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Abstract

Histopathological knowledge that extensive heterogeneity exists between and within tumors has 

been confirmed and deepened recently by molecular studies. However, the impact of tumor 

heterogeneity on prognosis and treatment remains as poorly understood as ever. Using a hybrid 

multi-scale mathematical model of tumor growth in vascularized tissue, we investigated the 

selection pressures exerted by spatial and temporal variations in tumor microenvironment and the 

resulting phenotypic adaptations. A key component of this model is normal and tumor metabolism 

and its interaction with microenvironmental factors. The metabolic phenotype of tumor cells is 

plastic, and microenvironmental selection leads to increased tumor glycolysis and decreased pH. 

Once this phenotype emerges, the tumor dramatically changes its behavior due to acid-mediated 

invasion, an effect that depends on both variations in the tumor cell phenotypes and their spatial 

distribution within the tumor. In early stages of growth, tumors are stratified, with the most 

aggressive cells developing within the interior of the tumor. These cells then grow to the edge of 

the tumor and invade into the normal tissue using acidosis. Simulations suggest that diffusible 

cytotoxic treatments such as chemotherapy may increase the metabolic aggressiveness of a tumor 

due to drug-mediated selection. Chemotherapy removes the metabolic stratification of the tumor 

and allows more aggressive cells to grow towards blood vessels and normal tissue. Anti-

angiogenic therapy also selects for aggressive phenotypes due to degradation of the tumor 

microenvironment, ultimately resulting in a more invasive tumor. In contrast, pH buffer therapy 

slows down the development of aggressive tumors, but only if administered when the tumor is still 

stratified. Overall, findings from this model highlight the risks of cytotoxic and anti-angiogenic 

treatments in the context of tumor heterogeneity resulting from a selection for more aggressive 

behaviors.

Major findings

Cancers commonly have altered metabolism, which involves excessive glucose consumption 

and acid production. This leads to acidification of the microenvironment that surrounds 

tumors. Because cancer cells are better adapted to acidic conditions than normal cells, they 
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can damage and invade normal tissue. Acquisition of this invasive phenotype is complex 

and requires persistent evolutionary selection. Heterogeneity of metabolic phenotypes has an 

impact on tumor behavior. In this paper, we implement a cell-based mathematical model to 

investigate this heterogeneity and how it is modified as result of therapy. The model 

includes metabolic interrelationships that influence both tumor and normal cell fate and the 

microenvironment. The model recapitulates normal tissue homeostasis, tumor growth, 

evolution of invasive phenotypes and response to therapy, with many of the predictions 

directly validated with in vivo experimental results. Spatial, temporal and phenotypic 

heterogeneity have a significant impact on the behavior of the tumor, suggesting new 

methods for studying tumor growth.

Quick guide to model and major assumptions

0.1 Diffusible Molecules

For a molecule that diffuses across a domain x, the concentration C(x) is described by

(0.1)

with diffusion constant D. Function f describes the production and consumption of the 

molecule depending on the concentrations of all extracellular molecules (C(x)) and 

parameters (p(x)) specific to the cell at position x. The three diffusible variables in the model 

are oxygen (O), glucose (G), and extracellular pH via production of protons (H).

0.2 Cellular Metabolism

Cells primarily produce energy (ATP) from glucose, using either an efficient aerobic 

pathway that requires oxygen, or using glycolysis, an inefficient anaerobic pathway. The 

model assumes that cells have a target level of ATP demand and that they meet this by using 

the aerobic pathway as much as possible. If oxygen levels are insufficient to support this 

level of ATP, then the difference is made up by increasing flux through the glycolytic 

pathway (i.e., the Pasteur effect).

Oxygen consumption fO is determined by oxygen concentration, using Michaelis-Menten 

kinetics with a half-maximum of kO,

(0.2)

Glucose consumption is driven by the need to meet normal ATP demand, modified by a 

Michaelis-Menten term with a half-maximum of kG, given by

(0.3)

The coefficient pG is a multiplier representing the altered glucose metabolism seen in many 

tumor cells (i.e., the Warburg Effect). Normal cells have pG=1. For tumor cells, pG is 
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variable, representing a continuum of metabolic phenotypes. For pG>1, the tumor will 

consume more glucose than needed to meet normal ATP demand. This phenotype can be 

viewed as either a cell possessing constitutively activated glucose consumption, or the cell 

may be forced to increase consumption due to increased ATP demand from other 

abnormally activated cellular processes such as ion pumps. The actual ATP production rate 

for the cell is determined from nutrient consumption rates, given by

(0.4)

Proton production is linked to the amount of glycolysis that does not feed the aerobic 

pathway, given by

(0.5)

where parameter kH accounts for proton buffering.

The functions fO, fG, and fH are used for the corresponding reaction-diffusion functions f in 

Eq. 0.1. The ATP production rate (fA) determines cell behavior.

0.3 Hybrid Cellular Automaton

The metabolic program above is implemented into each cell of hybrid cellular automaton 

(HCA) model, simulated on a square lattice. One cell type is permitted per grid point, either 

a normal cell, tumor cell, necrotic cell, or blood vessel. For each time step dt, homeostatic 

cell death is calculated by selecting at random a fraction pD of the cells and removing them 

from the grid, leaving empty space. Remaining cells are put through a decision process (Fig. 

1) based on the metabolic state of each cell and the nutrient concentrations at that point. 

