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Abstract

Environmental stimuli that signal real or potential threats to homeostasis lead to glucocorticoid 

secretion by the hypothalamic-pituitary-adrenocortical (HPA) axis. Glucocorticoids promote 

energy redistribution and are critical for survival and adaptation. This adaptation requires the 

integration of multiple systems and engages key limbic-neuroendocrine circuits. Consequently, 

glucocorticoids have profound effects on synaptic physiology, circuit regulation of stress 

responsiveness, and, ultimately, behavior. While glucocorticoids initiate adaptive processes that 

generate energy for coping, prolonged or inappropriate glucocorticoid secretion becomes 

deleterious. Inappropriate processing of stressful information may lead to energetic drive that does 

not match environmental demand, resulting in risk factors for pathology. Thus, dysregulation of 

the HPA axis may promote stress-related illnesses (e.g. depression, PTSD). This review 

summarizes the latest developments in central glucocorticoid actions on synaptic, neuroendocrine, 

and behavioral regulation. Additionally, these findings will be discussed in terms of the energetic 

integration of stress and the importance of context-specific regulation of glucocorticoids.
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1. Introduction

The scientific understanding of ‘stress’ and its ramifications for the organism have 

continually evolved. Based on Claude Bernard's theory of the internal milieu, Walter 

Cannon first used the concept of homeostasis to explain the ‘fight-or-flight’ response of an 

organism presented with a threat (Cannon, 1932). In a biological sense, Hans Selye coined 

the term ‘stress’ as the non-specific response of the body to any homeostatic demand (Selye, 

1936). While it is still generally accepted that the physiological role of the stress response is 

to coordinate autonomic, neuroendocrine, and immune responses to potential homeostatic 

threats, an emerging concept in stress neurobiology suggests that the primary role of stress 

responding is to mobilize energy to promote context-specific survival and not necessarily 
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sustain homeostatic systems at levels maintained prior to a challenge (Dallman et al., 2006; 

Nederhof and Schmidt, 2013). Given this framework, responses to both acute and chronic 

stress are considered adaptive, up to a point, and prepare the organism for current and future 

demands. Thus, for the purpose of the current review, stress will be defined as a stimulus 

that mobilizes energetic systems to respond to an ongoing or anticipated challenge.

Responding to stress involves the concerted activity of multiple, interacting central stress-

regulatory systems to mobilize energy for the organism. Activation of the stress response 

occurs either as a consequence of, or in anticipation of, a challenge (Myers et al., 2012b). 

Anticipatory responses require the organism to reference prior experiences to predict the 

need for energy mobilization, primarily mediated by multi-synaptic forebrain projections to 

the medial parvocellular paraventricular nucleus (PVN) of the hypothalamus. Systemic 

challenges are largely reflexive responses to physiological disruption generated by direct 

projections from the hindbrain to the PVN, though there is considerable overlap and 

integration at various nodes throughout the brain (Herman et al., 2012, 2003; Ulrich-Lai and 

Herman, 2009). Thus, the neuroendocrine response to stress is a highly-regulated, temporal 

process, involving the integration of sensory information from multiple modalities to rapidly 

activate, as well as inhibit the secretion of glucocorticoids.

The neuroendocrine stress cascade, comprising the hypothalamic-pituitary-adrenocortical 

(HPA) axis, begins with the release of adrencorticotropic hormone (ACTH) secretagogues 

from neurosecretory neurons in the medial parvocellular PVN, which project to hypophysial 

portal vessels in the external zone of the median eminance (Bruhn et al., 1984). 

Secretagogues travel via the portal veins to the anterior pituitary, where they can access 

corticotropes (De Wied et al., 1957; Gibbs and Vale, 1982; McCann and Fruit, 1957; Saffran 

and Schally, 1956). The pioneering work of Wylie Vale and colleagues provided initial 

identification of corticotropin releasing factor (CRF) as the primary driver of pituitary 

ACTH release (Bale and Chen, 2012; C. Rivier et al., 1983; Rivier et al., 1982; J. Rivier et 

al., 1983; Spiess et al., 1981; Swanson et al., 1983; Vale et al., 1981). Subsequent studies, 

also by Vale and colleagues, revealed the existence of several co-secretagogues that 

synergize with CRF, including arginine vasopressin (AVP) (Rivier and Vale, 1983a, 1983b; 

Sawchenko et al., 1984; Vale et al., 1983, 1981). By way of the systemic circulation, ACTH 

acts at the level of the adrenal cortex to induce the release of glucocorticoids, cortisol in 

some species (e.g., humans, non-human primates) and corticosterone in others (e.g., rats, 

mice) (Dallman and Jones, 1973; Dallman et al., 1987). At the adrenal, cortisol/

corticosterone is released in pulses, the timing of which dictates the overall magnitude of 

both baseline activity and stress responses (Lightman et al., 2008; Young et al., 2004). 

Pulsatile patterns of glucocorticoid release are dictated by ultradian rhythms (for review see 

de Kloet and Sarabdjitsingh, 2008; Sarabdjitsingh et al., 2012a). This rhythmicity of 

glucocorticoid release is essential for maintaining cellular responsiveness and promotes 

wide-ranging glucocorticoid actions from gene transcription to behavior (Conway-Campbell 

et al., 2010; Sarabdjitsingh et al., 2010b). Glucocorticoids then travel throughout the body, 

exerting a multitude of effects in the periphery including glycogen breakdown and 

gluconeogenesis (Coderre et al., 1991; Exton, 1979; Munck et al., 1984; for detailed reviews 

of brain circuits regulating glucose homeostasis see Schwartz et al., 2000; Seeley and 

Woods, 2003; Woods et al., 1998). Glucocorticoids cross the blood-brain-barrier, and 
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primarily bind to mineralocorticoid (MR) and glucocorticoid receptors (GR) in neurons 

and/or glia. In the brain, MR has high-binding affinity for corticosteroids and, consequently, 

is activated at basal levels (de Kloet and Sarabdjitsingh, 2008; de Kloet et al., 1998). Thus, 

MR is thought to sense resting levels of glucocorticoids and promote key functions 

associated with low glucocorticoid levels, including circadian drive of the HPA axis and 

mnemonic function (de Kloet et al., 2005). Conversely, GR has a lower binding affinity for 

glucocorticoids and is largely unoccupied at basal levels. Thus, GR is thought to be 

particularly important in signaling mediated by stress levels of glucocorticoids (Boyle et al., 

2005; de Kloet and Reul, 1987; de Kloet et al., 2005; Reul and de Kloet, 1985). GR is 

abundantly expressed throughout the brain, including the primary stress-regulatory sites 

discussed in this review: medial prefrontal cortex (mPFC), hippocampus, amygdala, bed 

nucleus of the stria terminalis (BST), hypothalamus, and hindbrain (Fuxe et al., 1987; 

Meaney et al., 1985; Reul and de Kloet, 1986). MR has a more restricted distribution that 

overlaps with that of GR in several key regions, including the mPFC, hippocampus, and 

amygdala (de Kloet and Reul, 1987; Reul and de Kloet, 1985).

There is a vital need for glucocorticoid activity to be tightly regulated, requiring systems 

coordination from cellular to behavioral levels. In response to stress, glucocorticoid 

signaling promotes organismal adaptation to environmental conditions and helps to meet the 

resulting energetic demands. This adaptation requires the integration of multiple systems 

and engages key limbic-neuroendocrine circuits. Forebrain, hypothalamic, and hindbrain 

circuits are activated by glucocorticoids and participate in the coordination of physiological 

and behavioral output. However, when energetic drive does not appropriately match 

environmental demand, or the organism is chronically activating these systems, risk factors 

emerge for a variety of stress-related pathologies. The present article will review the actions 

of glucocorticoids in central stress-regulatory circuits, focusing on the rodent literature, in 

the context of the adaptive role of the stress response for the organism. The review will 

summarize the role of central glucocorticoid actions on synaptic, neuroendocrine, and 

behavioral regulation, highlighted by a discussion of the energetic integration of stress and 

the importance of context-specific regulation of glucocorticoids. The energy mobilizing 

effects of glucocorticoids require integration of cellular activity, circuit connectivity, and 

behavioral output to coordinate context-appropriate adaptation. We propose that 

glucocorticoid-mediated energetic drive generates an adaptive capacity in response to 

environmental demand; however, the cost of repeatedly or excessively driving adaptive 

systems may compromise performance under conditions of elevated environmental pressure. 

