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Knowledge of concentrations and elemental ratios of suspended particles are important for understanding
many biogeochemical processes in the ocean. These include patterns of phytoplankton nutrient limitation
as well as linkages between the cycles of carbon and nitrogen or phosphorus. To further enable studies of
ocean biogeochemistry, we here present a global dataset consisting of 100,605 total measurements of
particulate organic carbon, nitrogen, or phosphorus analyzed as part of 70 cruises or time-series. The data
are globally distributed and represent all major ocean regions as well as different depths in the water
column. The global median C:P, N:P, and C:N ratios are 163, 22, and 6.6, respectively, but the data also
includes extensive variation between samples from different regions. Thus, this compilation will hopefully
assist in a wide range of future studies of ocean elemental ratios.
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Background & Summary
One of the fundamental tenets of ocean biogeochemistry is the Redfield ratio. Redfield identified a
similarity between the N:P ratio of plankton living in the surface ocean and that of dissolved nitrate and
phosphate in the deep ocean1,2. He hypothesized that the deep ocean nutrient concentrations were
controlled by the elemental requirements of the surface plankton. This concept has been extended to
include other elements like carbon and remains a cornerstone for our understanding of ocean
biogeochemistry. Despite the importance of this ratio, there is no obvious mechanism for a globally
consistent C:N:P ratio of 106:16:1 (i.e., Redfield ratio), and there is substantial elemental variation
among ocean taxa3–6. Furthermore, many small plankton are not homeostatic but instead, the
cellular elemental content varies depending on growth conditions7. Thus, it has become apparent that
changes in biodiversity or cell physiology can lead to variations in marine plankton elemental
stoichiometry.

Variations in elemental content and ratios of marine microbial communities have multiple important
implications. Broecker and Henderson have proposed that increased plankton C:N:P ratios and thus
increased CO2 uptake in the ocean could explain the glacial to inter-glacial variation in atmospheric CO2

concentration8. Rates of N2 fixation as well as competition between phytoplankton and N2-fixers are also
dependent upon an assumed N:P ratio (specifically the Redfield ratio). Recently, multiple researchers
have argued that our understanding (or lack thereof) of cellular elemental stoichiometry has a large
influence on our ability to estimate the global ocean N budget9,10.

It has been observed that specific phytoplankton groups as well as particulate organic matter display
regional differences in elemental stoichiometry11–14. For example, the C:P, N:P, and C:N ratios all appear
to be above Redfield proportions in the oligotrophic gyres, near Redfield proportions in upwelling regions
like the Eastern Equatorial Pacific Ocean, and below Redfield proportions in colder, nutrient rich high
latitude environments11,12. The ratios may also vary between the gyres depending on the nutrient supply
ratio and the resulting degree of nitrogen versus phosphorus limitation. Thus, rather than globally static
C:N:P ratios, differences in environmental conditions and plankton community composition can lead to
variations in the elemental composition of plankton and particulate organic material4,11–13,15. In addition,
we also observe extensive variations in the ratios of particulate nutrients which cannot be explained with
common physio-chemical parameters11,12. Thus, future studies are needed to identify factors causing this
variation.

The elemental stoichiometry of ocean plankton communities has also been the focus in many model
studies10,15–17. This includes models describing cellular elemental composition in response to changes in
light intensity, nutrients, or other environment conditions16,17. Other models focus on identifying
regional differences in the elemental stoichiometry15. Thus, models have indicated that the elemental
stoichiometry of cells, communities, and ocean regions are not constant but vary depending on
biodiversity and environmental conditions. However, we currently do not have global datasets to evaluate
the output of such models.

To address this issue, we here present a compilation of measurements of marine particulate organic
carbon (POC), nitrogen (PON), and phosphorus (POP) from 70 cruises or time-series during the last 40
years (Table 1 (available online only))12,18–67. The dataset includes a total of 100,605 discrete
measurements of particulate organic nutrients including 6940 POP, 46728 PON, and 46937 POC
measurements. This leads to 5948 N:P, 5573 C:P, and 45476 C:N observations. Due to the common
concurrent and largely automated measurements of PON and POC, these two particulate nutrients are
over-represented in comparison to the sparse measurements of POP.

It is worth noting that this represents an aggregated dataset collected by many independent
researchers (Table 1 (available online only)). Even though most studies utilize the same techniques and
sample volumes, there are likely many small deviations in the technical approach. As a result, some care
should be taken when comparing values.