Between each step of the HCA, the reaction-diffusion partial differential equations (0.1) are 

solved over the domain of the HCA. The timescale of the HCA is on the order of hours or 

days, while the metabolic and diffusive processes operate on the order of seconds and 

minutes. Therefore, these can be simulated sequentially. Cells that have enough ATP 

production to meet the threshold of proliferation (Aq) will advance their cell cycle faster 

with higher ATP production rates (See Supplemental Information for details). This cell-

cycle stretching as a function of microenvironment has been recently observed 

experimentally [1]. Cells that have completed the cell cycle will proliferate if there is 

adjacent space. The cycle is not advanced if the cell is quiescent due to lowered ATP 

production. Cells with production less than the death threshold (Ad) are removed. Nutrient-

based cell-cycle mechanisms have been modeled in various ways in agent-based models [2, 

3]. The present work does not include cell migration or mechanical effects. We have 

implemented the model in 2D in part because the primary experimental system used by our 

group to test and validate the predictions of our model is a dorsal wound chamber, which is 

a quasi-2D in vivo system [4].

0.3.1 Phenotype variation and selection—Tumor cells in the model have two 

continuously variable, heritable traits: excess glucose consumption, pG from Eq. 0.3; and 
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resistance to low extracellular pH in the microenvironment [5], βT . These traits are passed 

from a parent tumor cell to its two daughter cells with some small variation, chosen at 

random from an interval equally weighted in both directions to avoid biased drift. The model 

is agnostic with respect to specific biological mechanisms that underlie this drift, which 

could include gradual accumulation of mutations, regulation of gene transcription by 

epigenetics or aneuploidy, or changes in the number or structure of organelles, for example. 

The evolution of these phenotypes in time and space is an important consideration of this 

work.

0.3.2 Angiogenesis and vascular degradation—A point-source vasculature is used 

to simulate parallel blood vessels passing perpendicularly through the two-dimensional 

tissue slice. The primary function of the vasculature in this model is to spatiotemporally 

deliver nutrients and remove waste products. The field of vessels is seeded using a circle-

packing algorithm based on vessel densities in vivo. This initial distribution can be altered 

by the creation of new vessels through angiogenesis, or by vessel degradation. To model 

angiogenesis, if an area of the simulation domain develops hypoxia, new vessels are added 

to the region until there is enough oxygen to remove the hypoxic state. Multiple mechanisms 

have been proposed for vessel loss in a tumor, including collapse due to mechanical stress 

[6]; loss of flow due to upstream remodeling [7]; and leaky vessels [8]. Here, vessels are 

degraded over time due to surrounding tumor growth until they are lost (see Supplement).

0.3.3 Administration of therapy—pH buffer therapy is approximated by increasing both 

the baseline pH in the blood (pHo) by 0.2 units of pH and the diffusion constant of the 

protons DH (increased by a factor of 3) during therapy, causing increased removal of 

protons. Chemotherapy is pulsed through the vasculature, diffusing through the tissue 

subject to Eq. (0.1). Cell death depends on the concentration of the drug at the cell position 

(see Supplement). The schedule is five pulses, two weeks apart. Anti-angiogenic therapy is 

simulated by preventing new blood vessels from forming during therapy.

0.3.4 Interaction Network—A summary of the model interactions is shown in Figure 2a. 

Panel (b) shows the two dimensional tumor phenotype map used in the simulations. For 

clarity, axes are not labeled in subsequent figures, but have the same range as shown here. 

Parameters for the model are shown in Table 1.

1 Introduction

Tumor heterogeneity at the genetic scale has been known for decades and until recently was 

largely viewed as a whole tumor metric. Historically, molecular techniques average genomic 

signals from large numbers of cells from single biopsies, thus smoothing and potentially 

hiding underlying variations. These average signatures have dominated the molecular era of 

cancer investigation and have driven biomarker development. However, a potential issue 

was recently highlighted by Swanton and colleagues [9], who showed that multiple biopsies 

from the same tumor display distinct genetic profiles and yet are phenotypically similar. 

This genotypic divergence and phenotypic convergence has previously been hinted at 

theoretically [10] and may be a predictable evolutionary consequence of the tumor 

ecosystem [11, 12]. The intricate dialogue between tumor cells and environment selects for 
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clones that are best adapted phenotypically to survive, regardless of specific mutations that 

may facilitate tumor progression. Furthermore, this environment is temporally and spatially 

heterogeneous largely due to variations in blood flow, resulting in local fluctuations of 

nutrients, growth factors and other cellular populations (e.g. normal cells, stromal cells and 

immune cells). These dynamics occurring within the cancer ecosystem are almost 

impossible to dissect via experimentation alone.

A major open question in biology is how to connect genotype with phenotype. In many 

genetic diseases, a defect within a single gene manifests through observable changes that 

usually allows confident diagnosis of the specific mutation based on the phenotypic 

manifestations. In contrast, cancer cells frequently harbor thousands of mutations so that the 

connection to phenotype is less clear. Whilst we understand that the genotype to phenotype 

mapping is critical for integration of genetic information with a more functional 

understanding of the phenotypic behavior that it may facilitate, the practical reality is that its 

very difficult to quantify phenotypes and far easier to measure genotypes. Genetic 

heterogeneity within a tumor continues to be of great interest to the cancer community, with 

the advent of new tools to measure fewer cells in more detail, a serious effort is being put 

into quantifying this heterogeneity and understanding how it evolves as the tumor progresses 

and how it relates to overall outcome [13, 14, 15]. However, we are far from understanding 

how the microenvironment modulates this heterogeneity and drives the overall phenotypic 

behavior of the tumor cell population. We strongly believe that only through the integration 

of mathematical and computational models with careful experimentation can we hope to 

bridge the gene-centric and microenvironment-centric views of cancer progression. Here we 

focus on the phenotypic scale, as it allows us to circumvent much of the complexity 

observed at molecular scales and instead examine the functional outcome of mutation (be it 

genetic or epigenetic). Specifically, we consider the metabolic phenotype, in part because 

tumors are known to be metabolically very different from their normal tissue counterparts 

and in part because we believe metabolism contributes significantly to tumor progression.