Thus, we will examine the integrative actions of glucocorticoids on the primary limbic sites 

mediating organismal stress responsiveness within the framework of context-specific 

adaptation.

2. Synaptic Actions of Glucocorticoids

The cellular actions of glucocorticoids are largely dependent on brain site and the relative 

expression of GR and MR (de Kloet, 2013a) (Table 1). Glucocorticoids also act in concert 

with monoaminergic and peptide neurotransmitters, particularly noradrenergic (Quirarte et 

al., 1997; Roozendaal et al., 2008, 2006a, 2006b, 2002) and CRF systems (Bale and Vale, 

2004; Bale, 2005; Meng et al., 2011), which have been reviewed elsewhere (de Kloet, 
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2013b; Ferry and McGaugh, 2000; Heinrichs and Koob, 2004; Roozendaal, 2000). Further, 

the synaptic actions of glucocorticoids are critically affected by the recent stress history of 

the organism, a concept known as ‘metaplasticity’, which will be expanded on in the 

following section (for review see: Schmidt et al., 2013). Acute and chronic stress often yield 

different effects on cellular function to meet context-specific energetic demands placed on 

the organism. Thus, we will discuss the effects of glucocorticoids on cellular function in 

light of these considerations.

2.1 Medial Prefrontal Cortex

The mPFC is the executive control center of the brain, providing top-down regulation of 

behavioral function. Thus, it is a key site for glucocorticoid actions and regulation of the 

HPA axis (Akana et al., 2001; Diorio et al., 1993; McKlveen et al., 2013). The rodent mPFC 

is comprised of three subdivisions, based on connectivity and cytoarchitecture: the anterior 

cingulate, prelimbic (plPFC), and infralimbic (ilPFC) cortices (Uylings et al., 2003; Vertes, 

2004). On the basis of structure and function, these regions are thought to be homologous to 

human Brodmann areas 24b, 32, and 25, respectively (Gabbott et al., 2005; Uylings et al., 

2003).

Molecular and functional studies indicate that glucocorticoids acutely increase glutamatergic 

output from the mPFC (Popoli et al., 2012). Microdialysis and microelectrode sampling 

experiments indicate increased extracellular glutamate in vivo in the mPFC following acute 

stress (Bagley and Moghaddam, 1997; Hascup et al., 2010; Moghaddam, 1993). Acute foot 

shock increases depolarization-evoked release of glutamate in isolated synaptosomes via a 

GR-dependent mechanism and increases the amplitude of excitatory postsynaptic currents 

(EPSCs) in mPFC pyramidal neurons (Musazzi et al., 2010). In adolescent rats, acute stress 

also increases NMDA- and AMPA-mediated excitatory currents by up-regulating the 

expression of these receptors on the postsynaptic membrane (via serum- and glucocortico-

idinducible kinases) (Yuen et al., 2011, 2009). Thus, existing data suggest that acute stress 

activates mPFC neurons, permitting down-stream activation of target regions (see below).

Very few studies have assayed inhibitory neurotransmission after acute corticosterone 

application. A recent study in mice found that corticosterone decreased miniature inhibitory 

postsynaptic currents (mIPSCs) and increased paired pulse inhibition, suggesting that acute 

glucocorticoid exposure disinhibits glutamatergic output from the mPFC (Hill et al., 2011). 

The effects of corticosterone on mIPSCs were prevented by CB1 antagonism, suggesting 

that the effect of acute stress on disinhibition of mPFC pyramidal neurons is likely 

endocannabinoid-dependent (Hill et al., 2011). Overall, the present data suggest that 

glucocorticoids acutely increase glutamatergic neurotransmission and decrease inhibitory 

neurotransmission in the mPFC. It remains to be determined whether reduced inhibition 

contributes to enhanced mPFC excitability.

The synaptic effects of glucocorticoids in the mPFC during chronic stress are not as well 

established, and the effects on excitatory and inhibitory neurotransmission are largely 

unknown. Repeated restraint stress, chronic unpredictable stress, or chronic corticosterone 

treatment decrease apical dendritic complexity of pyramidal neurons (Cerqueira et al., 2007, 

2005; Cook and Wellman, 2004; Goldwater et al., 2009; Liston et al., 2006; Radley et al., 
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2006, 2004; Wellman, 2001). Conversely, repeated restraint stress increases the complexity 

and transcriptional activity of prefrontal GABAergic interneurons (Gilabert-Juan et al., 

2012). While the functional consequence of these morphologic modifications is unknown, 

the direction of changes suggests both decreased pyramidal cell excitability and increased 

capacity for interneuron-mediated inhibition.

In adolescent rats, chronic stress decreases NMDA- and AMPA-mediated currents in the 

mPFC through increased degradation of postsynaptic glutamate receptors (Yuen et al., 

2012). Notably, adolescence is a developmental period marked with pruning of prefrontal 

glutamatergic synapses, particularly those to the basolateral amygdala (BLA) (Cressman et 

al., 2010). Therefore, it remains to be determined whether increased degradation of 

glutamate receptors is due to chronic stress or stress/development interactions (for review on 

adolescent synaptic plasticity see Selemon, 2013). In adult animals, chronic corticosterone 

administration decreases expression of NMDA subunit NR2B and AMPA subunits GluR2/

GluR3 in the ventral mPFC (Gourley et al., 2009). However, the impact of chronic stress on 

inhibitory neurotransmission in the mPFC has not been directly tested, further highlighting 

the need for a better understanding of chronic glucocorticoid effects on synaptic physiology 

in adult animals.

2.2 Hippocampus

The hippocampus is critical for processes related to memory, particularly spatial and 

contextual learning and memory retrieval (Roozendaal and McGaugh, 1997a; Roozendaal et 

al., 2001). The hippocampus consists of multiple subregions, including the CA1 and CA3 

regions, the dentate gyrus, and the ventral subiculum (Swanson and Cowan, 1977). The 

actions of glucocorticoids in the hippocampus have long been recognized (McEwen et al., 

1968) and have been studied in great detail. Both MR and GR are abundantly expressed in 

hippocampus, and memory processing is heavily influenced by circulating levels of 

glucocorticoids (Fuxe et al., 1987; Meaney et al., 1985; Oitzl and de Kloet, 1992; Reul and 

de Kloet, 1986). Moreover in addition to a role in memory processes, the hippocampus 

(specifically the ventral subiculum) inhibits HPA axis responses to psychogenic stressors 

(Herman et al., 2003, 1998, 1989).

The cellular actions of glucocorticoids in the hippocampus (predominantly CA1 pyramidal 

neurons) have been very well characterized, particularly by Joëls and colleagues (for review 

see Joëls et al., 2012). The rapid, non-genomic effects of glucocorticoids (occurring within 

minutes) are mediated primarily by the membrane-associated MR at the pre- and 

postsynaptic membrane (Joëls et al., 2008; Karst et al., 2005; Olijslagers et al., 2008; 

Pasricha et al., 2011). Activation of MR increases neuronal excitability by increasing the 

probability of glutamate release, suppressing potassium conductance, and increasing 

glutamate receptor trafficking (Groc et al., 2008; Karst et al., 2005; Olijslagers et al., 2008). 

