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Abstract

Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy
patients involves two challenges: radiological images to represent patient anatomy are not usually
available for patient cohorts who were treated years ago, and efficient dose reconstruction
methods for large-scale patient cohorts are not well established. In the current study, we developed
methods to reconstruct organ doses for radiotherapy patients by using a series of computational
human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-
dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we
developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid
computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-
image and DICOM-structure files, respectively. The resulting DICOM files were imported to a
commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The
conversion process was validated by comparing electron densities relative to water and organ
volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed
agreements within 0.1% and 2%, respectively. Second, we developed a procedure to transfer
DICOM-RT files generated from the Eclipse system directly to a Monte Carlo transport code, X-
ray Voxel Monte Carlo (XVVMC) for more accurate dose calculations. Third, to illustrate the
performance of the established methods, we simulated a whole brain treatment for the 10-year-old
male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected
organs were calculated using the Eclipse and XVVMC, and compared to each other. Organ average
doses from the two methods matched within 7%, whereas maximum and minimum point doses
differed up to 45%. The dosimetry methods and procedures established in this study will be useful
for the reconstruction of organ dose to support retrospective epidemiological studies of late effects
in radiotherapy patients.
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1 Introduction

Epidemiological studies of the risk of late effects in radiotherapy patients require dosimetry
methods that provide individualized organ-specific radiation doses inside as well as outside
of the treatment fields. In most retrospective epidemiological studies, organ doses need to be
reconstructed for patients treated many years in the past. Two challenges are involved in this
task. First, radiological images representing full patient anatomy are not generally available
on the individual level for the patient cohort. In some cases partial scans may be available,
but in many cases no image sets exist. Second, efficient dose reconstruction methods for a
large-scale patient cohort are not well established.

Different dosimetry methods have been employed in large-scale retrospective
epidemiological studies when radiological images are not available. Stovall et al. used
various approaches for the organ dose reconstructions of radiotherapy patients (Stovall et al
1995, 2004, 2006): derivation of organ average dose using a matrix of point dose
measurements within a water phantom under the radiotherapy machines and direct thermo-
luminescent dosimeter (TLD) measurements using physical anthropomorphic phantoms.
Diallo et al. introduced DOS-Eg software, which is based on a simplified stylistic human
anatomy and water phantom measurements, for evaluation of peripheral doses in external
radiotherapy patients (Diallo et al 1996). This group later developed ICTA software with
improved human anatomy based on computed tomography (CT) images (Ligot et al 1998).
Although these methods have been widely used for numerous epidemiological studies
(Stovall et al 2006) mainly thanks to the fast computational time, the anatomical models in
the existing methods are limited to either simplified water phantoms, which may not
accurately take into account the complex and heterogeneous human anatomy, or fixed
anatomy segmented from a single individual, which may not represent the anatomy of an
entire patient cohort with significant variation in body size.

In the field of medical physics, computational human phantoms have been actively
developed to describe human anatomy and to facilitate the calculation of radiation dose to
organs and tissues, and widely used for organ dose calculations for reference individuals
undergoing a variety of radiation-involved diagnostic and therapeutic procedures. Since the
introduction of mathematical (or stylized) phantoms in the 1970s (Cristy and Eckerman
1987), computational phantoms have evolved from a simple format based on mathematical
surface equations, to voxel (or tomographic) phantoms based on tomographic images of real
patients(Caon 2004, Zaidi and Xu 2007), and more recently to hybrid phantoms where the
advantages of the two earlier classes of phantom, the flexibility of stylized and the realism
of voxel phantoms, are combined (Xu et al 2007, Segars and Tsui 2009, Lee et al 2007, Xu
2014). The hybrid phantoms (or boundary representation: BREP) are the most realistic and
flexible format of computational phantoms to date. The pediatric hybrid voxel phantom
series (Lee et al 2010) that were developed under the collaboration between the University
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of Florida and the National Cancer Institute were recently adopted as pediatric reference
phantoms by the International Commission on Radiological Protection (ICRP).