Mathematical models of cancer progression have examined avascular growth [16, 17, 3], 

angiogenesis [18, 19], vascular growth [20, 21], invasion [22, 23] and metastasis [24, 25]; 

also see these reviews [26, 17, 27, 25]. Tumor metabolism, specifically glycolytic 

metabolism and its development has also been extensively studied [28, 2]. However, almost 

all of these models (with a few exceptions) ignore normal tissue and assume the tumor 

grows in a field of nutrients or extra cellular matrix. Fewer models explicitly consider 

phenotypic heterogeneity [22, 29] and those that do again ignore normal tissue. Our central 

focus here is to examine the interplay between cellular metabolism and the 

microenvironment (including normal cells), and how this leads to phenotypic heterogeneity 

within the tumor cell population. Understanding how this phenotypic heterogeneity develops 

through space and time [30] will allow us to better understand progression, treatment failure, 

and crucially lay the groundwork for novel therapies.

In our evolutionary model, tumors emerge from tightly regulated fields of cells in a largely 

normal tissue. At its simplest, homeostatic regulation of normal tissue ensures that cell death 

is balanced by birth. This homeostasis is not static but dynamic and remarkably robust to 
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physical and chemical perturbation, e.g. wounding. Cancer cells both overcome and exploit 

these homeostatic mechanisms as they evolve strategies to maximize their proliferation [31].

We have previously examined metabolism [28, 2, 29] as a driver of tumor progression 

through the glycolytic pathway and associated acidosis. Extracellular pH (pHe) is a potential 

treatment target, and we have recently published a series of experiments that validate this 

view [32, 33, 4]. Our intention here is to examine this work in light of the lens of metabolic 

and microenvironmental heterogeneity by reproducing observation and suggesting novel 

interpretation and treatment strategies. The focus of the work is on acid-mediated invasion, 

wherein tumor cells that have abnormally high glycolytic capacity acidify the local 

environment, causing the surrounding tissue to degrade and allow for tumor growth.

2 Materials and Methods

To investigate the effect of metabolism and the microenvironment on tumor growth and 

phenotype selection, a hybrid cellular automaton (HCA) in two dimensions is used to model 

cellular processes such as cell proliferation, death, and vascular remodeling. Metabolic 

activity of individual cells is calculated by solving a set of algebraic equations. The diffusion 

of molecules is calculated by solving a system of partial differential equations over the 

domain of simulation. The components of the model are described in the Quick Guide to 

Model section. Additional derivations and supporting algorithms of the model equations are 

given in the Supplemental Information.

3 Results

3.1 Tumors acquire acid-resistance followed by glycolytic capacity

In the absence of tumor cells, the dynamic equilibrium of the model is a homeostatic normal 

tissue with vasculature. The normal cells turnover, maintaining a cellular density that is 

determined by the choice of parameters for the proliferation algorithm. This homeostasis 

plays an important role in the model, competing with tumor cells for available space at the 

tumor edge. To illustrate the homeostatic properties of the normal tissue, two examples are 

shown in the Supplement.

There are two modes of tumor growth, depending on the activity of the normal tissue 

surrounding the tumor. The first is homeostatic-limited growth, where tumor growth is 

limited by the surrounding normal cells. Since the tumor can only grow into space 

relinquished by the normal cells at the tumor-normal interface, the growth rate is correlated 

with the normal tissue homeostatic death rate. Tissue which has a faster turnover rate 

relinquishes more empty space per unit of time, and therefore allows for faster tumor growth 

(see Supplement). The second mode of growth is invasive growth. This occurs when the 

tumor mass causes surrounding normal cells to die at a rate faster than the homeostatic death 

rate. This results in rapid availability of free space and subsequent tumor growth. There are 

two possible causes for induced cell death in the present model: nutrient deprivation and 

acidosis.

Robertson-Tessi et al. Page 6

Cancer Res. Author manuscript; available in PMC 2016 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3a–h shows a sequence of images taken from a representative simulation of tumor 

growth. In (a–b), the average tumor phenotype is still relatively normal. A slight shift 

towards acquired acid-resistance is due to intermittent hypoxia caused by blood vessel 

degradation followed by angiogenesis within the center of the tumor. Each short period of 

hypoxia-induced acidosis causes a slight selection pressure towards acid-resistant cells.

In (c–d), a sustained hypoxic central area leads to increased reliance on glycolysis by the 

tumor cells growing there. Since cells must develop resistance to increasing acidosis or 

perish, the central part of the tumor is acid-resistant (blue). This resistant population is 

surrounded by a metabolically-normal population of tumor cells (green). Since they are near 

to stable vasculature in the normal tissue, this surrounding buffer of metabolically benign 

cells exists because there is little selection pressure to acquire acid resistance on the tumor 

edge.

Panels (e–f) show the development of necrosis in the center of the tumor, and a few small 

pockets of glycolytic cells (magenta). The increased glycolysis in these cells causes a further 

decrease in pHe, but the cells are not in sufficient number nor adjacent to acid-sensitive cells 

to allow for acid-mediated invasion to occur. There continues to be a buffer of tumor cells 

(green) between the aggressive phenotype and the acid-susceptible normal tissue.