Conversely, the delayed effects of glucocorticoids are mediated primarily by GR (Karst and 

Joëls, 2005). Activation of GR causes delayed suppression of neuronal excitability (due to 

enhanced calcium influx, decreased calcium efflux, and increased calcium-dependent 

potassium current) and synaptic plasticity (impaired long-term potentiation (LTP) due to 

lateral diffusion of glutamate receptors), presumably to normalize hippocampal activity after 
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stress and protect information acquired during the stressful experience, respectively 

(Bhargava et al., 2002; Chameau et al., 2007; Groc et al., 2008; Joëls and de Kloet, 1990, 

1989; Joëls, 2006; Joëls et al., 2009, 2007; Karst et al., 1994; Kim and Diamond, 2002; 

Pavlides et al., 1996). The ventral part of the hippocampus responds to glucocorticoids much 

differently than the dorsal hippocampus. Upon corticosterone application, the ventral 

hippocampus has reduced firing frequency accommodation and more depolarization-

associated spikes (Maggio and Segal, 2009a). Further, unlike CA1, stress does not lead to 

impaired LTP in the ventral subiculum (Maggio and Segal, 2010, 2009b, 2007). These 

differential effects in the ventral hippocampus may allow for a longer window of acquisition 

when this brain region is activated during a stressful experience (Joëls et al., 2012). The 

prominent role of the ventral hippocampus/subiculum in inhibiting HPA axis stress 

responses raises the possibility that differential actions of stress/glucocorticoids on synaptic 

function may be relevant to stress regulation.

The effect of chronic stress on cellular physiology in the hippocampus is fairly well 

characterized. In chronically stressed animals, LTP in the CA1 hippocampal area and 

dentate gyrus is impaired at basal levels of corticosterone and is not further impaired in the 

CA1 hippocampal area or dentate gyrus following corticosterone application (Alfarez et al., 

2003). The effects of chronic stress on synaptic plasticity in the CA1 hippocampal area are 

likely GR-mediated, as blockade of GR during the last 4 days of chronic stress blocks the 

effects of stress on LTP (Krugers et al., 2006). Further, animals with a history of chronic 

stress have GR-dependent increases in calcium influx into CA1 neurons at basal levels of 

corticosterone, which may contribute to impaired synaptic plasticity (Karst and Joëls, 2007). 

These impairments of synaptic plasticity in the hippocampus following chronic stress likely 

underlie some of the cognitive impairments observed with chronic stress exposure.

2.3 Amygdala

The amygdala integrates emotional and sensory information for the expression of fear and 

anxiety (Charney and Deutch, 1996; Davis, 1997; Phelps and LeDoux, 2005; Weiskrantz, 

1956). Additionally, the amygdala is involved in the learning and consolidation of emotional 

memories and has an essential role in conditioned responses (Davis, 1992; LeDoux, 2012). 

The amygdala is composed of multiple subnuclei that are anatomically and physiologically 

heterogeneous. Of these subnuclei, the basolateral (BLA), central (CeA), and medial (MeA) 

cell groups appear to be most closely linked to regulation of stress responses (Sah et al., 

2003; Swanson and Petrovich, 1998; Ulrich-Lai and Herman, 2009).

Similar to the hippocampus, glucocorticoids rapidly increase mEPSCs in the BLA via the 

membrane associated-MR (Karst et al., 2010). In contrast to the suppressive and normalizing 

effects of glucocorticoids on cellular responses in the hippocampus following acute stress, 

glucocorticoids in the BLA prolong excitatory synaptic responses via GR (Duvarci and Paré, 

2007; Karst et al., 2002; Liebmann et al., 2008; Rainnie et al., 2004). Further, subsequent 

corticosterone application or acute stress prior to slice preparation decreases mEPSC 

frequency in the BLA via the GR and CB1 receptor (Karst et al., 2010). Thus, the cellular 

responses of BLA neurons to glucocorticoids depend on the recent history of stress 

exposure, an effect known as metaplasticity (Joëls et al., 2012; Karst et al., 2010). In 
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response to acute noise stress, amygdalar c-fos mRNA expression increases only during the 

rising phase of pulsatile glucocorticoid infusion in adrenalectomized animals, as opposed to 

the falling phase or during constant infusion of corticosterone, further suggesting that rapid 

reactivity of the amygdala to glucocorticoids is highly dependent on recent changes in 

glucocorticoid status (Sarabdjitsingh et al., 2010a). Stress also impairs LTP in projections 

from the BLA to the plPFC and in the ventral hippocampus-mPFC pathway (Maroun and 

Richter-Levin, 2003; Richter-Levin and Maroun, 2010). The stress-induced impairment of 

LTP in the ventral hippocampus-mPFC pathway does not occur in previously stressed 

animals if the BLA is stimulated or if animals receive a second bout of stress (Richter-Levin 

and Maroun, 2010), another example of metaplasticity. While stress impairs LTP in BLA 

projections, LTP in afferents to the BLA is strengthened, including input from the entorhinal 

cortex, external capsule, and plPFC (Kavushansky et al., 2006; Maroun, 2006; Rodríguez 

Manzanares et al., 2005; Vouimba et al., 2004). Further, unpredictable footshock facilitates 

LTP in the BLA, which may be due to a stress-induced increase in GluR1 in spines from 

dendritic stores (Li et al., 2011; Hubert et al., 2013). The effects of stress on LTP in the BLA 

appear to be primarily mediated by GR as MR is involved in the maintenance of LTP, 

regardless of circulating glucocorticoid levels (Sarabdjitsingh et al., 2012b).

3. Connectivity and Integration of Glucocorticoid-Responsive Circuits

Stress integrative functions are regulated by forebrain circuits, primarily involving the above 

mentioned regions (mPFC, hippocampus, and amygdala) (Ulrich-Lai and Herman, 2009) 

(Table 2). Notably, these interconnected limbic forebrain sites do not send substantial 

projections to stress-effector neurons in the PVN. Thus, their influence on HPA axis output 

is communicated through intervening PVN-projecting neurons. Inhibitory GABAergic 

inputs to the PVN emanate from several structures in the basal forebrain and hypothalamus, 

including the BST, preoptic area (POA), and dorsomedial hypothalamus (DMH) (Boudaba 

et al., 1996; Radley et al., 2009; Roland and Sawchenko, 1993). In contrast, glutamatergic 

inputs to the PVN originate predominantly from hypothalamic nuclei, including the 

ventromedial hypothalamus (VMH), posterior hypothalamus (PH), as well as DMH (Ulrich-

Lai et al., 2011). Neurons in these regions, including those that project to the PVN, show 

pronounced activation by stressful stimuli (Cullinan et al., 1996, 1995), consistent with a 

role in stress regulation. All hypothalamic PVN-projecting regions receive mixed 

GABAergic and glutamatergic input from other hypothalamic nuclei (Myers et al., 2013), 

which may be responsible for intrahypothalamic mechanisms governing the integration of 

forebrain limbic inputs and stress responsiveness based on metabolic demand.

Importantly, GR is expressed in numerous hypothalamic PVN-projecting neurons, including 

the POA, DMH, and arcuate nucleus (Fuxe et al., 1987). In the PVN, glucocorticoids signal 

by non-genomic mechanisms to rapidly inhibit activation of parvocellular neurons and 

consequent drive on the HPA axis (Evanson et al., 2010; Tasker and Herman, 2011). These 

‘fast feedback’ glucocorticoid effects are non-genomic in nature, acting through an 

endocannabinoid-dependent mechanism to inhibit glutamatergic drive (Tasker and Herman, 

2011). Fast inhibitory effects of glucocorticoids are attenuated in animals with PVN GR 

deletion, consistent with action via GR (Haam et al., 2010). However, the role of GR in 

other PVN-projecting hypothalamic cell groups remains to be determined.
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3.1 Medial Prefrontal Cortex

Previous studies determined that glucocorticoids act at the mPFC to inhibit HPA axis 

responses to psychogenic stress (e.g. restraint) (Akana et al., 2001; Diorio et al., 1993). 

More recently, we established that glucocorticoids bind specifically to GR in the plPFC or 

ilPFC to regulate glucocorticoid responses to acute psychogenic stress (McKlveen et al., 

2013). Glucocorticoids also mobilize endocannabinoids in the mPFC in response to acute 

stress, and cannabinoid receptor 1 (CB1) antagonism disinhibits the HPA axis (Hill et al., 

2011). Thus, glucocorticoids acutely inhibit the HPA axis via GR and consequent effects on 

endocannabinoid signaling. Our lab has also demonstrated that chronic stress selectively 

recruits ilPFC glucocorticoid signaling to inhibit the HPA axis stress response during 

chronic stress, while the plPFC appears to be involved in maintaining basal glucocorticoid 

levels during chronic stress (McKlveen et al., 2013). Thus, glucocorticoids in the mPFC play 

a region- and context-specific role in HPA axis regulation during acute and chronic stress. 

