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A transcriptional regulatory network encompasses sets of genes (regulons) whose expression states are directly
altered in response to an activating signal, mediated by trans-acting regulatory proteins and cis-acting regulatory
sequences. Enumeration of these network components is an essential step toward the creation of a framework for
systems-based analysis of biological processes. Profile-based methods for the detection of cis-regulatory elements are
often applied to predict regulon members, but they suffer from poor specificity. In this report we describe
Regulogger, a novel computational method that uses comparative genomics to eliminate spurious members of
predicted gene regulons. Regulogger produces regulogs, sets of coregulated genes for which the regulatory sequence
has been conserved across multiple organisms. The quantitative method assigns a confidence score to each predicted
regulog member on the basis of the degree of conservation of protein sequence and regulatory mechanisms. When
applied to a reference collection of regulons from Escherichia coli, Regulogger increased the specificity of predictions
up to 25-fold over methods that use cis-element detection in isolation. The enhanced specificity was observed across a
wide range of biologically meaningful parameter combinations, indicating a robust and broad utility for the method.
The power of computational pattern discovery methods coupled with Regulogger to unravel transcriptional networks
was demonstrated in an analysis of the genome of Staphylococcus aureus. A total of 125 regulogs were found in this
organism, including both well-defined functional groups and a subset with unknown functions.

Micro-organisms respond rapidly to changing conditions by ac-
tivating programs of gene expression. The discovery of the regu-
latory networks involved in these adaptations is one of the grand
challenges in modern molecular biology. As such, high-
throughput laboratory approaches have been widely used to pro-
file patterns of gene expression and detect potential target sites
for sequence-specific DNA-binding transcription factors (Cao et
al. 2002; Conway and Schoolnik 2003). In parallel, computa-
tional methods are increasingly applied to identify potential
regulatory networks (Shen-Orr et al. 2002; Mwangi and Siggia
2003). Successful bioinformatics methods for elucidating the net-
works have generally used a two-step process. In the first stage,
classes of cis-regulatory elements (cis-REs) in an organism are
identified—most commonly by pattern-discovery methods. Sub-
sequently, sets of genes that potentially constitute regulons are
defined as those genes that contain instances of a cis-RE pattern
within their regulatory regions.

Identification of classes of transcription-factor binding sites
and other cis-REs involved in gene expression is central to com-
putational studies of gene regulation. Given a set of coregulated
genes, statistical methods can be used to extract cis-REs on the
basis of their overrepresentation in the regulatory regions (Blan-
chette and Tompa 2002; Aerts et al. 2003; Zheng et al. 2003).
These initial sets of coregulated genes may be obtained by com-
piling gene-specific experimental studies, or as output from ge-
nome-scale screens. As a direct result of the increasing pool of
genome sequences, such sets are increasing constituted by or-

thologous genes under the assumption that orthologs across spe-
cies of moderate evolutionary distance remain subject to the con-
trol of the same cis-RE. The latter method, called phylogenetic
footprinting, has proven effective in studies of transcriptional
regulation in Escherichia coli and related �-proteo-bacteria (Mc-
Guire et al. 2000; Laikova et al. 2001; McCue et al. 2001; Panina
et al. 2001, 2003; Rajewsky et al. 2002; Panina et al. 2003), bac-
teria from the Bacillus/Clostridium cluster (Rodionov et al. 2001;
Terai et al. 2001) and Archea (Gelfand et al. 2000a).

Putative regulons are defined as sets of genes containing
cis-REs in their regulatory regions. Motif models obtained in the
pattern discovery phase are used to scan a genome to detect all
genes containing the putative cis-REs. The algorithms used to
define these sets are recognized to generate numerous false pre-
dictions, even with specific models for cis-REs (Gelfand et al.
2000b) and optimized parameter settings (Robison et al. 1998).
On the basis of the principles that motivated phylogenetic foot-
printing, several methods have been developed to enhance the
specificity of regulon predictions. Tan et al. (2001) assigned
higher confidence values to predicted Crp and FNR regulon
members of E. coli that had orthologs in predicted Crp and FNR
regulons in Haemophilus influenzae (Tan et al. 2001). Manson Mc-
Guire and Church (2000) predicted regulons on the basis of con-
served operons and used the presence of a shared regulatory site
as additional evidence for their regulon prediction. Rodionov et
al. (2002a) used the idea of conserved regulons to direct site
searches with known motifs to members of conserved regulons.
These qualitative studies indicated the potential power of con-
servation analysis to improve regulon predictions.

In this study, we describe Regulogger, an algorithm that uses
comparative genome analysis to increase the accuracy of regulon
predictions. Regulogger builds on the assumption that predicted
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regulon members are more reliable when orthologous genes con-
tain similar cis-REs. To quantify the degree of conservation of the
regulatory signal, Regulogger calculates for each predicted regu-
lon member a relative conservation score (RCS) on the basis of
the fraction and number of orthologs that share the same cis-RE.
Regulon members that do not have a conserved cis-RE are con-
sidered false-positive predictions, whereas members that have or-
thologs with the same cis-RE are considered true positives. Ap-
plication of Regulogger to a predicted regulon thus produces a set
of genes whose sequence and regulatory signal is conserved
across multiple genomes. Such a set is defined as a regulog (Fig.
1). A quantitative assessment of Regulogger, using 48 transcrip-
tion factors from E. coli, revealed a greater than fivefold increase
in specificity of regulon predictions without significant sensitiv-
ity decrease. To demonstrate the utility of Regulogger in combi-
nation with phylogenetic footprinting to reveal regulatory net-
works, we applied the method to the human pathogen Staphylo-
coccus aureus. The results quantitatively demonstrate that regulon
conservation analysis, as implemented in Regulogger, is a pow-
erful method to study and discover regulatory networks.