Panels (g–h) show the tumor growing invasively via acid-mediated invasion. The acidosis 

produced by glycolytic cells affects the surrounding normal tissue. Several lobes of very 

aggressive glycolytic and acid-resistant cells have punctured through the edges of the tumor, 

growing into the space left open by normal tissue destroyed by acidosis. A thin zone of 

black empty space between the tumor and normal tissue is evident at the edge of the largest 

lobe on the lower right, a phenomenon seen in histological samples by Gatenby et al. [28].

This representative simulation offers several insights into the development of acid-mediated 

invasion. The growth curve for the simulation is shown in Figure 3i. The initial tumor 

growth has a shallow slope, representing homeostatic-limited growth. From t=0 to 1200 

days, the average growth rate is about 0.2 mm per year. Here, the tumor takes advantage of 

space relinquished by normal cells during homeostatic turnover. The growth rate is 

correspondingly slow. Eventually, the tumor becomes invasive via self-produced acidosis 

and from t=1800 to t=1920 days, the average growth rate is about 6 mm per year, a thirty-

fold change over the homeostatic-limited growth rate. Interestingly, there is no jump in 

phenotype that causes this sudden change in behavior. Unlike a genetic mutation model, 

where one could point to the acquisition of a key mutation shortly before a large behavioral 

change, this model only permits slow phenotype variation. Indeed, comparing the phenotype 

flow plots before and after invasive growth (third and fourth rows) shows only a slight shift 

in average phenotype. In order to understand this change in behavior, it is important to 

consider not only the specific phenotypes present, but also where they arise spatially and 

how they develop dynamically. Besides acquiring the invasive phenotype, three other key 

factors play a role in the development of acid-mediated invasion.

First, the cells must reach a critical mass of acid-producing cells. A single glycolytic, acid-

resistant cell cannot sufficiently change the local pHe to cause lethal acidosis to surrounding 
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cells. Since the model assumes that phenotypes are passed on to daughter cells with some 

small random change, reaching critical mass is primarily a function of proliferating enough 

to create a group of similarly aggressive cells in the local microenvironment that can then 

have sufficient proton production, as a group, to significantly affect the pHe of the 

surrounding tissue.

The second key development is that the invasive cells must be near to cells which are 

relatively acid-sensitive if invasion is to occur. If a highly glycolytic group of cells develops 

but is surrounded by acid-resistant, low-glycolytic cells, then the lowered pHe that is caused 

by the glycolytic cells will have little effect on the surrounding cells and invasion will not 

occur. Therefore, the importance of the spatial buffer of relatively normal tumor cells on the 

edge of the tumor becomes clear. Unless the aggressive cells can invade through this 

protective barrier en masse, the acid-invasive phenotype will be contained interior to the 

tumor edge. To state it another way, the diffusion gradient of acidosis produced by a group 

of glycolytic cells must overcome the spatially-structured phenotype gradient that exists 

towards the edge of the tumor.

Finally, the presence of nearby blood vessels can contribute to decreased acidosis. A group 

of aggressive tumor cells that grows into a well vascularized region will be slowed by the 

increased buffering capacity of the vasculature. Invasion will only occur if the low pHe 

produced by the mass of cells locally overcomes the ability of the vasculature to remove the 

acidosis through buffering.

The pathway to becoming a metabolically-aggressive cell is not a linear march through 

phenotype space. The diagonal line on the phenotype plots of Fig. 3b–d–f–h shows the 

direction of equal, maximal phenotypic variation. However, simulations show that the cells 

reaching the most aggressive phenotype tend to follow a non-linear path similar to the black 

arrow shown in Figure 2b. This path shows that acid resistance is selected first, after which 

high-glycolytic capacity develops. This observation is the opposite of the hypothesis that 

cells first acquire a glycolytic phenotype followed by acquisition of acid resistance [2], 

represented by the gray arrow of Figure 2b. The reason for the order of selection in the 

present model is that low pHe naturally develops as a result of decreased or intermittent 

vascular density in the center of a growing tumor. Increased acid resistance is therefore a 

valuable trait to acquire early in the development of the tumor if vascular delivery is 

inconsistent or reduced. While increased glycolysis speeds up the cell cycle, this phenotype 

change has little advantage during homeostatic growth, since available space is freed on a 

time scale that is much longer than the cell-cycle time. Furthermore, unless critical mass is 

reached, acid-mediated invasion by an individual glycolytic cell is not possible.

Interestingly, because of the spatial structure of hypoxia and cell turnover, the most 

aggressive cells tend to develop in interior regions of the tumor where nutrient conditions 

are poor, selection pressures are great, and proliferation is more frequent because of cell 

death. However, in order to become invasive, these aggressive cells must come in contact 

with normal tissue, where the excess proton production can cause cell death. The ability of a 

mass of aggressive cells to penetrate the surrounding layer of less aggressive tumor cells 

depends in part on how acid-resistant the buffering cells are. If the phenotype gradient is 
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steep, then the aggressive cells are more likely to invade and reach the normal tissue than if 

the intervening cells are already acid-resistant. Clearly vascular density is an important 

aspect of the progression of the tumor phenotypes in both space and time. Further 

exploration of the effect of vascular density is presented in the Supplemental Material.

The acid-mediated invasion seen in the model has been observed experimentally in a murine 

window-chamber model [4]. In that experiment, a droplet of tumor cells was cultured and 

implanted into a dorsal wound chamber. The pHe and tumor growth rates were measured 

radially, and the direction of maximal growth was correlated with the direction of low pHe, 

as seen in Figure 3j. A similar correspondence between pHe at the tumor edge and radial 

growth was observed in the model, as seen in Figure 3k.

