find the predicted growth rate of
the in silico deletion strain. If the deletion is deleterious in silico,
it results in an optimal solution with lower growth flux than that
obtained for the wild-type in silico model. A major challenge
associated in mimicking as closely as possible the in vivo experi-
mental conditions used in the high-throughput deletion studies
is formulation of the in silico media used in the study. For de-
fined media this is relatively straightforward as the media com-
position is known and the maximal nutrient uptake rates for
each individual nutrient can be found from relevant literature.
However, all but one of the experiments that generated the data
used in this study were performed by using complex media (yeast
extract-peptone or YP) of which the composition is not known.
This necessitates making assumptions of both the media compo-
sition and the individual uptake rates for all the nutrients.

In this study the YP medium was assumed to contain in
addition to the defined carbon source (glucose, galactose, etha-
nol, glycerol, lactate), ammonium sulfate as a nitrogen source,
phosphate, necessary salts (K, Na, Ca), all 20 amino acids, and all
four nucleotide bases. In addition, based on recent results on the
composition of yeast extract (Zhang et al. 2003), we also assumed
that the media contains significant amounts of trehalose that can
be used by the cells. The maximal uptake rates for the carbon
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sources were obtained from the literature (Strathern et al. 1982;
Sutherland et al. 1997; Casal et al. 1999; Diderich et al. 1999;
Malluta et al. 2000), and the uptake rates for the other nutrients
were set to be high enough not to be strongly growth limiting,
but low enough so that the primary carbon source was still used.
In addition to the primary carbon source uptake rate, the maxi-
mum oxygen uptake rate is also an important parameter in the
simulations. Here, we adjusted the maximum oxygen uptake rate
in such a way that for the wild-type strain under particular media
conditions, the rate is close to that measured experimentally for
the same growth rate (van Hoek et al. 1998). For example, for
YPD and YPGal media, the oxygen uptake rate was set to a rela-
tively low value to mimic the Crabtree effect that limits the over-
all oxidative capacity of yeast at high growth rates. The in silico
set-up also accounts for the auxotrophic markers present in the
in vivo strains by deleting these marker genes (HIS3, LEU2, URA3)
and supplementing the medium with the correct nutritional
supplements (histidine, leucine, uracil).

We convert the continuous in silico relative growth rate
(growth rate of a particular deletion strain/mean of growth rates
of all deletion strains under a particular condition) obtained for
each strain into a discrete normal growth/deleterious prediction
by considering strains with relative growth rates >1 SD below the
mean relative growth rate of all strains to have deleterious phe-
notype and the remaining strains to have a normal growth phe-
notype. The large-scale deletion computations in this study were
performed by using the MATLAB APIs to the LINDO (Lindo Sys-
tems, Inc.) linear programming package, and the detailed evalu-
ation of the deletions was done within the SimPheny framework
described above.

In Vivo Gene Deletion Data Preprocessing
The phenotyping data used in this study was obtained in two
studies (Giaever et al. 2002; Steinmetz et al. 2002) by using a
comprehensive collection of yeast deletion strains to perform
competitive growth experiments under a number of different ex-
perimental conditions. The strains in these studies were pooled,
and the relative abundance of strain-specific DNA tags after
growth for a specific number of generations in a particular con-
dition was measured by using hybridization to a custom high-
density oligonucleotide array. As the metabolic model described
in this article predicts growth rates for individual deletion strains
given a defined media composition and maximal nutrient uptake
rates, whereas the experimental data was from competitive
growth experiments with undefined nutrient uptake rates and in
most cases complex media, the experimental data and model
predictions were not directly comparable. The two experimental
studies also used different designs and data analysis procedures
so that the data sets required different preprocessing steps de-
scribed below.

Essential Genes on Rich Medium
A list of genes required for growth on rich glucose medium for
which deletion strains could not be generated was downloaded
from the Supplemental Web site to Giaever et al. (2002).

Slow Growth Genes on Rich Medium
A list of genes with significant slow growth phenotype in rich
glucose medium together with a quantitative fitness defect score
was downloaded from the Supplemental Web site to Giaever et
al. (2002). The process used to compute the fitness defect scores
is described on the Supplemental Web site to Giaever et al.
(2002).

Glucose Minimal and YPGal Media
Fitness scores for these two media conditions were downloaded
from Giaever et al. (2002). For both conditions the data contain
four separate measurements for each strain, two after five gen-
erations of competitive growth and two after 15 generations of
competitive growth. For each measurement the data indicate
whether the deletion strain is sensitive to the condition (i.e.,
slower growth than the average deletion strain) or refractive to

the condition (i.e., faster growth than the average strain). In ad-
dition, for each measurement there is a score indicating the like-
lihood of observing the experimental condition measurements
given the background distribution in a control condition (YPD).
Scores >100 in the 15 generations’ measurements and scores >20
in the five generations’ measurements were considered to be
highly significant in Giaever et al. (2002). In Giaever et al. (2002)
deletion strains considered to be sensitive to the condition, with
scores exceeding the threshold in all four conditions considered
to be slow growth. We used an alternative somewhat less strin-
gent metric in order to identify deletions with borderline delete-
rious effect. This metric is the average of the normalized scores
(for each measurement score is divided by the relevant signifi-
cance threshold) over all experiments (only sensitive predictions
are considered). Strains for which the value of this metric is >1.0
are considered to have a potentially deleterious phenotype and
were not counted as false predictions if the in silico model pre-
dicted retarded growth. Because of the design of the study, dele-
tion strains that were determined to be slow growth on rich me-
dium did not have a deleterious phenotype on the other media,
but for the purposes of comparing the experimental data to in
silico predictions, the slow growth genes were considered to have
a deleterious phenotype on MMD and YPGal media.

YPD, YPDGE, YPE, YPG, and YPL Media
Fitness scores for homozygous deletions strains under these me-
dia conditions were downloaded from the Supplemental Web
site to Steinmetz et al. (2002). For each condition the mean of the
measured fitness scores for each deletion strain was used as the
experimental fitness measure. Fitness scores <1.0 correspond to
strains growing slower than the average strain in the pool, and
fitness scores >1.0 correspond to strains growing faster than the
average strain. We designate strains with fitness scores >1 SD
below the mean of gene fitness scores for each condition to be
slow growth under that particular condition.
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