The data covers 5336 unique stations from all major ocean regions (Figure 1). 89% of the samples
originate from the top 200 m of the water and thus the dataset is skewed towards processes occurring in
or near the euphotic zone (Figure 2a). The data is also biased towards regions of oceanographic research.
This includes samples near the Palmer Station in the Southern Ocean, North Atlantic Ocean and Eastern
North Pacific Ocean (including the HOT site and California Current) (Figure 2b and Figure 2c). Thus,
this compilation of data identifies regions where we currently have very sparse data (e.g., the South
Pacific, South Atlantic, and Eastern Indian Ocean). Overall, the median C:P, N:P, and C:N ratios are 163,
22, and 6.6, respectively, in this dataset but the data span a wide range for all three ratios (Figure 2d–f).
Combined with the wide geographic extent of the data, this compilation will enable a range of analyses of
elemental concentrations or ratios in particulate organic matter.

Methods
Nearly all POC and PON measurements were done by collecting seawater particles onto glass-fibers
filters (i.e., GF/F) and quantified using an combustion GC-IR based elemental analyzer68. The only
exceptions were ‘EUMELI’ and ‘OLIPAC’, where PON was measured using a chemical oxidation
technique38. Particulate phosphorus was quantified using the ash-hydrolysis method26,69. We
operationally defined station IDs as samples taken within a 1° × 1° area on the same day11.
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The data was gathered by searching available databases (i.e., PANGAEA, BCO-DMO, JGOFS, and
IFREMER) as well as published literature. We aggregated all available datasets in order to create the most
exhaustive global description of particulate organic nutrients and thus did not exclude any specific cruises
or time-series. The only data excluded were samples subjected to a prior manipulation or incubation.

Data Records
The dataset includes the following fields for each record:

Cruise
Year
Month
Day
Latitude (−90 to 90)
Longitude (−180 to 180)
Sampling depth (m)
Particulate organic Carbon (μM)
Particulate organic Nitrogen (μM)
Particulate organic Phosphorus (μM)

Data Record 1
The database files (June 20, 2014 version) in csv format were uploaded to Dryad (Data Citation 1). A file
containing all the fields listed above is available. ‘− 9999’ denotes missing data.

Data Record 2
The particulate nutrient data were also uploaded to the Biological and Chemical Oceanography Data
Management Office system (BCO-DMO) (Data Citation 2) with all the fields listed above. The database is
organized at level 0 by cruise dataset (Table 1 (available online only)), level 1 by stations, and level 2 with
the POM data. ‘− 9999’ describes missing data. This dataset will be updated if new data becomes
available.

Technical Validation
In our experience, when all precautions are taken, variance between replicate samples for elemental
analysis can be o5%, assuming the actual sample is above the analytical blank. However, not all
precautions are always taken, for example it is rare that when sampling for POC that the entire Niskin
bottle is drained, well mixed and then subsampled. It is known that as the sample sits in the bottle, large
particles sink to the bottom and often below the spigot resulting in an underestimation of particulate
matter concentrations in the seawater sample70. There is also the question of limit of detection. For
particulate analyses, this depends in part upon the volume you are filtering, the concentration of your

Figure 1. Global distribution of POM measurements in the dataset. A depth profile was defined as at least two

unique depths from the same station.
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analyte of interest and overall cleanliness of your procedures71. For example, in the Sargasso Sea, where
particulate nutrients are very low, we filter 4 liters of seawater for particulate organic phosphorus26 to
ensure that the sample well exceeds the blank. In our experience making these measurements using the
methods reported here, reasonable blank measurements for POC, PON and POP are ~0.5 μM, ~0.04 μM
and ~3 nM, respectively. It is common practice to subtract blanks from analyzed samples, and we assume
that has been done for all reported data however, we cannot be fully confident in how that blank
correction was conducted. Whether blank-corrected samples are significantly different than zero is a
different question and depends upon the actual value and variability of the blank which is not commonly
reported in published works or available datasets. However, we are confident that blank-corrected
particulate organic matter concentrations greater than ~0.5 μM POC, ~0.05 μM PON and 5 nM POP are
valid numbers to report. This benchmark may change between ocean regimes and with specific protocols.
We should also note that some samples give either very high or low elemental ratios. These could arise
from analytical artifacts, for example, one or both values in the ratio being close to the analytical
detection limit, as well as other sampling artifacts. However, we currently do not have a good handle on
the spatio-temporal variation in particulate nutrient concentrations and ratios and thus, it is difficult to
give precise guidelines for flagging possible artifacts and thus really high/low values should be examined
more closely and used with caution.

Usage Notes
The dataset can be used to identify novel regional or environmentally driven patterns in both the
concentration of particulate organic matter as well as the ratios of different elements. Within this dataset
are observations from time-series stations and thus temporal analysis of particulate organic matter
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Figure 2. Summary of POM measurements and ratios in the aggregated dataset. Histogram of the number of

observations across depths (a), latitude (b), and longitude (c) as well as the range of C:P (d), N:P (e), and

C:N (f) elemental ratios. M represents the median value. Please note a difference in the total number of

observations for each elemental ratio.
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concentrations and ratios can also be evaluated. Further, the data can be utilized to evaluate outputs from
ocean biogeochemical models.
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