This representative simulation is produced consistently by the model with the same 

parameters. Additional repeats of the simulation are shown in the Supplemental Material, 

including further exploration of the impact of normal cell turnover rate and normal cell 

density. Simulations were also performed with larger CA domains (up to 1 cm) to explore 

slower rates of phenotypic drift (see Supplemental Material). Although the tumor takes more 

time to become invasive with a slow phenotypic drift rate, the qualitative nature of the 

evolution through phenotype space is the same as for simulations run in a smaller domain 

with faster evolution as described above. Since large domains become computationally 

expensive, we limit our present results and analysis to the CA domains of approximately 3 

to 5 mm per side.

3.2 Effect of treatments on tumor growth and selection

3.2.1 Early application pH buffering therapy can significantly delay onset of 
tumor invasion—Recent experimental results from our group have shown that application 

of systemic pH buffers to mice can prevent or slow down tumor development and metastatic 

growth [32]. In a murine TRAMP model of spontaneous tumor growth, sodium bicarbonate 

has a preventative effect on tumor formation in these mice, but only if it is administered 

before a certain age [33].

A generic pH buffering therapy has been simulated using the model (see Supplemental 

Material for discussion of the assumptions for implementation). In order to compare the 

simulation with the murine buffer study [33], an untreated control simulation is compared 

with same simulation treated at different time points (trel days). Figure 4 compares the 

untreated control with two buffer-treated simulations. The tumor that is treated earlier 

(central column, b–e–h–k) shows a significant delay in growth and acquisition of an 

invasive tumor phenotype compared to the untreated control (left column, a–d–g–j). On the 

other hand, the tumor treated at a later time point (right column, c–f–i–l) is only partly 

affected by the buffer. There is some slowing of the growth, but the invasive phenotype 

persists and the tumor growth rate is comparable to the untreated case. Supplemental Figure 

S11 shows the growth of the untreated tumor (black plot) and three different starting times 

for buffer therapy. The earlier the treatment is administered, the more delay of growth is 

observed.
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These results suggest a possible mechanism for the preventative effect of early buffer 

treatment seen in the TRAMP model. If the therapy is administered prior to the protective 

layer of metabolically benign cells being breached (i.e., acid-mediated invasion has 

commenced), then the therapy can prevent the aggressive cells from reaching this invasive 

state for long periods. If the invasive state is already reached, however, the therapy has only 

a minimal effect. In order to test this hypothesis, we suggest that tumors from early and late 

treated mice be examined for metabolic signatures and phenotypic structure that could 

indicate the presence of acid-mediated invasion. The model also suggests that buffer therapy 

may be of limited use to patients with a primary tumor that is already glycolytic and 

exploiting acid-mediated invasion. However, buffer therapy may still be beneficial to these 

patients because micro-metastases that have yet to develop an invasive phenotype may be 

prevented by this systemic therapy. Even if the metastatic seed was highly glycolytic, if the 

micro-metastasis has not reached the critical mass needed to induce acid-mediated invasion, 

then the buffer therapy will further delay the acquisition of that invasive state by effectively 

raising the necessary threshold of critical mass. These results are also be consistent with the 

TRAMP mouse experiments where late-treated mice, in contrast to untreated mice, did not 

develop metastasis [4].

3.2.2 Anti-angiogenic therapy can promote the development of metabolically 
aggressive phenotypes—Anti-angiogenic therapy was developed on the premise that if 

a tumor is starved of nutrients, the tumor will grow slower, become quiescent, and perhaps 

die away. While this seems like a straightforward response to decreased nutrient availability, 

this nutrient-deprivation theory does not take into account the effect of waste products 

produced as a result of worsened metabolic conditions within a tumor. Specifically, 

reduction of perfusion with anti-angiogenic therapy will cause pockets of hypoxia, which in 

turn will lead to increased glycolysis in all cells and increased acidosis. The result of this 

sequence of events is that cells that may have previously developed acid-resistance due to an 

avascular tumor growth phase may suddenly be at an advantage when vascular density is 

decreased. The selection pressure due to therapy could have the effect of speeding up the 

development of the most aggressive subset of tumor cells at the time of treatment.

To illustrate this, we compare a simulation without any therapy with one in which anti-

angiogenesis was started at a given time step. For simplicity we assume that anti-angiogenic 

therapy simply turns off the angiogenic aspect of the model: after the initiation of therapy, 

no new blood vessels are created. Existing blood vessels remain, and vessel degradation by 

the growing tumor continues. As expected, this leads to decreased vessel density within the 

tumor, so that nutrients will primarily diffuse from the surrounding vasculature within the 

normal tissue.

Figure 5 shows the comparison between treated and untreated cases for a representative 

simulation. The effect of the therapy is to greatly increase the selection pressure for acid-

resistant cells and speed evolution by increased cellular turnover. This pressure drives the 

phenotype of the tumor cells towards a more aggressive state, and therefore acid-mediated 

invasion occurs much sooner than in the untreated simulation. The addition of therapy in this 

case is clearly a worse outcome than allowing the tumor to progress without therapeutic 

intervention. This result suggests a possible explanation for the historical failure of many 
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anti-angiogenic therapies [34], including the recent withdrawals of anti-angiogenic therapies 

for both glioblastoma [35] and breast cancer [36]. It is of interest to note that shortly after 

therapy is applied, the number of tumor cells decreases, as cells that are far from the 

remaining blood vessels will be starved of nutrients. However, as the remaining cells adapt 

to the new environment, the tumor will grow back and become invasive sooner than the 

control.