RESULTS

Phylogenetic Footprinting

Selection of Input Data and Settings for Phylogenetic Footprinting
The first step in the analysis of transcriptional regulatory net-
works is the definition of a set of sequences involved in tran-
scriptional regulation (Fig. 2). To this end, we used phylogenetic

footprinting—the detection of conserved patterns in upstream
sequences of orthologous genes in related genomes. The selec-
tion of genomes for phylogenetic footprinting, shown in Figure
3, was based on two criteria. First, the genomes should contain
sufficient orthologs with the proteins of the biological target, S.
aureus, to allow for the identification of most cis-REs. Second, the
diversity in the upstream sequences of orthologous genes should
be sufficiently high to ensure that conserved patterns are not
based on a subset of highly similar genome sequences. The latter
criteria is based on the observation that, for highly similar se-
quences, conservation patterns are more likely to be produced by
chance rather than by retained biological function (McCue et al.
2002; Rajewsky et al. 2002). Most of the orthologs to S. aureus
genes were found in Bacillus subtilis, Bacillus halodurans, and Lis-
teria monocytogenes (Table 1). A total of 1818 S. aureus proteins
(71% of all annotated proteins) had at least one ortholog across
the set of studied organisms. The average identity of the alignments
of the orthologous regulatory regions was only 49%, which al-
lows for the identification of functional sequences as conserved
spots in a randomly mutated background (McCue et al. 2002).

Phylogenetic Footprinting Applied to the BSUB Study Set
The application of a Gibbs sampling algorithm to detect con-
served patterns has been described by McCue et al. (2001). In that
study, orthologous gene sequences from the gram-negative �-pro-
teobacteria, having an average G+C of around 50%, were used. To
validate whether the algorithm with our particular settings
would perform well on the gram-positive set used in this study,
having a low G+C content of typically around 35%, we validated

Figure 1 Outline of the Regulogger method. First a putative regulon in the target genome (Genome A) is predicted by searching the entire genome
for genes with a particular cis-RE in their upstream region. This predicted regulon in genome A is shown at the top. Regulogger identifies regulons in
other genomes (B, C, D, and E) that are regulated by the same cis-RE. On the basis of the fraction of orthologs in other genomes (indicated in this figure
by the same letter) that are regulated by the same cis-RE, a relative conservation score (RCS) is calculated. The RCS is shown above the genes in the final
regulog. The height of the box for each gene correlates to the RCS for that gene, and thus indicates the confidence of the predictions. Predicted regulon
members that have an RCS of 0 are regarded as false-positive predictions and are not present in the final regulog.
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the phylogenetic footprinting procedure using a reference set of
transcription factors from B. subtilis, the BSUB set. This reference
set was obtained from data in the DBTBS database (Ishii et al.
2001) as described in the Methods section. For each transcription
factor of the BSUB set, the genes in B. subtilis known to be subject
to its control were collected and orthologous regulatory regions
extracted. Gibbs sampling was applied to identify putative cis-
REs. The resulting pattern was compared with the BSUB-binding
profile, yielding a P-value for similarity. The P-value for the align-
ment score was obtained by aligning the pattern for the tran-
scription factor with 200 patterns obtained with randomly cho-
sen ortholog sets. Of the detected patterns, 24% matched to the
reference profile with P < 0.05. The patterns that score with a
higher P-value are not necessarily spurious, as they may corre-
spond to alternative cis-REs, which are bound by different trans-
acting factors. We anticipate, on the basis of these results, that
analysis of the S. aureus genes with orthologs will produce pat-
terns for most functional cis-REs.

Phylogenetic Footprinting Applied to the Genome of S. aureus
To identify a set of putative cis-REs in S. aureus, we analyzed
overrepresented patterns in the promoters of 1818 sets of or-
thologous proteins using the genomes shown in Table 1. This
genome-wide analysis yielded 1430 putative cis-REs. To partially
distinguish functionally relevant patterns from those present by
chance, we compared the observed average maximum a posteriori
(MAP) values (see Methods) with the distribution of average
MAP-values for 500 sets of random sequences with the same
length distribution. These random sequences were created such
that they had, on average, an identity of 49% in an alignment,
which is equal to the average identity of the sequences in the real
data set (Table 1). The resulting data (Fig. 4) demonstrate that
patterns detected in orthologous regulatory regions have, on av-
erage, a higher significance than patterns that are obtained from
random sequences. From the distribution of average MAP-values
obtained with the sets of random sequences, we selected a mini-

mum average MAP-value threshold of
1.5. Application of this threshold to the
set of 1430 patterns yielded 318 signifi-
cant patterns. These were regarded as pu-
tative cis-REs and used for further analy-
sis. At this threshold, 97% of the pat-
terns obtained from the random
sequences are discarded.

As a first-step to investigate the
properties of the putative cis-REs, the
318 derived matrices from S. aureus were
clustered on the basis of their similarity.
The analysis produced 125 clusters with
distinct regulatory motifs. In a compari-
son of the derived motifs with profiles
from the BSUB reference set, 43 motifs
matched one or more of the known tran-
scription-factor binding profiles. The re-
maining 82 patterns may thus contain
potentially novel regulatory motifs from
S. aureus.