Prefrontal output neurons are almost exclusively glutamatergic, and projections from the 

plPFC to GABAergic neurons in the anterior BST mediate inhibition of HPA responses to 

acute stress (Radley et al., 2009). The intervening structures relaying the influence of the 

ilPFC to the PVN have yet to be determined. Preliminary studies from our group indicate the 

PH may be important for integrating ilPFC output with HPA responses (Myers et al., 

2012a).

3.2 Hippocampus

The hippocampus is involved in terminating HPA axis responses to acute psychogenic 

stress, consistent with a role in memory and emotion processing (Cullinan et al., 1993; 

Herman et al., 1989; Mueller et al., 2004; Radley and Sawchenko, 2011). The importance of 

the hippocampus for glucocorticoid negative feedback is highlighted by the dense 

expression of GR and MR in this area (Reul and de Kloet, 1985), as well as functional 

studies demonstrating diminished feedback efficacy following hippocampal lesions (Herman 

and Mueller, 2006; Mueller et al., 2006). Surprisingly, feedback effects of glucocorticoids in 

the hippocampus may be mediated by MR, as multiple studies indicate that MR antagonists 

in the hippocampus increase HPA axis output (Feldman and Weidenfeld, 1999; van Haarst 

et al., 1997). The role of hippocampal GR in glucocorticoid negative feedback is more 

equivocal. Although GR antagonism has been shown to increase HPA axis activation in 

response to psychogenic stress (Feldman and Weidenfeld, 1999), other studies indicate that 

local GR inactivation actually decreases ACTH release at the diurnal peak of glucocorticoid 

secretion (van Haarst et al., 1997). Further, recent studies employing viral knockdown of GR 

in the hippocampus found no effect on either basal or stress-induced levels of 

glucocorticoids (Fitzsimons et al., 2013). As was the case for the mPFC, the output of the 

hippocampus is largely glutamatergic, and therefore excitatory. Consequently, numerous 

studies suggest that hippocampal inhibition of responses to psychogenic stress is mediated 

by activation of PVN-projecting GABAergic neurons in the BST, POA, DMH, and possibly 

the peri-PVN region (Cullinan et al., 1993; Herman et al., 2002; Mueller et al., 2006; Myers 

et al., 2013; Radley and Sawchenko, 2011).
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3.3 Amygdala

The BLA is an activator of acute HPA axis stress responses, as excitotoxic lesions of the 

BLA dampen ACTH and corticosterone secretion following acute but not repeated restraint 

(Bhatnagar et al., 2004). Furthermore, BLA inhibition induced by potassium channel 

overexpression inhibits glucocorticoid responses to restraint (Mitra et al., 2009a). 

Overexpression of MR in the BLA is sufficient to attenuate corticosterone responses to 

restraint (Mitra et al., 2009b), suggesting that as in the hippocampus, BLA MR serves a role 

in feedback inhibition. As with the mPFC, endocannabinoid signaling in the BLA is 

involved in HPA axis regulation. The CB1 receptor may be acting as a ‘gatekeeper’ for 

BLA-driven glucocorticoid responses after acute stress, as stress decreases inhibitory 

endocannabinoid signaling specifically in the BLA (Hill et al., 2009). Thus, the data suggest 

the BLA increases the magnitude of HPA axis responses to acute psychogenic stress. 

Projection neurons of the BLA are largely glutamatergic, and heavily innervate down-stream 

GABAergic neurons in the CeA and MeA (Bienkowski and Rinaman, 2012; Pare et al., 

1995). The BLA also innervates the BST (Myers et al., 2013), which may link BLA 

activation with HPA modulation.

Anatomical studies indicate that the CeA provides major output to regions that mediate not 

only fear and anxiety-related behaviors but also HPA axis responses (LeDoux et al., 1988; 

Myers et al., 2013; Swanson and Petrovich, 1998). PVN projecting GABAergic neurons of 

the POA receive inhibitory input from the CeA (Prewitt and Herman, 1998), suggesting the 

CeA disinhibits HPA axis responses. However, there are somewhat divergent reports on 

regulation of glucocorticoid release by the CeA. Bilateral lesions of the CeA inhibit ACTH 

responses to immobilization (Beaulieu et al., 1987, 1986) and corticosterone responses to 

footshock (Roozendaal et al., 1991), but do not affect responses to acute restraint (Prewitt 

and Herman, 1997). Other lesion studies have suggested that the CeA activates the HPA axis 

in response to systemic but not psychogenic stressors (Dayas et al., 1999; Xu et al., 1999). 

Importantly, corticosterone implanted on the CeA potentiates HPA axis responses to acute 

psychogenic stress (Shepard et al., 2003). Further, glucocorticoid responses to repeated 

psychogenic stress can be inhibited by GR or MR antagonism in the CeA (Myers and 

Greenwood-Van Meerveld, 2012), suggesting that the CeA has feed-forward effects on the 

HPA axis that may be linked to context-specific enhanced stress excitability. The MeA 

appears to be selectively involved in generating HPA responses to acute, but not chronic, 

psychogenic stress (Dayas et al., 1999; Ma and Morilak, 2005; Solomon et al., 2010). 

Although very little is known about the actions of glucocorticoids in the MeA, this region 

provides mixed glutamatergic and GABAergic innervation of the BST and hypothalamus, 

indicating the potential for subregional differences in the effects of the MeA on stress 

responding (Myers et al., 2013; Poulin et al., 2008).

3.4 Bed Nucleus of the Stria Terminalis

The BST provides direct input to the PVN and is a hub for forebrain inputs and trans-

synaptic input to the PVN. Regulation of the HPA axis occurs at the level of the BST in a 

regional- and context-specific manner. The anterolateral BST receives projections from the 

plPFC and the ventral subiculum and sends GABAergic projections to the PVN that inhibit 

HPA axis responses to acute stress (Radley and Sawchenko, 2011). Additionally, lesions of 
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the principal nucleus in the posterior BST increase glucocorticoid responses to acute and 

chronic stress, suggesting an inhibitory role of this region in HPA axis regulation (Choi et 

al., 2008b, 2007). Lesions of the dorsomedial/fusiform nuclei in the anteroventral BST 

decrease HPA axis responses to acute stress, whereas lesions to this same region under 

chronic stress increase HPA axis responses (Choi et al., 2008a, 2007). Thus, the 

anteroventral BST appears to be sensitive to circulating glucocorticoid levels such that this 

region is involved in promotion and inhibition of HPA axis responses to acute and chronic 

stress, respectively. Moreover, the functional ‘switch’ in anteroventral BST suggests stress-

induced metaplasticity at the physiologic level, as prior experience alters the role this 

nucleus from excitation to inhibition.

3.5 Hindbrain

Hindbrain monosynaptic inputs to the PVN are also modulated by glucocorticoids and 

interact with forebrain stress-regulatory circuits. The PVN receives dense input from 

brainstem noradrenergic and adrenergic neurons primarily from the NTS, as well as C1–C3 

(Cunningham Jr. and Sawchenko, 1988; Cunningham Jr. et al., 1990). Lesions of these 

neurons attenuate HPA axis responses to systemic stressors, while adrenergic receptor 

stimulation activates CRF and ACTH secretion, indicating that catecholamines are necessary 

and sufficient for HPA axis activation (Plotsky, 1987; Plotsky et al., 1989). PVN-projecting 

neurons in the NTS also contain peptidergic neuromodulators (e.g., glucagon-like peptide-1 

(GLP-1), neuropeptide Y) that are HPA axis excitatory (Harfstrand, 1987; Merchenthaler et 

al., 1999; Sawchenko et al., 1985; Tauchi et al., 2008). The NTS receives descending 

projections from forebrain limbic stress-regulatory regions, including the mPFC and CeA 

(Schwaber et al., 1982; van der Kooy et al., 1984), indicating possible involvement of the 

NTS in emotional and cognitive stress responses. In agreement with this hypothesis, GR 

activation in the NTS facilitates memory consolidation through involvement of the BLA 

(Roozendaal et al., 1999).