Several researchers reported new methods coupling the computational human phantoms
with Monte Carlo transport codes to calculate organ doses for radiotherapy patients. Bednarz
et al. simulated 6 and 18 MV linear accelerators using a Monte Carlo transport code
(Bednarz and Xu 2009), and coupled the models with their pregnant women computational
phantom to assess fetal doses from 6-MV external photon radiotherapy (Bednarz and Xu
2008). They also employed an adult male whole body phantom to calculate out-of-field
organ doses for prostate treatments (Bednarz et al 2010, 2009). Athar et al. (Athar et al
2010, Athar and Paganetti 2011) reported the comparison of out-of-field photon dose in
intensity modulated radiation treatment (IMRT) and neutron dose in proton therapy by using
MC transport method and adult and pediatric voxel phantoms. Joosten et al. (Joosten et al
2011, 2013) reported organ-specific peripheral doses after IMRT for breast cancer
treatments using a whole body CT scan coupled with in-house Monte Carlo model of 6MV
beams. Although Monte Carlo calculations were not conducted, Moignier et al. (Moignier et
al 2013) reported a feasibility to use hybrid computational phantoms for retrospective heart
dosimetry after breast radiation therapy by importing hybrid phantoms into a treatment
planning system. However, the existing methods may not be readily used for a large-scale
epidemiological study because of relatively long computation time in the Monte Carlo
calculations and the lack of convenient interface for physicists to perform a treatment
planning.

In the current study, we developed an efficient workflow to provide organ dose estimates of
radiotherapy patients to support a large-scale retrospective epidemiological study, where
patient images are not available. We imported the hybrid phantoms into the existing
treatment planning system (TPS), a convenient tool for physicists to perform a treatment
planning and organ dose calculation. We also developed a streamlined procedure to conduct
Monte Carlo (MC)-based dose calculations by directly importing DICOM-Radiation
Treatment (RT) files into a radiotherapy-dedicated Monte Carlo code. We also conducted
illustrative applications of the established methods for two cases of cancer treatment using
pediatric and adult phantoms.

2 Materials and methods

2.1 Hybrid computational phantom series

We adopted a series of pediatric and adult reference hybrid phantoms (Lee et al 2010). The
hybrid phantoms have several advantages over the simplified or individualized surrogates
adopted by the existing dose calculation methods (Stovall et al 2006, Diallo et al 1996,
Ligot et al 1998). First, the organ and tissue masses in the hybrid phantoms matched to the
reference masses reported by ICRP(ICRP 2002). The reference alimentary tract dimensions
(e.g., the length of small intestine) are employed in the phantom development(ICRP 2006).
Also, the reference density and elemental composition reported by the ICRP and ICRU are
incorporated into the phantoms (ICRU 1992, ICRP 2002). Second, the organs and tissues in
the hybrid phantoms are already indexed with their respective contour and material
compositions, which will significantly reduce the laborious effort of contouring the organs
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of interest in organ dose calculations. Figure 1 shows the 3D rendering of the hybrid
phantom series from newborn to adult.

2.2 Conversion of computational phantoms to DICOM images

We converted the hybrid phantoms into DICOM-image files, which are readable in
treatment planning systems. The hybrid phantoms composed of Non-Uniform Rational B-
Spline (NURBS) and polygon mesh surfaces (Lee et al 2010) were voxelized to voxel
phantoms with the resolution of 1 x 1 x 3 mm3. Reference elemental compositions obtained
from ICRU (ICRU 1992)and ICRP (ICRP 2002) publications were assigned to a total of 38
organs and tissues and 35 bone sites. The elemental compositions for water and air were also
assigned to gastrointestinal contents and air-filled cavities, respectively. A single set of
elemental composition was used for cortical bone across different bone sites, whereas
separate values were assigned to spongiosa regions in different bone sites.