Identification of Putative Regulons
To define sets of potentially coregulated
genes, all operons of the subject gram-
positive genomes (Table 1) were
searched for putative regulatory sites in
their upstream region by use of the 318
binding profiles generated with the phy-
logenetic footprinting procedure. The

best match was determined for each profile in each promoter,
and the corresponding P-value was calculated on the basis of
randomized data. The frequency of scores was determined for a
range of P-value cut-off values for the matrix score. Using a con-
servative threshold (P < 0.05), the average regulon size was equal
to 4.5% of the number of ORFS in the genome. For B. subtilis and
E. coli, this percentage would correspond to a regulon size of 150
genes. Analysis of the known B. subtilis regulons of the BSUB
reference set showed that regulons consist, on average, of 0.25%
of all ORFS, which translates to an average of 10 ORFS per regu-
lon. This is consistent with the analysis of McCue et al. (2002),
who compiled a set of 453 experimentally verified genes regu-
lated by a total of 48 transcription factors of E. coli. In our ECO
reference set, which partly overlaps the set used by McCue et al.
(2002), the average regulon size is 16.7 ORFS. The number of
genes in the predicted regulons is almost an order of magnitude
larger than laboratory-based reference sets, indicating that a large
fraction of the predictions consist of false positives.

Identification of Regulogs

Validation of Regulogger
To discriminate true regulon members from spurious predictions,
we developed Regulogger, a method that filters out false positives
on the basis of the conservation of regulons across multiple ge-
nomes. Application of Regulogger to predicted regulons produces
sets of genes for which the regulatory signal is conserved across
genomes—the regulogs (Fig. 1).

To assess the impact of Regulogger on predictive accuracy,
we analyzed a reference set of 48 transcription factors of E. coli,
the ECO set, for which binding sites and corresponding regulon
members are known (see Methods). With each transcription fac-
tor from the ECO set, the genome sequences of E. coli and four
additional �-proteobacteria (Vibrio cholerae, Pseudomonas aerugi-
nosa, Haemophilus influenzae, and Yersinia pestis) were analyzed to
identify putative regulon and regulog members.

Figure 2 Schematic representation of the strategy to identify regulogs in S. aureus. From the ge-
nomic sequence, protein-coding regions are identified. For all proteins, orthologs in other genomes are
defined. These ortholog sets are used for phylogenetic footprinting, in which Gibbs sampling is run on
upstream regions of sets of orthologous genes to obtain putative regulatory motifs (e.g., binding sites).
Low-scoring patterns are filtered and patterns with similar sequences are clustered. For each pattern,
the putative regulon in S. aureus is defined. These predicted regulons are filtered with the Regulogger
method described in Figure 1. This produces a set of regulogs, conserved regulons, in S. aureus.
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Because the main object of site searching combined with
Regulogger is to detect true positive regulon members that can be
targeted with experiments, we evaluated the accuracy of the
methods with respect to the Positive Predictive Value (PPV) sta-
tistic (given by the ratio of the number of true positives vs. the
number of predictions) and the sensitivity (Sn), given by the ratio
of the number of true positives to the number of known posi-
tives. A more common definition of accuracy is given by the ratio
of correct predictions (the number of true positives plus true
negatives) to the total number of predictions. This definition of
accuracy is uninformative, as the number of true negatives is
orders of magnitude higher than the number of true positives,
yielding accuracies close to 1, even with high false-positive rates
and low sensitivities.

The efficiency of Regulogger (EfREG) was assessed by com-
paring the predictions on the basis of the site search and Regu-
logger against the reference regulons of E. coli. The EfREG was then
calculated as follows:

EfREG =
PPVREGULOGGER � SnREGULOGGER

PPVSite Search � SnSiteSearch

An EfREG exceeding 1 indicates that the regulog prediction is
more accurate than regulon prediction. For 33 of 48 (69%) tran-
scription factors, an EfREG exceeding 1 was obtained. The average
EfREG for the entire ECO set was 4.2 (Table 2). The potential
power of Regulogger is demonstrated by the results obtained for
the pdh regulog. Application of Regulogger removed 98 of 101
false positives, while retaining the true positives, leading to a
25-fold increased PPV with the same sensitivity. The average
regulon size decreased by an order of magnitude from 174 to 20
after application of Regulogger, which is close to the average
regulon size of 16.7 in the ECO set. The average PPV of the pre-
dictions increased 5.3-fold (from 3.8% to 20%), with only a mod-
est 1.7-fold decrease in sensitivity (from 53% to 32%). No corre-
lation between the specificity (information content) or length of
the matrices and the Regulogger efficiency was found (data not
shown), indicating that Regulogger is efficient for a variety of
matrices. When validated on the BSUB reference set, Regulogger
gave comparable results with an average EfREG of 4.5 and
EfREG � 1 for 47% of the factors. The results of the latter analysis
are available on our Web site at http://regulogs.cgb.ki.se/
REGULOGS.

Minimal Dependence of Regulogger on Parameters
Three parameters potentially influence regulog predictions, that
is, the site-score threshold, the conservation threshold, and the
selection of genomes. The performance of Regulogger for the
ECO set was assessed by plotting Receiver Operator Characteris-
tics (ROC) curves, using different cut-off scores for the site-score
threshold and conservation score. In an ROC curve, the sensitiv-
ity is plotted against the false-positive rate, and shows the trade-
off between sensitivity and specificity for a given method. Accu-
rate methods are indicated by curves in the top left part of the
ROC space, whereas curves close to the diagonal indicate less
accurate methods.

The highest accuracy of Regulogger was obtained when a
site-score threshold between P < 0.02 and P < 0.05 was used for
constructing the regulons, with a maximum for P < 0.04. The
accuracy for Regulogger decreased when regulons were con-
structed with the most stringent site-score threshold of P < 0.002
or with site scores of P > 0.1. However, even at these threshold
values, the curves are well above the diagonal.

For site-score thresholds around P < 0.04, the false-positive
rate is between 7% and 9% when the lowest threshold for the
RCS, 0.25, is used. This value of the RCS corresponds to one of
four orthologs having a binding site in common with the query
gene. When only fully conserved binding sites are considered,
that is, an RCS of 1, the false-positive rate decreases to ∼1.5%,
with a decrease in sensitivity to 18%.