In the NTS, expression of preproglucagon (PPG) mRNA, which encodes the stress-

excitatory GLP-1, is suppressed following acute and chronic stress in a glucocorticoid-

dependent manner (Ghosal et al., 2013; Zhang et al., 2009). Loss of PPG mRNA is 

correlated with a reduction in GLP-1 fiber density in the PVN, indicative of reduced 

capacity for NTS neurons to release GLP-1 and stimulate ACTH secretion (Tauchi et al., 

2008; Zhang et al., 2009). Glucocorticoid-induced reductions in PPG mRNA occur within 

30 min and are not accompanied by reduced PPG gene transcription, indicating that 

glucocorticoid effects are likely mediated by destabilization of existing RNA pools (Zhang 

et al., 2009). Glucocorticoids decrease RNA stability in vitro, and this may represent an 

adaptive mechanism for limiting PVN excitation following stress (Stellato, 2004).

Serotonin (5-HT) participates in HPA axis activation by way of projections from the 

midbrain and pontine raphe nuclei (Lowry, 2002; Sawchenko et al., 1983). Lesion studies 

indicate serotonin provides excitation of the HPA axis (Jorgensen et al., 1998). However, 

direct serotonin input to the PVN is somewhat limited as the majority of serotoninergic 

fibers terminate in the peri-PVN (Sawchenko et al., 1983). In addition, 5-HT heavily 

innervates most limbic regions that project to the PVN (Kosofsky and Molliver, 1987; 
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Palkovits et al., 1977), and may modulate HPA axis responses indirectly. Additionally, 

glucocorticoids regulate the expression of tryptophan hydroxylase-2 (TPH2), an enzyme 

involved in 5-HT synthesis (Clark et al., 2005). Dexamethasone reduces TPH2 mRNA and 

protein in the raphe leading to reduced 5-HT synthesis in the mPFC, all of which is blocked 

by co-administration of a GR antagonist (Clark et al., 2008, 2005). Furthermore, daily 

rhythms in TPH2 mRNA are dependent on fluctuations in circulating glucocorticoids 

(Malek et al., 2007). Together, these studies indicate the importance of glucocorticoids for 

5-HT activity throughout the brain.

3.6 Limbic Integration of Glucocorticoid Signaling

Based on the substantial interconnectedness of limbic forebrain regions and hypothalamic 

PVN-projecting nuclei, it is highly likely that glucocorticoid actions in a given cell 

population or brain region can have pronounced effects on the function and output of other 

regions. Few studies have investigated how GR signaling is integrated at a circuit level, 

largely focusing on downstream effects in the PVN. For instance, glucocorticoids in the CeA 

increase CRF expression in the PVN (Shepard et al., 2000). Although glucocorticoids in the 

CeA have been shown to increase CRF mRNA in the anterior BST (Shepard et al., 2006), 

in-depth studies of glucocorticoid interactions within the forebrain are lacking. A recent 

study employing selective deletions of GR within the mesolimbic dopaminergic system 

supports this hypothesis of integrated GR signaling. In these experiments, GR knockout in 

neurons of the nucleus accumbens decreased the firing rate of ventral tegmental dopamine-

releasing neurons, resulting in social aversion (Barik et al., 2013). Interestingly, these effects 

could not be produced by deleting GR directly within the tegmental dopamine-releasing 

neurons. More studies focused on the integrative actions of glucocorticoids within the limbic 

forebrain are necessary to decipher the mechanisms of central stress regulation.

4. Behavioral Effects of Glucocorticoids

Activation of glucocorticoid responsive pathways, particularly within the limbic system, can 

lead to pronounced changes in behavior that have long-term implications for organismal 

well-being (Arnett et al., 2011) (Table 3). Functional changes at the synaptic and circuit 

levels affect a variety of neurobehavioral systems. For instance, mice with deletion of GR in 

the forebrain (mPFC, hippocampus, and BLA) exhibit increased despair-like behavior in the 

forced swim test (FST) and tail-suspension test (TST), as well as anhedonia in the sucrose 

preference test (SPT) (Boyle et al., 2005). In addition, mice overexpressing MR in the 

forebrain exhibit decreased anxiety-like behavior in the open field test (OFT) and elevated-

plus maze (EPM) (Rozeboom et al., 2007). These studies support a role for forebrain 

glucocorticoid signaling in inhibiting behavioral responses indicative of depression and 

anxiety. Although numerous psychiatric disorders are associated with dysregulation of stress 

systems, the precise role of glucocorticoid dyshomeostasis in pathology remains to be 

determined.

4.1 Medial Prefrontal Cortex

Glucocorticoids have profound effects on prefrontal-mediated behaviors, including working 

memory, executive function, behavioral flexibility, and affect. Acutely, glucocorticoids act 
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through the cAMP pathway in the plPFC to impair working memory and enhance memory 

consolidation (Barsegyan et al., 2010; Roozendaal et al., 2004). Thus, glucocorticoid 

signaling reinforces consolidation of emotionally salient events while minimizing competing 

information, underscoring the context-specific actions of glucocorticoids. Chronically, 

glucocorticoids also impair performance in working memory tasks (Mizoguchi et al., 2004, 

2000). Acute restraint stress impairs the ability of animals to execute the delayed spatial 

win-shift task, a prefrontal-mediated task, which relies on the ability to use information 

acquired prior to a delay to prospectively plan where to retrieve food in a radial arm maze 

(Butts et al., 2011). Chronic unpredictable stress or repeated restraint stress also impair 

behavioral flexibility (set-shifting and/or reversal learning) in the extra-dimensional set-

shifting task, which requires animals to inhibit a previously learned response (Birrell and 

Brown, 2000; Bondi et al., 2008; Liston et al., 2006). Further, chronic stress favors habitual 

strategies in two instrumental operant tasks involving evaluation of outcome value and 

action-outcome contingency, reducing the ability of animals to employ flexible, goal-

directed decision-making (Dias-Ferreira et al., 2009). Glucocorticoids in the mPFC also play 

a major role in affect. Knockdown of GR in the ilPFC increases immobility in the forced 

swim test, indicative of increased depression-like behavior (McKlveen et al., 2013). These 

behaviors share a common ‘prefrontal-related’ feature, in that the organism must coordinate 

an appropriate context-specific response by maintaining attention and flexibly inhibiting 

inappropriate responses.

4.2 Hippocampus

As with the cellular effects of glucocorticoids in the hippocampus, the role of 

glucocorticoids in hippocampal-dependent behaviors (e.g. learning and memory) has been 

extensively studied. Similar to glucocorticoid actions at the synapse, the effects of 

glucocorticoids on learning and memory are temporally- and context-dependent (Diamond 

et al., 1994). In the short term, stress can facilitate the formation of emotionally salient 

memories, that are important for adaptation (de Kloet et al., 1999; Smeets et al., 2009). In 

line with this, MR is important for initial appraisal and strategy selection in a novel spatial 

orientation task and for acquisition of fear memory (Khaksari et al., 2007; Oitzl and de 

Kloet, 1992). Conversely, the GR mediates consolidation of context-relevant information to 

optimize adaptation and survival in a variety of spatial and fear-related memory tasks 

(Abrari et al., 2009; Chen et al., 2012; Conrad et al., 1999; Donley et al., 2005; Fitzsimons et 

al., 2013; Gutièrrez-Mecinas et al., 2011; Oitzl and de Kloet, 1992; Pugh et al., 1997; Revest 

et al., 2010; Sandi et al., 1997). Thus, elevated glucocorticoid levels are important for the 

acquisition and consolidation of affectively relevant information and the disruption of 

memory processes that are less relevant for adaptation. Conversely, acute levels of 

glucocorticoids disrupt memory retrieval in tasks that have already been acquired 

(Roozendaal, 2002), including spatial memory in a radial arm task or Morris water maze (de 

Quervain et al., 1998; Diamond and Rose, 1994; Diamond et al., 1999; Ferguson and 

Sapolsky, 2008), novel object recognition (Baker and Kim, 2002), inhibitory avoidance 

(Schutsky et al., 2011) and contextual fear conditioning (Atsak et al., 2012a). Chronic stress 

exposure impairs hippocampal-dependent tasks as well (Conrad et al., 1996; Kleen et al., 

2006; Krugers et al., 1997; Luine et al., 1994). For instance, chronic stress disrupts spectral 

coherence (matching of temporal structure in signals recorded from the hippocampus and 
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the mPFC) in the projection from the ventral hippocampus to the mPFC, which may 

contribute to stress-induced deficits in spatial reference memory (Oliveira et al., 2013). 