3.2.3 The efficacy of cytotoxic therapy is dependent on spatial and phenotypic 
heterogeneity—The diffusible nature of therapies such as chemotherapy have 

implications for the spatial distribution of the drug, and therefore selection pressures on the 

tumor will vary depending on the position of a cell relative to nearby blood vessels. In 

principle, the most aggressive tumor cells tend to develop far from blood vessels. At the 

same time, these distal positions will be the hardest locations for the drug to reach by 

diffusion. These observations suggest that a cytotoxic agent may cause spatially-variable 

selection, an effect which can cause enhanced development of aggressive cells in certain 

circumstances.

In order to test this prediction, we administered a diffusible cytotoxic drug into the model 

(see Supplemental Information for additional discussion of assumptions). Figure 6g shows 

the tumor size over time for three representative simulations. The solid black line is an 

untreated tumor. The dashed line is the result of starting the cytotoxic drug regimen at a 

relative time of t = 0, and the dotted line is the result of starting the regimen at t = 105. For 

the earlier treated case, the result is a significant decrease in the growth rate of the tumor, 

while the opposite is true for the later treated case: the tumor has grown faster than our 

untreated control.

To understand the reason for this difference, key time points from the simulation are shown 

in Figure 6a–f. For the case of the early treatment, the therapy has decreased the size of the 

tumor and essentially set back the time course of growth. Furthermore, a subtle restructuring 

of the spatial heterogeneity of cell phenotypes has limited the ability of aggressive cells near 

the center to invade. However, in the later treated case, the therapy has allowed pre-existing 

aggressive cells in the center of the tumor to emerge and become active much sooner than in 

the other simulations. In the analysis of the untreated growth in section 3.1, it was noted that 

the metabolically benign cells (green) near the tumor boundary acted as a containment 

mechanism to prevent the more aggressive cells in the interior of the tumor from initiating 

acid mediated invasion. In the case of the late administration of chemotherapy, the spatial 

diffusion of the cytotoxic agent has stripped away this relatively benign protective layer of 

cells. The aggressive cells situated near the center of the tumor benefit from several 

advantages under this type of therapy. First, they are further from active blood vessels, and 

therefore the concentration of drug is decreased due to diffusion distances and consumption 

by cells closer to the vasculature. Second, limited space and nutrients near the center limits 

the division rate of these cells, and this also allows them to escape the effects of a drug that 

targets proliferation. Finally, once the outer layers of cells are stripped away by the drug, 

these aggressive cells find themselves in a perfect environment to initiate acid mediated 

invasion, since they can quickly reach critical mass through rapid proliferation post-therapy 
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and then directly interface with normal tissue cells. This combination causes the tumor 

phenotype to quickly transform into the acid-mediated invasion type.

4 Discussion

The behavior of a cancer as a whole is the relevant clinical metric that informs prognosis 

and therapy decisions. The actions of a single malignant cell are only relevant if they lead to 

an aggressive cancer, and this can only happen in the context of the collective behavior of 

tumor cells, normal normal tissue, and surrounding microenvironment. Genetic, epigenetic, 

signaling, phenotypic, temporal, and spatial heterogeneity all play a role in shaping the 

dynamics of the complex system that drives tumor growth. Therefore tumor prognosis and 

response to therapy can only truly be understood if we consider their impact of these 

heterogeneity mechanisms as a spatially and temporally distributed system.

The results presented here attempt to elucidate how metabolic heterogeneity affects tumor 

progression and treatment outcome. First, development of localized hypoxia due to vascular 

instability leads to the selection of acid-resistant tumor cells, which is then followed by 

acquisition of the glycolytic phenotype. This non-linear trajectory through phenotype space 

is most clear in situations of prolonged hypoxia, in which the metabolic response of normal 

tissue is the Pasteur effect with subsequent acidification of the microenvironment. 

Extrapolating to in vivo situations, the case of prolonged hypoxia might be representative of 

ductal carcinomas, where angiogenesis is not possible in the initial stages of tumor growth 

due to the barrier of the basement membrane. On the other hand, a metastasis that 

immediately co-opts and disrupts the normal vasculature of a tissue may follow the profile 

of intermittent hypoxia. In both cases, however, the model predicts the same pathway 

through phenotype space.

Although the present work do not impose any costs on the different phenotypes, we have run 

simulations where we imposed a simple linear cost to the acquisition of acid resistance 

(results not shown). In this version of the model, tumors cells that increased their acid 

resistance had proportionally slower cell cycles. Various settings of the slope of this cost 

function had little impact on the overall evolutionary dynamic. The trajectory through 

phenotype space was conserved, and the cost only served to slow down the evolutionary 

pace. We hypothesize that this is because the competition between cells in hypoxic areas 

depends much more on the acquisition of acid-resistance rather than the ability to proliferate 

quickly, since the selection pressure is high while the turnover rate is relatively low. A full 

exploration of evolutionary costs is beyond the scope of the present work.

The simulations of treatments in the model offer some insights as to why these therapies 

may fail in some cases and be more successful in others. In aggregate, all of the results 

presented here argue for treatments that are aimed at maintaining the protective layer of less 

aggressive cells rather than eradicating them. Therapies which buffer the pHe appear to be 

preventative rather than regressive. Indeed, there is no clear mechanism by which increasing 

extracellular pH should lead to cytotoxicity of tumor cells. Rather, the buffer changes the 

microenvironment so that the acid-meditated invasion phenotype cannot use its acid 

production against susceptible neighbors. However, the model suggests that there are limits 
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to this preventative action that depend on both buffer dose and the mix of phenotypes in the 

tumor. A more detailed exploration of the interactions between the phenotypes of the tumor 

cells and the amount of buffering could perhaps define a quantifiable relationship between 

dose and growth delay, but this is beyond the scope of this work.