We intended to import the resulting DICOM-image files into a commercial treatment
planning system (TPS), Eclipse™ (Varian Medical System, Palo Alto, CA). The Eclipse
system employs the dose calculation algorithm, Analytical Anisotropic Algorithm (AAA)
for photon dose calculation, that anisotropically accounts for tissue inhomogeneity in the
three dimensional neighborhood by using radiologic scaling of the dose deposition functions
in the beam direction and electron-density-based scaling of the photon scatter kernels
(Sievinen et al 2005). Because the algorithm uses electron density relative to water (referred
to as “electron density” hereafter) for dose calculation, we derived the values for each organ
and tissue by using the elemental composition and density assigned to the hybrid phantoms
as follows:

i X Z;
o] = o] < M EIT o

cm? cm?
where f; is the mass fraction, Z; is the atomic number, A; is the atomic weight of it element,

and N, is Avogadro's number. The electron density of the water is 3.343 x 1023
electrons/cm?.

We then converted the electron densities to Hounsfield Units (HU) using the electron
density-to-HU conversion table, which has been clinically commissioned in the Department
of Radiation Oncology at the University of Michigan (Table 1). Once HU was assigned to
each voxel of the hybrid phantoms, the matrix was exported to a 16-bit DICOM file using
DICOMWRITE, a function of the MATLAB™ (The Mathworks, Inc., Natick, MA) Image
Processing Toolbox™. Electron density was measured in the Eclipse system after importing
the phantoms, and compared with the original values to make sure electron densities are
accurately transferred. Organs with a variety of electron densities (0.337 — 1.083) were
selected for the comparison from the adult male hybrid phantom: lungs, thymus, spinal cord,
thyroid, spleen, trachea, and ears.
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2.3 Conversion of organ contours to DICOM-Structure files

Even though the pseudo CT images of the hybrid phantoms can be imported into the Eclipse
system, organs of interest must be re-contoured to calculate organ doses. Because the
comprehensive number of detailed organs and tissues are already contoured in the hybrid
phantom, we developed a method to directly convert the organ contours into DICOM-
structure files, which will significantly reduce the time and effort to re-contour organs of
interest.

We wrote an in-house script using Rhinoceros™ (McNeel North America, Seattle, WA)
software to automatically export organ contours from the original hybrid phantoms
described by NURBS and polygon mesh surfaces. The contours were generated with 3 mm
resolution in z direction to match that of the DICOM-image files. We found iteratively an
optimal resolution of polygon mesh abstracted from the perfect NURBS curves that resulted
in reasonable file size. We then converted the contour data into DICOM-structure files that
can be directly imported into the Eclipse system. We compared the volumes of selected
organs between the original hybrid phantoms and the imported organ contours in the Eclipse
system. The selected organs included brain, thyroid, and eyeball in the 10-year-old male
phantoms, and prostate, urinary bladder wall and content, gonads, and femoral head in the
adult male phantom.

2.4 TPS and Monte Carlo dose calculation

Once the DICOM-image and DICOM-structure files were imported into the Eclipse system,
we could conduct treatment planning and organ dose calculations using the convenient
graphical user interface (GUI). It is reported that AAA, generally adopted by TPS, is fast but
less accurate than MC radiation transport algorithms for dose calculation in inhomogeneous
media, especially near bone or lung interfaces, and in structures outside of the primary
radiation fields (Howell et al 2010, Joosten et al 2011, 2013, Wang and Ding 2014).