Therefore, the timing of enhanced glucocorticoid levels must be appropriate for the context. 

Thus, glucocorticoids act within specific time domains in the hippocampus to facilitate the 

acquisition and consolidation of spatial and emotionally salient information relevant to 

adaptation and disrupt memory processes less essential for survival.

4.3 Amygdala

The amygdala organizes fear and anxiety responses (Adamec, 1990; Davis et al., 2010; 

Kopchia et al., 1992; LeDoux, 2012; Shepard et al., 2000). Roozendaal and colleagues 

indicate that glucocorticoids in the BLA play a prominent role in promoting learning and 

memory of aversive stimuli (Roozendaal et al., 1996). Specifically, injections of GR 

agonists and antagonists in the BLA immediately after training in an inhibitory avoidance 

task point to the necessity and sufficiency of GR activation for long-term retention 

(Roozendaal and McGaugh, 1997b; Roozendaal, 2000). GR antagonist injection in the BLA 

prior to training also impairs inhibitory avoidance learning (Roozendaal and McGaugh, 

1997b). In addition, blockade of GR prior to contextual fear conditioning decreases freezing 

in a 24 hour retention test (Donley et al., 2005). Glucocorticoids in the BLA are also 

involved in memory consolidation and reconsolidation of auditory fear conditioning as GR 

antagonism disrupts both of these memory processes (Jin et al., 2007). Ipsilateral lesions of 

the BLA block the memory enhancing effects of GR agonist infusion into the mPFC after 

inhibitory avoidance training (Roozendaal et al., 2009), suggesting that the effects of GR on 

memory consolidation depend on bidirectional communication between the BLA and the 

mPFC. The BLA is also necessary for glucocorticoid modulation of memory functions 

primarily mediated by the hippocampus and mPFC, such as memory retrieval and working 

memory, respectively (Nathan et al., 2004; Roozendaal and McGaugh, 1997a; Roozendaal et 

al., 2004, 2003). The effects of glucocorticoids on learning and memory may be mediated by 

endocannabinoids, as intra-BLA CB1 antagonism blocks glucocorticoid-mediated post-

training enhancement of memory consolidation (Akirav, 2013; Atsak et al., 2012b; 

Campolongo et al., 2009).

The lateral portion of the BLA targets the CeA, which is considered the output nucleus for 

the behavioral expression of conditioned fear responses (Amorapanth et al., 2000). Growing 

evidence suggests that the CeA is also necessary for learning and consolidation of 

conditioned fear (Nader et al., 2001; Wilensky et al., 2006). However, recent studies have 

defined an amygdala microcircuit wherein BLA projections activate inhibitory neurons 

within the CeA that gate behavioral output (Ciocchi et al., 2010; Haubensak et al., 2010; Tye 

et al., 2011), suggesting the amygdala has the ability to both facilitate and inhibit behaviors 

indicative of fear and anxiety. Viral cre recombinase injections into the CeA of GR floxed 

mice produce a CeA-specifc GR knockout that exhibits deficits in conditioned fear (Kolber 

et al., 2008). Glucocorticoids localized to the CeA increase anxiety-like behavior in the 

EPM (Shepard et al., 2000), an effect that can be prevented by GR or MR antagonists in the 

CeA (Myers and Greenwood-Van Meerveld, 2007). In addition, specific GR or MR agonists 

injected in the CeA promote anxiety-like behavior (Myers and Greenwood-Van Meerveld, 

2010a). The long-term anxiogenic effects of glucocorticoid signaling in the CeA are thought 
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to be mediated by transcriptional interactions with CRF, perhaps driving synaptic plasticity 

(Kolber et al., 2010; Laryea et al., 2013; Myers and Greenwood-Van Meerveld, 2010b; 

Shekhar et al., 2005). In addition, downstream activation of the BST may play a role in 

behavioral responses to stress (Poulos et al., 2010; Singewald et al., 2003; Sullivan et al., 

2004). Chronic glucocorticoid signaling in the BST appears to induce a shift toward 

anxiogenic behavior and enhance unconditioned fear and stress-induced learning (Bangasser 

et al., 2005; Shepard et al., 2009; Ventura-Silva et al., 2012). However, more work 

delineating the actions of glucocorticoids underlying BST-mediated behaviors during stress 

exposure is needed.

5. Clinical Relevance of Glucocorticoid Signaling

Recent technological advances have allowed for more in-depth analysis of glucocorticoid 

effects in humans. In healthy controls, glucocorticoids have profound time-dependent effects 

on memory and decision-making. For instance, the synthetic glucocorticoid hydrocortisone 

given 30 min prior to a memory encoding task impairs memory contextualization 

performance, while hydrocortisone given 210 min prior to the task has the opposite effect 

(van Ast et al., 2013). These findings suggest that the rapid effects of glucocorticoids 

promote memory of the most emotionally salient aspects of an experience, whereas the 

delayed effects of glucocorticoids may enhance cognitive function. Similarly, 

hydrocortisone given before sleep in the evening after the presentation of emotional imagery 

enhances memory consolidation of emotional information and suppresses amygdalar 

activation during retrieval (van Marle et al., 2013). Acute stress also shifts hippocampal-

dependent learning toward habitual striatum-dependent learning, an effect that can be 

prevented by pretreatment with an oral MR antagonist (Schwabe et al., 2013). Additionally, 

this stress-induced shift in memory processing correlates with altered coupling of the 

amygdala with the hippocampus and dorsal striatum, marked by decoupling of amygdala-

hippocampal connectivity and strengthening of amygdala-putamen connectivity. The effects 

of stress on alterations in amygdala connectivity with the hippocampus and dorsal striatum 

are also prevented by MR antagonist pretreatment (Schwabe et al., 2013). Thus, the 

importance of glucocorticoids for regulating cognitive function and the brain regions 

mediating glucocorticoid activity during these processes are beginning to be characterized in 

humans. While there has been a recent increase in the number of studies assessing the 

central actions of glucocorticoids in humans, there is still a vital need to establish the 

mechanistic effects of glucocorticoids in health as well as psychopathology.

Glucocorticoid signaling is essential for adaptation to stress and alterations in glucocorticoid 

activity may underlie transitions to pathology in humans. In fact, several polymorphisms of 

the glucocorticoid receptor gene have been reported in individuals with posttraumatic stress 

disorder (PTSD), as well as major depression. For instance, the single nucleotide 

polymorphism (SNP) Bcl-1 (C to G nucleotide change involving a restriction site in intron 

2) is associated with glucocorticoid hypersensitivity and lower cortisol levels (Derijk et al., 

2008; Hauer et al., 2011; Huizenga et al., 1998; Kumsta et al., 2008; van Rossum et al., 

2006, 2003). Further, homozygous carriers of the Bcl-1 SNP(G allele) have more traumatic 

memories 6 months after intensive care unit care than heterozygous or non-carriers of the 

SNP (Hauer et al., 2011). Similarly SNPs in the steroid receptor chaperone FK506 binding 
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protein 5 (FKBP5) increase glucocorticoid receptor sensitivity leading to lower basal 

cortisol levels and increased risk for PTSD following traumatic experience (Binder et al., 

2008; Klengel et al., 2013; Wüst et al., 2004; Yehuda et al., 2009). Further, stress-level 

doses of hydrocortisone reduce PTSD symptomtology in patients following traumatic 

experience (Aerni et al., 2004; Delahanty et al., 2013; Schelling et al., 2003, 2001, 1999; 

Weis et al., 2006; Zohar et al., 2011). In healthy controls, stress enhances the consolidation 

of emotionally salient information (Andreano and Cahill, 2006; Buchanan and Lovallo, 

2001), while also impairing memory retrieval (de Quervain et al., 2009, 2007). Therefore, 

hydrocortisone has been proposed to impair the retrieval of traumatic memories resulting in 

decreased PTSD symptoms following a traumatic experience (Hauer et al., 2013). 