The results suggest that the effectiveness of cytotoxic therapies is strongly influenced by 

spatial heterogeneity of both the drug diffusion and the tumor structure. This may result in 

selective intratumoral lethality in which the drug kills less aggressive cells positioned 

adjacent to blood vessels but not the more malignant populations distant from blood vessels, 

therefore selecting for more resistant populations and removing a potential barrier to their 

proliferation by eliminating the perivascular cells. Alternative strategies to optimize the 

delivery of both dose and schedule to prevent the outgrowth of more aggressive clones post-

therapy will be the subject of future work with the model, including drug combinations.

The model examined tumors grown from benign single cells. In the case of metastatic 

disease, the seeding cell may be of any phenotype present in the primary tumor. Bernards 

and Weinberg [37] have proposed that metastases arise early in the development of the 

primary and continue through the life of the tumor. This suggests that early disseminated 

cells will potentially be less aggressive, but will have more time to establish themselves in 

the metastatic niche. More aggressive cells, while arising later in the evolution of the 

primary, may reach invasiveness faster due to their phenotypic advantage. Future work will 

explore the trade-off between early but phenotypically benign metastases versus late, 

aggressive metastases.

All models incorporate limiting assumptions. We have developed the model in two 

dimensions, representing a slice through a tissue. While three-dimensional modeling has 

been useful for exploring the specifics of tumor morphology and blood vessel remodeling, 

our interest here is in the evolution of tumor phenotypic heterogeneity as a function of 

environmental selection. We expect that there would be little advantage to implementing the 

model in 3D with respect to the insights provided on acquisition of heterogeneity. However, 

the principles of the the model can be directly extended into three dimensions in the future.

The present work uses a lattice-based approach without mechanical deformation. Tumor 

cells are limited to grow only when there is space available in the lattice. Cells are not 

displaced volumetrically, as may be the case in a real tumor. This assumption imposes a 

strict limit on the growth of a tumor, whereas a deformable tissue may permit tumor growth 

through normal tissue even if available adjacent space is absent, thereby escaping the 

encapsulation and corresponding homeostatic growth phase. To investigate these effects, 

however, would require a significantly more complex model with mechanical forces and off-

lattice modeling, and therefore is beyond the scope of the present work.

We have only considered acid-mediated invasion, and other forms of invasion such as MMP 

secretion and EMT transition are also important. The model can be extended to examine the 

effects of phenotypic changes on these additional axes in the future. Furthermore, cell 

migration without proliferation was not considered, and the effect of migration on spatial 

heterogeneity is likely to play a role in how the tumor develops. There have been previous 
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models in relation to metabolism that incorporate these effects [22, 38, 39]. However, the 

effects of acid mediated invasion rely on critical mass, and dispersion of individual cells 

through the normal tissue due to migratory elements may not necessarily lead to faster 

development of the invasive phenotype. Clearly, one logical next step is to examine the 

influence of cell migration on the properties that lead to acid-mediated invasion. Escaping 

cells might be more likely to penetrate the protective shell of relatively benign tumor cells 

seen in the present work, but migration may also mean more cellular dispersion, which 

would spatially dilute the acid-production rate of a group of aggressive cells, limiting the 

effectiveness of acid-mediated invasion. Indeed, migration may be less important when 

trying to establish a niche, but more important in reaching that niche in the first place, such 

as with micrometastases.

In this work, we chose a point-source vasculature model. This is representative of a field of 

parallel blood vessels passing perpendicular to the two-dimensional tissue slice and is a 

simplification that has been considered before [40]. There is a significant amount of 

literature devoted to modeling angiogenesis and nutrient delivery [18, 19, 41]. However, 

including these complex mechanisms are beyond the scope of this work. We opted for a 

simply-defined vascular system that would deliver temporally and spatially heterogeneous 

nutrient and waste gradients with a minimal number of parameters. A dynamic point-source 

vasculature serves as a good surrogate for a more complicated model which would 

accomplish the same goal. Indeed, much of the behavior seen in this model is sensitive to 

localized nutrient gradients, and it is unlikely that a complex vasculature would produce 

gradient structures on a local level that are significantly different from a point source 

system.

For the present work, we confined the phenotypic variation to small unbiased changes 

occurring only at the time of division. Other methods of phenotypic variation can easily be 

implemented in the model in the future. For example, major mutations to key metabolic 

genes could be modeled by adding rare but large jumps in these parameters. Cells could also 

be allowed to alter their phenotype independently of proliferation.

In summary, we have developed a hybrid multiscale model of tumor growth within a 

normal, homeostatic tissue, and demonstrated the mechanisms by which phenotypic, 

temporal, and spatial heterogeneity affect growth of a tumor and the outcomes of treatments. 

The model predictions are consistent with clinical and experimental observations and 

provide insight into the mechanisms that result in treatment failure. This work highlights the 

importance of the phenotypic heterogeneity of tumor cells and how this heterogeneity varies 

in time and space. A key prediction of our model is that early stages of tumor development 

(either primary or metastatic) maintain a phenotypically spatially structured population, 

where less aggressive clones spatially suppress more aggressive counterparts. Importantly, 

we demonstrate that standard treatment modalities may selectively destroy this structured 

population and facilitate subsequent progression. Controlling tumor progression by 

maintaining rather than destroying this suppressive tumor layer appears to be more effective 

that conventional high dose density therapy that aims to kill the maximum possible number 

of tumor cells.
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Figure 1. 
CA decision process for each cell, with diamonds representing decisions, green arrows 

meaning the condition is satisfied, and red meaning the condition is not met. Therapies are 

shown in yellow.