In addition to the TPS-based calculation method, we also employed a Monte Carlo code, X-
ray Voxel Monte Carlo (XVMC)(Fippel 1999) to provide more accurate dose calculations in
inhomogeneous media and potentially in out-of-field regions. The XVVMC code employs
several variance reduction techniques, including photon splitting and electron history
repetition, to significantly increase calculation speed without loss of accuracy (Kawrakow
and Fippel 2000), which has been verified previously (Krieger and Sauer 2005, Fragoso et al
2010). The use of a water composition with different densities instead of detailed elemental
composition allows for significant increases in calculation speed (Kawrakow et al 1996)
although there could be up to 10% dose difference (Chetty et al 2007, Siebers et al 2000).
The cross section data of the XVVMC code is mostly based on the ICRU 46 report (ICRU
1992). For electron transport, the simplified scattering approximation suggested by
Kawrakow et al. (Kawrakow et al 1996) is used. For photon transport, the cross section of
Compton scattering is the same as EGS4 code (Nelson et al 1985) and the Heitler cross
section is used for pair production if the energy of particle is above the cut off energy
(Fippel 1999). The code was commissioned for a Varian iX accelerator and the agreement
between code calculation and ion chamber measurement for percentage depth dose and off-
axis profile in water was within 1%.
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MC calculation of organ dose using computational human phantoms normally requires
complicated coding to translate the phantoms to a format compatible with a given MC code
and to define treatment parameters within the code. It is not practical to perform the process
for a large number of subjects typically involved in retrospective epidemiological studies.
To streamline the process, we developed a method to directly import the DICOM files
including the CT images (DICOM-image), anatomical structure (DICOM-structure), and
treatment plan (DICOM-plan) to the XVVMC code. We used The Computational
Environment for Radiotherapy Research (CERR)(Deasy et al 2003), a MATLAB-based
software that allows for the visualization and analysis of treatment plans from a variety of
treatment planning systems, to import the DICOM files and convert them to MATLAB
formatted data (.mat) file type. We developed an in-house MATLAB script to convert the
plan from .mat to a 3D density matrix (.dmx), using the HU-to-density table, and the X\VVMC
plan format (.vmc).

2.5 lllustrative dose calculations in brain and prostate tumor treatments

3 Results

Once it was confirmed that the original anatomy and material information were accurately
transferred to the Eclipse system and then to the XVVMC code, we conducted organ dose
calculations by simulating radiation treatments of brain and prostate tumors in the 10-year-
old and adult male phantoms, respectively. Radiation doses were calculated for selected
organs in each treatment case by using the Eclipse system and XVVMC code.

Radiation treatment plans treating the whole brain and prostate were created within Eclipse
using the DICOM images of the 10-year-old and adult male phantoms, respectively. We
used two opposed parallel fields of 6 MV beam for the whole brain treatment and seven
equally weighted isocentric photon beams of 6 MV for the prostate treatment as illustrations.
Multileaf Collimator (MLC) was used for the beam shaping.

The Eclipse system was used to calculate radiation dose to organs of interest: brain, brain
stem, thyroid, and eye balls for the brain treatment in the 10-year-old phantom; and prostate,
urinary bladder, rectum, gonads, and femoral head for the prostate treatment in the adult
male phantom. Using the procedure described above, we also transferred DICOM-RT files
from Eclipse directly into XVVMC for the MC dose calculation. We used 108 photon
histories per field in both treatment cases to reduce relative errors in resulting organ doses
less than 2 %. The dose calculation was performed using a LINUX computation server built
with dual six core 2.93 GHz Intel XEON processors and 12.0 GB RAM. Energy cutoffs of
250 keV and 50 keV were used for electron and photon, respectively, in the MC dose
calculations. In both the Eclipse system and XVVMC code, we calculated organ absorbed
dose and dose volume histogram (DVH). The calculation for the adult male prostate
treatment took about 30 minutes in the XVMC code and about 1 minute in the Eclipse
system.

3.1 Conversion of the hybrid phantoms to DICOM files

First, we converted the hybrid voxel phantoms into DICOM-image files using the electron
density-to-HU conversion. Tables 2 and 3 list the calculated electron densities using Eq. 1
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for organs and skeleton, respectively. Identical sets of electron density were used for males
and females under the age of 10-year. Gender-specific density (ICRP 2002, ICRU 1992)was
assigned to the organs and tissues in the 15-year-old and adult phantoms except skeletal
density, which is common between the male and female phantoms. Second, we generated
DICOM-structure files for selected organs in the hybrid phantoms and imported into the
Eclipse system. Figure 2 shows the example axial images of the imported organ contours for
(@) thyroid in the 10-year-old male phantom and (b) prostate in the adult male phantom,
which are indicated using arrows.