Glucocorticoids also reduce local oxygen metabolism selectively in the amygdala and 

parahippocampal gyrus immediately following stress-level hydrocortisone exposure 

(Lovallo et al., 2010). Collectively, these studies suggest that stress-level doses of 

hydrocortisone may prove useful, particularly in patients with polymorphisms of the GR 

gene or genes affecting glucocorticoid sensitivity (Hauer et al., 2013; Schelling et al., 2013). 

In contrast to the low levels of cortisol generally associated with PTSD, patients with major 

depression typically display hypercortisolemia (Yehuda et al., 2004). Hypometabolism 

(decreased uptake of fluorine deoxyglucose) as well as hypermetabolism (increased regional 

cerebral blood flow) have been reported in the subgenual anterior cingulate cortex 

(Brodmann area 25) of patients with major depression (Drevets, 2000; Mayberg et al., 

2005). Additionally, hydrocortisone decreases subgenual cingulate oxygen utilization 

evoked by sad stimuli, suggesting that this region is a key target for glucocorticoid-mediated 

effects on emotional processes (Sudheimer et al., 2013). Thus, the aggregate data suggest 

that glucocorticoids have pronounced effects on local metabolic activity within forebrain 

limbic circuits and alterations in glucocorticoid signaling within these areas may play a 

prominent role in stress-related neuropsychiatric disorders.

6. Stress, Energetics, and Adaptation

Responses to stress occur at the level of the individual, requiring both appraisal systems 

(limbic forebrain) and effector sites (hypothalamus and hindbrain) in the brain, as well as 

peripheral physiological systems. Consequently, regulation of the HPA axis is a distributed 

process integrated by multiple sites with considerable overlap and redundancy to permit 

compensation. For instance, both the plPFC and the ventral hippocampus provide inhibition 

of the HPA axis via convergent projections onto PVN-projecting neurons in the aBST 

(Radley and Sawchenko, 2011). Neuroendocrine responses to stress are initiated by the brain 

and result in the secretion of glucocorticoids to promote energy mobilization for current or 

anticipated needs. In turn, glucocorticoids act as a signal that influences cellular function, 

gene transcription, circuit activity, and, ultimately, behavior. Thus, responses to both acute 

and chronic stress promote context-specific adaptation based on the real or perceived needs 

of the individual. Although responses to chronic stress may promote adaptation, there is a 

cost of adaptation. Consequently, the adaptive cost may be deleterious for the organism 

when stress effector systems are repeatedly activated to meet the energetic demands of 

severe or prolonged stress. The physiological and behavioral consequences of driving 

energetic systems may encompass both stress resilience, as well the transition to pathology. 
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Thus, the stress response leads to a redistribution of energy resources to meet emergent or 

anticipated needs driven by a glucocorticoid signal that influences cellular function, 

neurocircuits, and behavior. This signal pushes physiological systems to adapt until the 

adaptive cost becomes greater than the adaptive capacity of the individual. In this 

framework, the adaptive capacity can be defined as the degree to which the organism can 

deploy energy mobilizing systems (e.g. HPA axis) to successfully meet current or 

anticipated needs.

The relationship between stress and energetics can be summarized by examining the 

relationship between systems performance, environmental demand, and energy input (Figure 

1). The performance of the individual is largely dependent on energetic status, 

environmental demand (i.e. context), adaptive capacity, and adaptive cost. Glucocorticoids 

regulate the energetic status of the individual and are a crucial determinant of both adaptive 

capacity and cost. In turn, the adaptive capacity and cost directly influence the performance 

of the individual across varying ranges of environmental demand. The actions of 

glucocorticoids have been proposed to follow an inverted U-shape, such that high or low 

levels of glucocorticoids can impair systems performance (de Kloet et al., 1999; Herman, 

2013). This is especially true for processes dependent on the hippocampus (Joëls, 2006). For 

example, a high dose of corticosterone or adrenalectomy increases behavioral reactivity to 

novel versus familiar objects, whereas a low dose of corticosterone normalizes this behavior 

(Oitzl et al., 1994). Glucocorticoid secretion must also be context appropriate. 

Hypersecreting glucocorticoids under conditions of low demand can be detrimental, but so 

can hyposecretion in the face of high demand. Therefore, the same concentration of 

glucocorticoids could be considered deleterious or beneficial depending on the energetic 

status of the individual. For instance, the same dose of exogenous corticosterone improves 

performance in a water maze task when animals are trained in warm water, but not cold 

water (Sandi et al., 1997). Thus, an optimal context-specific amount of glucocorticoid 

secretion is necessary for maintaining optimal performance (de Kloet et al., 1999; Herman, 

2013; Joëls, 2006).

Energy regulatory systems must work in concert to meet the needs of the individual and use 

overlapping mechanisms to control and fine-tune energy reallocation (multiple feedback 

sites and pathways). As a result, the individual is able to maintain adaptive capacity across a 

broad range of environmental demand. For example, the behavioral and physiological 

changes accompanying responses to chronic stress are typically considered maladaptive. 

However, if these changes are interpreted based on the environmental context of the 

individual experiencing chronic stress, many responses could be considered adaptive for 

organismal survival. Chronic stress can be a time of high energetic need and glucocorticoids 

activate glycogen metabolism and glucose synthesis. Glucocorticoids also inhibit energy 

utilization by systems that are not necessary for immediate survival, including growth, 

immune, and reproductive processes (Munck et al., 1984). These steps in energy 

redistribution and reallocation are essential for increasing the adaptive capacity of the 

individual. In terms of behavior, the effects of chronic glucocorticoids on measures of 

anxiety, depression, and behavioral flexibility may be deleterious in some environmental 

contexts; however, in the face of chronic stress, diminished behavioral output could be 

considered beneficial. For instance, the neophobia and behavioral withdrawal assessed by 
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many tests of anxiety- and depression-like behavior may serve to minimize risk exposure 

and energy expenditure in contexts of prolonged challenge. Further, a switch to habitual 

strategies under chronic stress may lead to greater efficiency in predictable tasks by allowing 

the individual to respond instinctually and bypass the appraisal process (Dias-Ferreira et al., 

2009; Schwabe et al., 2013). Thus, limiting risky or energy-demanding behaviors and 

energy-intensive physiologic processes (e.g. growth, reproduction, immune responses, etc) 

represent major components of the organismal adaptive capacity. However, when these 

responses are inappropriate to environmental demand or are sustained of prolonged time 

periods, the individual generates an adaptive cost that can decrease overall performance.

Glucocorticoid responses promote survival during periods of environmental demand but, 

over longer time frames, glucocorticoid secretion can impair behavioral and physiological 

health. There is a certain cost of adaptation that is likely dependent on how the individual's 

genetic background and life history interact with their appraisal of environmental demand. 

Thus, inappropriate regulatory balance in stress systems may comprise a risk factor for 

pathology (increasing adaptive cost). Adaptive cost may be further increased by energy 

depletion due to overdrive of energetic systems, physiological energy ‘sinks’ (e.g. infection, 

inflammation, metabolic disease, etc), design faults (inefficient energy redistribution 

systems, genetic polymorphisms), or poor decision making (misinterpretation of energetic 

need). As mentioned previously, habitual strategies are beneficial under chronic stress when 

the task and environment remain the same. However, if the environment changes to a 

context that requires appraisal and flexible strategies, individuals that have adopted habitual 

strategies may be at a disadvantage. For example, a recent study found that chronically 

stressed humans are unable to appropriately appraise outcome values. Further, this behavior 

is associated with a shift from activation of associative areas to increased activation of 

sensorimotor areas, mPFC and caudate atrophy, and increased putamen volume (Soares et 

al., 2013). In this case, misappraisal and energy depletion likely increase the adaptive cost. 

Depression and PTSD are stress-related disorders characterized by cognitive, affective, and 

physiological responses that are inappropriate to environmental context. Thus, 

psychopathologies may emerge when adaptive costs outweigh adaptive capacity, leading to 

a ‘break point’ in the process of adaptation.