The EfREG for the range of potential setting of the site score
threshold (between P < 0.01 and P < 0.05), robustly remained be-
tween 3 and 4.5 (Fig. 5). The maximum EfREG of 4.5 was obtained
at a site-score threshold of P < 0.04. At this threshold, an
EfREG � 1.0 was obtained for 73% of the transcription factors.

The above results were obtained by considering all genes
that were reciprocal best hits to each other as orthologs. The
influence of a more stringent or a more relaxed definition of
orthologs on the EfREG was tested by applying Regulogger using
two alternative ortholog definitions. A relaxed definition classi-
fied all proteins with a BLASTP expectation score below a defined
threshold as orthologs. As a stringent definition, orthologs had
to be reciprocal best hits with a BLASTP expectation score below
a specified threshold. With both definitions, regulogs for a series
of BLASTP expectation score thresholds were computed and com-
pared with the regulog predictions on the basis of reciprocal best
hits alone. Using the relaxed definition for regulogs, the average

Figure 3 Phylogenetic relationship of the organism used in this study,
based on the 16sRNA sequence. The genomes of B. subtilis, B. halodurans,
and L. monocytogenes were used for application Regulogger to the regu-
lons in S. aureus. The genomes of E. coli, Y. pestis, V. cholerae, H. influen-
zae, and P. aeruginosa were used for validation of Regulogger.
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EfREG for the ECO set ranged from 3.15 (BLASTP expectation
score threshold of 1e�5) to 4.2 (threshold of 1e�40). The latter
efficiency score matches the value obtained when the regulog
calculation was based on reciprocal best hits. Using a more strin-
gent definition for regulog members, by imposing a BLASTP ex-
pectation score threshold in addition to the reciprocal best hit
requirement, the same results were shown as the regulog defini-
tions based on reciprocal best hits alone.

The choice of species can influence the performance of
Regulogger in two ways. If the number of identifiable orthologs is
small, the accuracy of Regulogger can decline. Furthermore, the
evolutionary distance to E. coli of the respective genomes may
impact Regulogger efficiency. Table 3 shows the average EfREG for
the ECO set with all combinations of the E. coli genome with one
or more subject genomes (Table 3). The percentage of transcrip-
tion factors for which an EfREG of >1 was observed increased with
an increasing number of genomes. It is noteworthy that Regu-
logger still produces improved predictions for 57% of the tran-
scription factors when only two genomes (E. coli and Y. pestis) are
analyzed. The average EfREG was maximal (4.92) when the ge-
nomes of Y. pestis and V. cholerae were used and dropped when

the genomes of the more distantly related H. influenzae and P.
aeruginosae (Fig. 3) were added to the genome set.

The above results indicate that Regulogger is a robust filter-
ing method. Although the efficiency may be fine-tuned, Regu-
logger is not critically dependent on parameters and provides
good results for a range of genomes, site scores, and conservation
thresholds.

Regulogger Applied to Regulons of S. aureus
Phylogenetic footprinting identified 318 cis-REs in the genome of
S. aureus. Corresponding regulons were predicted using a site-
score cut off of P < 0.03. To construct regulogs, Regulogger was
applied to the genomes of S. aureus, B. subtilis, B. halodurans, and
L. monocytogenes. For each regulog, the RCS was calculated. As
some orthologous sets of genes produced similar cis-RE models,
we merged regulogs derived with similar matrices (as scored by
the described matrix comparison metric). This yielded a final set
of 125 regulogs for S. aureus, and the matrix models for the as-
sociated classes of cis-REs. The 15 highest-scoring regulogs are
reported (Table 4), and the full list containing 125 regulogs is
available on our Web site. Within the predicted regulogs, mem-
bers are ranked according to the RCS.

Several of the predicted regulogs are consistent with charac-
terized regulons. The highest scoring regulog consists of genes
involved in nitrogen assimilation. In B. subtilis, TnrA activates
the nrgAB operon and represses the glnRA operon in response
toglutamine depletion by binding to a TGTNAN7TNACA consen-
sus sequence (Wray Jr. et al. 2000). Other examples of regulogs
that are controlled by known sequence-specific transcription fac-
tors include the fur regulog (nr. 9; Xiong et al. 2000), the fnr
regulog (nr. 7; Nakano and Zuber 1998), the sos regulog (nr. 15;
Hamoen et al. 2001), and the ctsr regulog (nr. 14; Kruger and
Hecker 1998). Several known regulons subject to the regulation
by stem-loop structures of RNA are found, in agreement with
earlier studies (Terai et al. 2001). An example of this type of
regulation is provided by the regulog containing the aminoacyl-
tRNA synthetases (nr. 6). These synthetases belong to the family
of T-box proteins. The transcription of these genes is regulated by
a termination–antitermination system, in which distinct stem
loops are formed dependent on the binding of charged or un-
charged tRNA (Grundy et al. 1997). A similar mechanism, in
which RNA secondary structures are formed in response to
changing levels of thiamine, regulates the genes in the thi regu-
log, involved in thiamine synthesis (nr. 4 and nr. 5). A recent
study showed that the thi-element, which is central to this
mechanism, is highly conserved in both eubacteria and archaea

Figure 4 Phylogenetic footprinting on the genome of S. aureus. (Gray)
The distribution of the average MAP-values that were obtained by per-
forming Gibbs sampling on orthologous regulatory regions; (Black) the
distribution of scores that were obtained using randomized upstream
cis-REs with the same AT content, length, and average identity as the real
orthologous regulatory regions.