After importing the DICOM files into the Eclipse system, we compared the electron density
and the volume of organs between the original hybrid phantoms and the imported DICOM
files. Table 4 tabulates the electron density comparison that shows excellent agreements
within 0.1% on average. Lungs show the greatest difference of 0.59%. Table 5 shows the
volume comparison showing overall good agreements within 2%.

3.2 lllustrative organ dose calculations

Figure 3 shows the two treatment plans for brain (top) and prostate (bottom) in the 10-year-
old and adult male phantoms, respectively, performed in the Eclipse system. DVH for the
organs of interest in both cases is presented in Figure 4: brain, brainstem, eyeballs, and
thyroid in the brain tumor case, and bladder, prostate, femoral heads, rectum, and testes in
the prostate tumor case, computed from The Eclipse and XVVMC represented by dotted and
solid lines, respectively. Organ dose distributions from both calculation methods overall
match well because the organs are mostly within or very close to the treatment fields.

Table 6 tabulates the average organ doses, and maximum and minimum point doses in
voxels contained within a given organ from the Eclipse and XVVMC code. Average organ
doses from the two methods match within 7% whereas maximum and minimum point doses
differ by up to 45%. The significant differences could be explained by several factors, such
as differences in dose calculation algorithms between the Eclipse and XVMC, especially the
approximated algorithm in the Eclipse accounting for tissue inhomogeneity as mentioned in
Section 2.2. The difference in the minimum point doses are relatively high but the absolute
doses are very low, e.g., the minimum dose to the femoral heads, 0.06 Gy in Eclipse and
0.10 Gy in XVMC, are less than 0.2% of the average prostate doses. Although the
differences in the minimum and maximum point doses are relatively high, these values are
not generally considered in epidemiological studies of second cancer risk, which is normally
calculated using average organ doses.

4 Discussion

It should be noted that the dosimetry methods developed in the current study are limited to
organs of interest located within or very close to the treatment field. The current model of
the linear accelerator (LINAC) in the XVVMC code does not account for the leakage and
scattered radiations from the accelerator head, which contribute to most of out-of-field dose
with minimal contribution from internal scattering within patient (Xu et al 2008). We are
extending the source model to include additional mechanical components outside the
LINAC head such as collimators and housing structures. Rigorous experimental validation
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for the out-of-field dose calculations is being conducted by comparing with water phantom
measurements in collaboration with the Department of Radiation Oncology at the University
of Michigan. The XVVMC code is also using a water composition with different densities
instead of detailed elemental composition to increase calculation speed (Kawrakow et al
1996), which however provides dose difference up to 10% (Chetty et al 2007, Siebers et al
2000). We are exploring a method to assign elemental compositions to different media
according to the HU of CT images.

In spite of the limitation, our method has several advantages compared to the existing
dosimetry methods used for epidemiological studies of second cancer risk. First, we adopted
the reference pediatric and adult hybrid phantoms based on real patient CT images and the
ICRP reference data coupled with the NURBS/polygon mesh format. In most cases of
retrospective epidemiological studies where patient CT images are not available, the
reference phantoms may be the best surrogate representing average population. Second, the
methods and procedures we established are efficient for a large-scale patient cohort. Figure
5 depicts the workflow from the data collection from old medical records to final dose
calculations, which we are envisioning. A library of detailed and pre-contoured
computational human phantoms are ready to pick from the treatment planning system thanks
to the technique to directly import the organ contours of the hybrid phantoms into the
treatment planning systems and MC code. Depending on the location of organs and
characteristics surrounding the organs, users can choose the TPS or MC calculation
methods. We recently published an application of the established method to investigating the
variation of stomach doses in patients treated for Hodgkin Lymphoma (Lamart et al 2013).