Robertson-Tessi et al. Page 18

Cancer Res. Author manuscript; available in PMC 2016 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(a) Model interaction network for diffusible molecules (yellow), vasculature (light gray) , 

normal tissue (dark gray), and variable tumor phenotypes (colors). Red lines show negative 

or inhibitory interactions and green lines show positive or productive interactions. (b) A 

flow map of tumor phenotype space. The horizontal axis is the constitutively activated log-

glycolytic capacity (log pG), and vertical axis is the change in acid resistance (−ΔβT) from 

normal, with higher resistance to acidic conditions being higher on the plot. The normal 

metabolic phenotype is at the origin (magenta circle), while the arrows represent two 

possible routes to reach the aggressive state of high glycolysis and high acid-resistance, as 

discussed in section 3.1. The white line shows the equal maximal variation, such that a cell 

acquiring maximal positive changes in glycolytic capacity and acid-resistance on each 

division would move along this line in phenotype space.
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Figure 3. 
(a–h) Representative simulation of tumor growth with time points (in days): (a/b)=1270, (c/

d)=1392, (e/f)=1610, and (g/h)=1912. Scale bar is 400 microns. Video available on the 

online supplemental section (Video 1). (Left column): The 2D CA model output with 

vasculature (white), empty space (black), necrosis (dark gray), normal tissue (medium gray) 

and tumor cells labeled with colors corresponding with the cell position on the phenotype 

flow diagram of the right column. (Right column): Distribution of tumor cells along two 

phenotype axes, as described in Fig. 2, with starting (yellow) and median (cyan) tumor 
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phenotype. (i) Growth curve for the simulation. (j) Radial pHe and tumor growth from a 

murine dorsal window chamber [4]. The pH at the tumor edge was measured at multiples of 

22.5 degrees and compared to the tumor growth at the same angular positions over 10 days. 

(k) Radial pHe and tumor growth from the simulation by sampling the pH around the tumor 

edge and measuring the radial growth rate.
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Figure 4. 
Comparison of three pH buffering simulations with identical initial conditions at two 

different time points. The left column is an untreated simulation; the central column is 

continuously treated with sodium bicarbonate starting at trel=0 days; the right column starts 

treatment at trel=75 days. The top panels (a–f) show the state of the three simulations at 

trel=78 days, i.e. shortly after the tumor in the right column has started the buffer therapy. 

The bottom set of panels (g–l) shows the state of the tumors at trel=142 days. Scale bar is 

400 microns. Video available on the online supplemental section (Video 2).
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Figure 5. 
Comparison of untreated and anti-angiogenic therapy simulations with identical initial 

conditions at two different time points. The left column is untreated; the right column has 

anti-angiogenic treatment at trel=0 days. The top panels (a – d) show the state at trel=141 

days, i.e. 141 days after the start of therapy in the right panel. The bottom set of panels (e – 

h) is at trel=285 days. Scale bar is 400 microns. Video available on the online supplemental 

section (Video 3).
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Figure 6. 
(a–f) Comparison of untreated and chemotherapy simulations with identical initial 

conditions at two different time points. The left column is an untreated simulation; the 

central column was pulsed with cytotoxic therapy starting at trel=0; the right column starts 

the identical treatment at trel=105. The top panels (a–c) show the state of the three 

simulations at trel=264, i.e. shortly after the tumor in the right column has finished the 

therapy. The bottom set of panels (d – f) shows the state of the tumors at trel=380. Scale bar 

is 400 microns. Video available on the online supplemental section (Video 4). (g) Growth 

curves for untreated (solid), early (dashed), and late (dotted) chemotherapy from (a–f). 

Tumor size on the vertical axis is the diameter in microns.
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Table 1

Parameter Values

Param. Value Unit Description Reference

δx 20 µm Diameter of CA grid point Model specific

pD 0.005 1/day Normal tissue death rate [42]

pδ 0.7 1/day Death prob. in poor conditions Model specific

pn 5×10−4 1/day Necrotic turnover rate Model specific

DO 1820 µm2/s Diffusion rate of O2 [43]

DG 500 µm2/s Diffusion rate of glucose [44]

DH 1080 µm2/s Diffusion rate of protons [40]

DC 100 µm2/s Diffusion rate of chemo Model specific

Oo 0.056 mM O2 concentration in blood [45]

Go 5 mM Glucose concentration in blood [46]

pHo 7.4 pH pH of blood Physiologic pH

VO 0.012 mM/s Max. O2 concentration [45]

kO 0.005 mM Half-max O2 consumption [47]

kG 0.04 mM Half-max glucose consumption [47]

kH 2.5×10−4 — Proton buffering coefficient [40]

βN 6.65 pH Normal acid resistance [48]

βT,min 6.1 pH Maximal acid resistance [47]

pG,max 50 — Maximal glycolytic phenotype [49]

ΔH 0.001 — Pheno. Variation rate (acid res.) Model specific

ΔG 0.05 — Pheno. Variation rate (glycolysis) Model specific

Ad 0.3 — ATP threshold for death Model specific

Aq 0.8 — ATP threshold for quiescence Model specific

τmin 0.8 Day Min. cell cycle time [47]

σmin 80 µm Min. vessel spacing [50]

σmean 158 µm Mean vessel spacing [50]

ζO [8,20]×10−4 mM Hypoxic angiogenesis zone Model specific

νmean 20 — Vessel stability Model specific

pang 0.3 — Angiogenesis rate Model specific

Co 1 — Chemo concentration in blood Model specific

Cd 0.25 — Min chemo conc. half-max Model specific
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