Table 1. Characteristics of Species That Were Used for Phylogenetic Footprinting With S. aureus

Average identity between aligned upstream regions of orthologous genesa,b Number of orthologs with
S. aureus (total no. of

ORFs in genome)Target genome

Query genome Spyg Lmon Saur Llac Spne Bhal Bsub
Spyg 100 48 50 50 52 47 47 1180 (1697)
Lmon 49 100 51 50 50 48 49 1493 (2846)
Saur 50 51 100 51 50 48 49 — (2594)
Llac 50 50 51 100 51 47 48 1302 (2267)
Spne 50 48 49 49 100 46 46 1204 (2094)
Bhal 47 48 48 48 48 100 49 1523 (4066)
Bsub 48 49 49 48 48 49 100 1593 (4112)

aBecause the sets of orthologous upstream sequences were based on the COG classification of the genes (see Methods), the composition of the sets
between two genomes depends on which of the two genomes is used as the query genome and which is used as the target genome. This
asymmetrical definition of orthologous upstream sequences leads to an asymmetrical calculated average identity between genomes.
bThe standard deviation from the mean was, in all cases, around 10%.
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(Rodionov et al. 2002b). A high-scoring regulog without an as-
sociated transcription factor, the nrd regulog (nr. 3) comprises
genes that are involved in reduction of ribonucleotides. The regu-
lation of these genes in E. coli is complicated and involves bind-
ing of Fis and DnaA, and the presence of an A/T-rich sequence
upstream of a 45-bp inverted repeat (Jacobson and Fuchs 1998).
The cis-RE of the regulog is an A/T-rich, nonpalindromic se-
quence, indicating that some of the regulatory mechanisms that
are found in E. coli may also play a role in regulation in S. aureus.
The remaining regulogs (e.g., nr. 2, nr. 3, nr. 8, nr. 10, nr. 11, and
nr. 12) are novel—a corresponding transcription factor or experi-
mentally verified regulatory sequence is not yet known.

Expanding Known Regulogs: The fur Regulog
The fur regulog was detected with a high RCS. The Fur regulatory
protein regulates transcription of target operons that are in-
volved in iron uptake via a 19-bp GATAATGATAATCATTATC
consensus sequence, the Fur box. The fur regulon (Fig. 6) is well
characterized in S. aureus (Xiong et al. 2000; Sebulsky and Hein-
richs 2001), B. subtilis (Baichoo et al. 2002), and gram-negative
bacteria (Panina et al. 2001). The predicted regulog includes
known constituent genes, such as katA, sirA, sirB, and the fhuABG
and ahp operons (Morrissey et al. 2000; Sebulsky et al. 2000;
Horsburgh et al. 2001; Sebulsky and Heinrichs 2001). Additional
regulog members, which have been previously linked to fur, but

Table 2. Predicted Regulons and Regulogs for 48 Transcription Factors of E. coli, the ECO set

TF Known members Predicted members Sensitivity PPV EfREG

REGULON REGULOG REGULON REGULOG REGULON REGULOG

pdhR 4 102 4 0.25 0.25 0.01 0.25 25.5
ilvY 2 182 12 1 1 0.01 0.17 15.17
oxyR 5 137 11 0.6 0.6 0.02 0.27 12.45
torR 4 77 7 1 1 0.05 0.57 11
metR 4 218 21 0.75 0.75 0.01 0.14 10.38
tyrR 11 134 8 0.73 0.55 0.06 0.75 9.42
nagC 10 231 25 0.4 0.4 0.02 0.16 9.24
glpR 8 191 16 1 0.88 0.04 0.44 9.14
iclR 4 249 28 0.5 0.5 0.01 0.07 8.89
malT 10 156 8 0.6 0.4 0.04 0.5 8.67
Irp 29 252 17 0.14 0.1 0.02 0.18 8.34
galR 5 123 18 1 1 0.04 0.28 6.83
modE 3 81 12 1 1 0.04 0.25 6.75
argR 10 182 20 0.7 0.6 0.04 0.3 6.69
cpxR 12 307 50 0.17 0.17 0.01 0.04 6.14
trpR 12 72 3 0.33 0.17 0.06 0.67 6
phoB 23 199 22 0.22 0.17 0.03 0.18 5.79
rpoE 27 144 14 0.26 0.19 0.05 0.36 5.25
fis 22 233 20 0.14 0.09 0.01 0.1 5.18
metJ 5 93 12 1 0.8 0.05 0.33 4.96
fur 20 265 47 0.8 0.7 0.06 0.3 4.32
lexA 16 163 26 0.75 0.56 0.07 0.35 3.53
arcA 56 224 13 0.38 0.16 0.09 0.69 3.16
fadR 6 91 20 0.67 0.5 0.04 0.15 2.56
gcvA 4 110 6 0.75 0.25 0.03 0.17 2.04
ompR 11 152 9 0.27 0.09 0.02 0.11 1.88
flhC 33 95 13 0.24 0.12 0.08 0.31 1.83
fruR 13 193 19 0.77 0.31 0.05 0.21 1.63
narL 48 209 39 0.5 0.27 0.11 0.33 1.57
purR 27 203 48 0.74 0.44 0.1 0.25 1.52
dnaA 3 223 38 0.67 0.33 0.01 0.03 1.47
fnr 72 229 39 0.26 0.12 0.08 0.23 1.32
rpoN 26 265 38 0.27 0.12 0.03 0.08 1.28
soxS 7 206 23 0.43 0.14 0.01 0.04 1
ada 4 195 15 0 0 0 0 1
marR 8 185 24 0.38 0.12 0.02 0.04 0.86
crp 156 542 106 0.45 0.16 0.13 0.24 0.65
araC 9 132 13 0.56 0.11 0.04 0.08 0.41
hns 12 166 15 0.17 0 0.01 0 0
cynR 4 137 12 0.25 0 0.01 0 0
cytR 10 154 4 0.4 0 0.03 0 0
hipB 2 140 10 1 0 0.01 0 0
cysB 17 114 6 0.12 0 0.02 0 0
lacI 3 180 10 0.33 0 0.01 0 0
cspA 2 107 7 0.5 0 0.01 0 0
fhlA 14 169 6 1 0 0.08 0 0
melR 3 55 3 0.67 0 0.04 0 0
deoR 6 118 11 0.33 0 0.02 0 0