5 Conclusion

We developed methods and procedures to efficiently reconstruct organ doses for
radiotherapy patients whose radiological images are not available, which is common in
retrospective epidemiological studies. The anatomy and organ contours of the hybrid
phantoms were imported to a commercial treatment planning system and Monte Carlo
transport code, and used for two illustrative dose calculations simulating brain and prostate
cancer patients. The established methods may be useful for several tasks in the study of late
effect in radiotherapy patients even beyond organ dose reconstructions: the sensitivity
analysis of different parameters involved in treatment and patient to organ doses and the use
of dose distribution within organs of interest to improve the risk analysis of second cancer.
The DICOM files for the 12 pediatric and adult reference hybrid phantoms that are
compatible with commercial treatment planning systems can be made available upon request
through a non-disclosure agreement with the corresponding author.
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Newborn 1-year  S-year 10-year 15-year female 15-year male Adult female  Adult male

Figure 1.
Series of hybrid phantoms representing pediatric and adult reference individuals. Only male

phantoms are visualized for newborn, 1-, 5-, and 10-year-old phantoms because those
phantoms share the identical anatomy between male and female except for gender-specific
organs.
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B. Prostate in Adult Male Phantom

A. Thyroid in 10-Year-Old Male Phantom

D
L)

Figure2.
Examples of the imported organ contours in DICOM-structure files of (a) thyroid in the 10-

year-old male phantom and (b) prostate in the adult male phantom (indicated with arrows)
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Figure 3.
Treatment plans performed using the Eclipse system for (a) brain and (b) prostate tumors in

10-year-old and adult male phantoms, respectively.
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A. DVH for 10-year-old male phantom in brain tumor treatment
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Comparison of dose volume histogram (DVH) between the Eclipse and XVVMC code for
tumors and organs of interest in (a) brain tumor treatment of the 10-year-old male phantom

and (b) prostate tumor treatment of the adult male phantom.
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Organs of Interest are out-
of-field or inhomogeneous

Page 16

Extract treatment parameters from
patient records
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Select a phantom from the library
of phantoms pre-imported in TPS
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region?

Reconstruct treatment plans

Transfer DICOM-RT to XVYMC

Organs of Interest are
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Monte Carlo dose calculation

v

Dose calculation completed

Figure5.

Diagram showing the workflow of organ dose calculations using the Eclipse system and

XVMC code.
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Electron density to Hunsfield Unit (HU) conversion measured from a reference Computed Tomography

phantom.

Relative Electron Densityl ~ Hounsfield Unit

0.00
0.25
0.95
1.00
1.64
2.35
5.00

-1000
=721

1 . .
Electron density relative to water
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Comparison of the electron density relative to water for selected organs between the original adult male hybrid

phantom and the converted DICOM-image file in the Eclipse treatment planning system.

Relative electron density

Organs

Hybrid Phantom  Eclipse Difference (%)
Lungs 0.337 0.335 -0.59
Thymus 1.018 1.017 -0.10
Spinal cord 1.035 1.039 0.39
Thyroid 1.042 1.041 -0.10
Spleen 1.051 1.050 -0.10
Trachea 1.058 1.057 -0.09
Ears 1.083 1.082 -0.09
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Comparison of organ volumes obtained from the original hybrid phantoms and the DICOM-structure files

imported to the Eclipse system.

Volume (cm?3)

Phantoms Organsor Tissues

Hybrid Phantom

Eclipse

Difference (%)

10-year Male  Brain

1259.55 1258.50

Thyroid 7.25 721
Eyeball 11.50 11.33
Adult Male Prostate 16.01 15.74
Urinary bladder 248.83  246.36
Testes 33.71 33.13

-0.08
-0.55
-1.48

-1.69
-0.99
-1.72
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