The predicted regulons were obtained by applying a site search to the genome of E. coli with a threshold score of P < 0.05. The regulogs were
obtained by applying Regulogger to the obtained regulons. The genomes that were used for filtering were Yersinia pestis, Pseudomonas aeruginosa,
Haemophilus influenzae, and Vibrio cholerae. The efficiency of Regulogger (EfREG) was calculated by comparing the specificity and sensitivity of the
regulon and regulog predictions as described in the text.
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for which Fur regulation has not been experimentally verified,
include proteins that play a role in iron uptake, such as rhizo-
bactin siderophore biosynthesis proteins, thiodoxin reductase,
and ferrichrome ABC transporters. A total of 20 regulog members
are annotated as either unknown or conserved hypothetical pro-
teins (Kuroda et al. 2001), eight of which have the maximum RCS
of 1. These proteins are predicted with high confidence to be
novel members of the fur regulog and are candidates for targeting
with experimental methods. For one of these proteins, SA0997, a
homolog in S. aureus RN6390 was shown to be iron regulated and
able to bind human transferrin as a means of obtaining iron
(Taylor and Heinrichs 2002).

DISCUSSION
Regulon conservation analysis is a potent tool for enhancing
computational discovery of transcriptional networks. Building
on methods for comparative genome analysis (Manson McGuire
and Church 2000; Rodionov et al. 2001; Tan et al. 2001) we
developed Regulogger, a robust quantitative method for the iden-
tification of conserved regulons. Regulogger offers improved per-

formance, as it supports the discovery of regulons with various
degrees of conservation and produces quantitatively ranked re-
sults. The later quantitative results facilitate targeting of experi-
ments for cases of high confidence.

The impact of Regulogger and regulatory conservation
analysis will ultimately be defined by the specificity of predic-
tions for regulon members. Application of Regulogger to cis-RE
models for 48 transcription factors of E. coli yielded a significant
fivefold increase in the specificity of predicted regulon members.
The actual specificity may be substantially higher than reported,
as the annotated sets of genes constituting known regulons are
incomplete.

The specificity will improve with better operon predictions.
We defined operons with a simple heuristic—genes in the same
orientation with an intergenic distance of <50 bp. This heuristic
failed to place sirC with sirA and sirB in the fur regulog in S.
aureus. The intergenic distance between sirC and the adjacent sirB
gene is 113 bp. Operon predictions based on colocalization in
multiple genome sequences have been described (Yada et al.
1999; Ermolaeva et al. 2001, Moreno-Hagelsieb and Collado-
Vides 2002; Sabatti et al. 2002; Zheng et al. 2002; Bockhorst et al.
2003), which may further enhance the quality of the regulon
analysis methods.

The choice of species impacts the performance of Regulog-
ger. Efficient filtering requires genomes to be sufficiently distant
to the target genome and to one another to distinguish func-
tional sequences as overrepresented in the promoters of ortholo-
gous genes. However, a balance must be made to ensure that a
sufficient number of orthology relationships can be established.
For example, regulon members in the hipB regulon in the ECO set
had no defined orthologs in the genomes analyzed with Regu-
logger. Furthermore, the regulatory sites associated with a regu-
lon must be retained between species. As an example of a limi-
tation in TF-binding specificity, the LexA protein in E. coli rec-
ognizes a different target sequence than the LexA ortholog in
gram-positive bacteria (Winterling et al. 1997). For specific tran-
scription factors, for which knowledge about the evolution of the
binding site and the corresponding regulon is available (Madan
Babu and Teichmann 2003), the choice of genomes could be
adjusted to achieve optimal efficiency with Regulogger.

Table 3. Regulogger Efficiency With Different Genome Sets

Genomes used for
Regulogger Average EfREG

Percentage of
factors with

EfREG ≥ 1

Ecol, Ypes, Paer, Hinf, Vcho 4.18 0.73
Ecol, Ypes, Vcho, Hinf 4.44 0.69
Ecol, Ypes, Vcho, Psae 4.22 0.71
Ecol, Vcho, Hinf, Psae 4.14 0.58
Ecol, Ypes, Hinf, Psae 3.68 0.71
Ecol, Ypes, Vich 4.92 0.65
Ecol, Vich, Hinf 4.49 0.54
Ecol, Ypes, Hinf 3.73 0.62
Ecol, Ypes, Psae 3.37 0.69
Ecol, Vcho, Psae 3.61 0.54
Ecol, Hinf, Psae 3.09 0.44
Ecol, Ypes 3.77 0.58
Ecol, Vcho 3.72 0.42
Ecol, Hinf 2.60 0.33
Ecol, Psae 1.95 0.31

The regulons of E. coli to which Regulogger was applied were ob-
tained by performing a site search with the 48 matrices from the ECO
reference set using a threshold score of P < 0.05. The average Regu-
logger efficiency (EfREG) was calculated as described in the text.

Figure 5 (A) Efficiency of Regulogger at different site-score thresholds
used to predict regulons. Regulogger efficiency (EfREG) for the individual
transcription factors was calculated on the basis of the sensitivity and
specificity of the regulon and regulog predictions as described in the text.
(B) ROC curve showing the sensitivity vs. false-positive rate of Regulog-
ger. The ROC curves were calculated with different settings of the site-
score threshold as indicated in the legend. The numbers in the figure
indicate the various cut-off values for the RCS. The leftmost point in each
curve corresponds to the most stringent cut off (RCS = 1); the rightmost
point of each curve corresponds to an RCS of 0.25.
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Table 4. Regulogs Identified in S. aureus

(continued)
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Incorporating a measure of evolutionary distance between
subject organisms may be advantageous. One of the strengths of
Regulogger is that it quantitatively ranks regulog members ac-
cording to an RCS. This ranking facilitates the discrimination of
functionally relevant regulogs and regulog members for experi-
mental study. In calculation of the RCS, evolutionary distance
between organisms was not taken into account. A regulog that is
conserved across a wide evolutionary distance may be more sig-
nificant than regulogs conserved in two closely related species,
which should motivate future algorithmic advances.

The human pathogen, S. aureus, was analyzed with Regulog-
ger to accelerate regulatory network discovery. The analysis
yielded 125 regulogs associated with distinct cis-RE, which is less
than the 129 putative regulatory proteins in S. aureus (Kuroda et
al. 2001). The list of putative cis-REs presented in Table 4 is not

comprehensive. Furthermore, some of the regulogs have overlap-
ping gene sets and are clearly regulated by the same regulatory
mechanism. For example, two separate parts of the 38-bp long
cis-RE for the genes belonging to the thi box family (Miranda-Rios
et al. 2001) were separately identified (regulogs 4 and 5 in Table
4). Only 71% of the genes of S. aureus had one or more identified
orthologs, and were thus amenable to phylogenetic footprinting.
Analysis of the regulatory regions of the remainder of those genes
may well yield additional motifs. Furthermore, the set of patterns
may be enlarged by using different parameter settings in the
Gibbs sampling procedure or by incorporating alternative pat-
tern detection methods.

Comparative genome analysis has been demonstrated to be
a powerful tool for deciphering regulatory networks. The regulon
conservation algorithm, Regulogger, will accelerate the compu-

Table 4. Continued

The regulogs were constructed by performing Regulogger analysis on regulons in S. aureus using the genomes of B. subtilis, L. monocytogenes, and B.
halodurans. The regulons in S. aureus were obtained by performing a site search with the matrices obtained by phylogenetic footprinting using a site
score threshold P < 0.03. The regulogs are sorted on the basis of their scores, which represent average relative conservation score (RCS) of the regulog
members. The regulogs with the highest scores are thus composed of members for which the regulatory signal is highly conserved across multiple
genomes. The function of the regulogs was determined by assigning a functional category to each gene of S. aureus on the basis of the function of its
ortholog in B. subtilis. The functional categories for the genes of B. subtilis were taken from the SubtilList webserver (http://genolist.pasteur.fr/SubtiList/).
The functional category with the highest degree of over-representation is shown. For regulogs that were merged on the basis of the similarity of their
corresponding matrices, the score of the highest scoring regulog is given.
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tational discovery of regulogs and assist laboratory characteriza-
tion efforts through its quantitative ranking of regulog members.

METHODS

Genomes
The genomes of the following organisms were used in this study
(abbreviations used are given in parenthesis): Bacillus subtilis
(Bsub), Bacillus halodurans (Bhal), Streptococcus pneumoniae (Spne),
Lactococcus lactis (Llac), Staphylococcus aureus (Saur), Lysteria
monocytogenes (Lmon), Streptococcus pyogenes (Spyo), Escherichia
coli (Ecol), Yersinia pestis (Ypes), Pseudomonas aeruginosa (Paer),
Haemophilus influenzae (Hinf), and Vibrio cholerae (Vcho). The ge-
nomic sequences were downloaded from GenBank (http://
www.ncbi.nlm.nih.gov).

Collection of Orthologous Regulatory Regions
A set of orthologous regulatory regions was identified by group-
ing regulatory regions for genes that code for orthologous pro-
teins. As the definition of orthology relationships between genes
remains an area of intense research and some controversy, we
have elected to apply the term on the basis of the annotations in
a widely used resource. For each query protein, a set of ortholo-
gous proteins was obtained using the COGs (clusters of ortholo-
gous groups) database, [http://www.ncbi.nlm.nih.gov/COG/ (Ta-
tusov et al. 2001)]. In the cases when multiple proteins from the
same genome were present in a COG, the protein with the high-
est BLASTP score with the query protein was defined as the or-
tholog.

To obtain the orthologous regulatory regions, the noncod-
ing sequence of, at most, 250 bp upstream of the gene was col-
lected. The sequence was truncated at the edge of upstream ad-
jacent genes or, in the case of a head–head configuration, not
allowed to enter the region 50 bp upstream of the adjacent gene.
For genes within an operon, the upstream sequence of the first
gene in the operon was taken as the regulatory region. Operons
were defined as sets of genes transcribed in the same direction
with an intergenic distance of <50 bp (Moreno-Hagelsieb and
Collado-Vides 2002).

Pattern Detection
To detect conserved cis-REs in the dissimilar orthologous regula-
tory regions, we used the Gibbs motif sampler (Thompson et al.
2003). The Gibbs sampler was configured to detect zero, one, or
two instances of the same pattern in either the forward or reverse
strand of a sequence. The width was kept constant at 16 bp, and
palindromicity of the sites was not required, in order to prevent
a bias toward sites that are bound by dimeric proteins. The Gibbs
sampler calculates for each pattern a maximum a posteriori
(MAP) value, which is the probability of the pattern compared
with a background model. Because the MAP-value is positively
correlated with the number of sequences that contribute to the
patterns (Sandelin et al. 2003), an average MAP-value, obtained
by dividing the total MAP-value by the number of sequences that
contributed to the pattern, was used to evaluate the significance
of the patterns (McCue et al. 2002). To obtain the most signifi-
cant pattern from a sequence set, the Gibbs sampling algorithm
was run 10 times on each sequence set, and the pattern with the
highest average MAP-value was retained as the putative cis-RE.

Construction of Reference Sets of Transcription Factors
from Bacillus subtilis and Escherchia coli
We collected two sets of transcription factors, for which both the
transcription-factor binding site and an experimentally verified
regulon has been described. These sets were used to validate the
phylogenetic footprinting and Regulogger methods. The BSUB
set consisted of transcription factors of B. subtilis that were ob-
tained from the DBTBS database (http://elmo.ims.u-tokyo.ac.jp/
dbtbs/; Ishii et al. 2001). This data set is a compilation of binding
sites for a total of 89 transcription factors and � factors from B.
subtilis. We selected transcription factors for which at least two
nonoverlapping binding sites were known, and constructed
PFMs for these transcription factors by performing Gibbs sam-
pling on the known binding sequences. The Gibbs sampler was
run with varying widths and with multiple cycles for each width.
The pattern with the highest MAP-value was retained as the ma-
trix for that specific factor. The final BSUB set consisted of 31
transcription factors. A second set consisted of transcription fac-
tors from E. coli and was constructed as follows. A set of PFMs for
68 transcription factors and � factors was downloaded from the
DPInteract database (http://arep.med.harvard.edu/dpinteract;

Figure 6 Schematic representation of the predicted fur regulog. The logo represents the pattern that was obtained by phylogenetic footprinting. The
arrows that connect the pattern and the groups of genes under the control of the pattern indicate the relative conservation score of the gene, the thickest
arrows belonging to the most-conserved genes, for which we thus have a high confidence that they belong to the regulog. Ovals indicate known
members in S. aureus. Rectangles indicate genes that may be suspected to be in the Fur regulog, on the basis of their sequence similarity to proteins
in other organisms that have been shown to be regulated by Fur. Hexagonal boxes represent new members of the regulog. This means that they are
predicted by Regulogger to be regulated by Fur, but no experimental evidence exists.
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Robison et al. 1998). A set of experimentally verified regulons was
downloaded from http://www.weizmann.ac.il/mcb/UriAlon/;
Shen-Orr et al. 2002). Combining both data sets yielded a final
set of 48 transcription factors for E. coli, the ECO set. A full de-
scription of the transcription factors from the ECO and BSUB set
can be found on our Web site.

Clustering of the Patterns Obtained
by Phylogenetic Footprinting
Clustering of the set of patterns that were obtained by phyloge-
netic footprinting on the genome of S. aureus, the SAUREUS set,
was done as follows. First, all 318 matrices of the SAUREUS set
were aligned to each other and scored on the basis of their simi-
larity by use of a Needleman-Wunsch algorithm that was modi-
fied to align matrices (Sandelin et al. 2003). The distribution of
the scores approximates a normal distribution with a mean (m)
of 0.54 and a standard deviation (sd) of 0.08. We then used an
UPGMA algorithm to cluster the matrices together using a
threshold for the score of m + 2.5 � sd. To determine whether
clusters from the SAUREUS set were similar to patterns from the
BSUB set, all matrices of each cluster were scored against the
matrices from the BSUB set. A P-value was obtained on the basis
of the distribution of scores obtained by comparing the BSUB
matrix against a set of random matrices. This set of 16-bp wide
matrices was generated by concatenating random columns from
the matrices of the SAUREUS set. A cluster was regarded to be
similar to a BSUB matrix when the average score between the
BSUB matrix and the matrices of the cluster was below P < 0.01.

Identification of Regulons
To identify coregulated genes, the regulatory regions were
searched for the presence of a high-scoring match to the (puta-
tive) cis-REs using a site-search method implemented in the TFBS
modules (Lenhard and Wasserman 2002). In this method, a po-
sitional frequency matrix (PFM) representing a consensus se-
quence is converted to a positional weight matrix (PWM), which
is used to score the sequence according to the scoring system of
Berg and Von Hippel (Berg 1988). A P-value for this score was
computed from the score distribution obtained with the PWM
applied to 1000 randomized sequences with the same length and
AT content as the original sequence. A regulon was then defined
by the collection of genes containing significant motifs detected
with the PWM using the indicated P-value threshold.

Construction of Regulogs
Regulogs were constructed by filtering the predicted regulons us-
ing Regulogger. This was done as follows: For each predicted
regulon member, a RCS was calculated. The RCS is a measure of
conservation of a gene and its corresponding regulatory site
across multiple genomes and was calculated as follows.

If geneA is a regulon member predicted to be under the
control of the cis-RE S, the RCS is given by:

RCSGeneA =
orthologsobserved

orthologsexpected

In this equation, orthologsobserved is the number of orthologs that
are present in orthologous regulons in other genomes, that is,
orthologs that are under the control of the same cis-RE. The term
orthologsexpected is the total number of orthologs present in the
genomes that are used with Regulogger.

For example, assume that the RCS is calculated for geneA in
a particular genome, and that this gene has an ortholog in five
genomes used in the analysis. If, in three of the five orthologous
regulons, the ortholog to geneA is found, the RCS is 0.6. An RCS
of 1 thus signifies a completely conserved presence of the regu-
latory signal upstream of orthologs across the genomes, whereas
an RCS of 0 means a total separation of gene sequence and regu-
latory signal.

For the calculation of the RCS of an entire regulog, the av-
erage RCS of all predicted regulog members in the genomes used
for the filtering was taken. To avoid circularity in calculation of

the RCS for the entire regulog, genes that were used to construct
the pattern for the regulating sequence of the regulog were not
used for scoring.

Software and Data Resources
All sequence and matrix manipulations were performed with perl
scripts using the Bioperl (Stajich et al. 2002) and TFBS modules
(Lenhard and Wasserman 2002). The Gibbs sampler algorithm
was obtained from the Lawrence group (Thompson et al. 2003;
http://bayesweb.wadsworth.org/gibbs/gibbs.html). Alignment of
orthologous regions was performed using ClustalX (Chenna et al.
2003). All described data are available from our Web site at
http://regulogs.cgb.ki.se/REGULOGS.
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