6. Conclusions

A substantial and evolving body of work indicates that glucocorticoids are vital for central 

stress integration. Accordingly, we propose that the actions of glucocorticoids on neural 

systems from synapses to circuits generate the energetic resources to promote behavioral 

stress adaptation. These actions also illustrate the importance of appropriate context 

appraisal for successful adaptive responses. Misappraisal and/or inadequate adaptive 

capacity increase the risk for stress-related disorders, including depression and PTSD. 

Future studies addressing the mechanisms by which glucocorticoid signaling is integrated 

across multiple brain regions and peripheral sites will improve our understanding of the 

etiology of stress-related illness. In order to meet this challenge we must consider the 

sensitivity of current models and endpoints for determining the transition from adaptive to 

deleterious stress responses, as well as ways to increase translation of these findings into 

improved clinical outcomes.
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Highlights

• Glucocorticoids primarily mobilize energy in response to homeostatic challenge

• The forebrain receives glucocorticoid feedback and mediates stress 

responsiveness

• Glucocorticoid actions on synapses, circuits, and behavior promote adaptation

• Adaptive capacity and adaptive cost interact to determine risk for pathology

Myers et al. Page 35

Front Neuroendocrinol. Author manuscript; available in PMC 2015 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Stress, energetics, and adaptation. The relationship between stress and energetic can be 

explained visually by examining the relationship between systems performance and 

environmental demand. Under conditions of low environmental demand, high levels of 

systems performance can be achieved without an energetic cost to the individual. With 

increasing demand, maintaining systems performance requires energetic input to generate an 

adaptive capacity (indicated by green shaded area), which is opposed by the adaptive cost 

(yellow shaded area). Without the acquired limitations that generate the adaptive cost, 

organismal performance could hypothetically be maintained at high levels across a wide 

range of environmental demand (depicted by the yellow line). Conversely, the absence of 

energy input would lead to poor performance even under conditions of moderate 

environmental pressure (depicted by the green line). The actual response (depicted by the 

blue line) falls between these two theoretical extremes and is determined for each individual 

as a function of their adaptive capacity and adaptive cost. With optimal energy redistribution 

and appropriate appraisal of context, the organism is able to maintain systems performance 

across a wide range of demand. As the adaptive cost of the organism grows, greater energy 
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input will be required to generate systems performance over a more narrow range of 

demand. Ultimately, the adaptive cost may be greater than the adaptive capacity, leading to a 

breaking point where systems performance is compromised and risk factors for pathology 

emerge.

Myers et al. Page 37

Front Neuroendocrinol. Author manuscript; available in PMC 2015 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Myers et al. Page 38

T
ab

le
 1

Si
te

-s
pe

ci
fi

c 
ef

fe
ct

s 
of

 g
lu

co
co

rt
ic

oi
ds

 o
n 

sy
na

pt
ic

 tr
an

sm
is

si
on

 a
nd

 p
la

st
ic

ity

R
ef

er
en

ce
B

ra
in

 S
it

e
G

R
/M

R
 M

an
ip

ul
at

io
n

St
re

ss
 C

on
di

ti
on

R
ap

id
 E

ff
ec

ts
D

el
ay

ed
 E

ff
ec

ts

Y
ue

n 
et

 a
l. 

20
09

m
PF

C
C

O
R

T
R

es
tr

ai
nt

 o
r 

Pl
at

fo
rm

 o
r 

C
O

R
T

 i.
p.

↑ 
eE

PS
C

 a
m

pl

G
R

 A
nt

ag
on

is
t i

.p
.

Fo
rc

ed
 S

w
im

m
in

g
↔

 e
E

PS
C

 a
m

pl

M
us

az
zi

 e
t a

l. 
20

10
m

PF
C

N
on

e
A

cu
te

 F
oo

t S
ho

ck
↑ 

sE
PS

C
 a

m
pl

itu
de

H
ill

 e
t a

l. 
20

11
pl

PF
C

C
O

R
T

20
 m

in
 S

lic
e 

In
cu

ba
tio

n
↓ 

m
IP

SC
 f

re
q

C
O

R
T

 +
 C

B
1 

A
nt

ag
on

is
t

20
 m

in
 S

lic
e 

In
cu

ba
tio

n
↔

 m
IP

SC
 f

re
q

Y
ue

n 
et

 a
l. 

20
12

m
PF

C
N

on
e

C
hr

on
ic

 S
tr

es
s

↓ 
m

E
PS

C
 a

m
pl

 a
nd

 f
re

q,
 ↓

 
eE

PS
C

 a
m

pl

C
O

R
T

 i.
c.

C
hr

on
ic

 C
O

R
T

 m
PF

C
↓ 

eE
PS

C
 a

m
pl

G
R

 A
nt

ag
on

is
t i

.p
. o

r 
m

PF
C

C
hr

on
ic

 S
tr

es
s

↔
 e

E
PS

C
 a

m
pl

PF
C

 c
ul

tu
re

s
C

O
R

T
7 

d 
C

O
R

T
 I

nc
ub

at
io

n
↓ 

m
E

PS
C

 a
m

pl
 a

nd
 f

re
q

C
O

R
T

 +
 G

R
 A

nt
ag

on
is

t
7 

d 
C

O
R

T
 I

nc
ub

at
io

n
↔

 m
E

PS
C

 a
m

pl
 a

nd
 f

re
q

K
ar

st
 e

t a
l. 

20
05

C
A

1
C

O
R

T
 o

r 
C

O
R

T
:B

SA
B

at
h 

A
pp

lic
at

io
n

↑ 
m

E
PS

C
 f

re
q

G
R

 A
go

ni
st

B
at

h 
A

pp
lic

at
io

n
↔

 m
E

PS
C

 f
re

q

C
O

R
T

 +
 G

R
 A

nt
ag

on
is

t o
r 

C
O

R
T

 +
 G

R
 K

O
B

at
h 

A
pp

lic
at

io
n

↑ 
m

E
PS

C
 f

re
q

M
R

 A
go

ni
st

 +
 G

R
 A

nt
ag

on
is

t
B

at
h 

A
pp

lic
at

io
n

↑ 
m

E
PS

C
 f

re
q

M
R

 K
O

 +
 C

O
R

T
B

at
h 

A
pp

lic
at

io
n

↔
 m

E
PS

C
 f

re
q

K
ar

st
 a

nd
 J

oe
ls

 2
00

5
C

A
1

C
O

R
T

20
 m

in
 S

lic
e 

In
cu

ba
tio

n
↑ 

m
E

PS
C

 a
m

pl
, ↑

 e
E

PS
C

 a
m

pl

G
R

 A
go

ni
st

20
 m

in
 S

lic
e 

In
cu

ba
tio

n
↑ 

m
E

PS
C

 a
m

pl

O
lig

sl
ag

er
s 

et
 a

l. 
20

08
C

A
1

C
O

R
T

 +
 M

R
 A

nt
ag

on
is

t
B

at
h 

A
pp

lic
at

io
n

↔
 m

E
PS

C
 f

re
q 

an
d 

am
pl

C
O

R
T

B
at

h 
A

pp
lic

at
io

n
↔

 m
IP

SC
 f

re
q 

an
d 

am
pl

Pa
vl

id
es

 e
t a

l. 
19

96
C

A
1

G
R

 A
go

ni
st

 s
.c

.
N

on
e

↓ 
L

T
P

M
R

 A
go

ni
st

 s
.c

.
N

on
e

↑ 
L

T
P

A
lf

ar
ez

 e
t a

l. 
20

02
C

A
1

C
O

R
T

20
 m

in
 S

lic
e 

In
cu

ba
tio

n
↓ 

L
T

P

A
lf

ar
ez

 e
t a

l. 
20

03
C

A
1

N
on

e
C

hr
on

ic
 S

tr
es

s
↓ 

L
T

P

Y
an

g 
et

 a
l. 

20
04

C
A

1
N

on
e

In
es

ca
pa

bl
e 

Sh
oc

k
↓ 

L
T

P,
 ↑

 L
T

D

G
R

 A
nt

ag
on

is
t i

.p
.

In
es

ca
pa

bl
e 

Sh
oc

k
↔

 L
T

P,
 ↔

 L
T

D

K
ru

ge
rs

 e
t a

l. 
20

06
C

A
1

N
on

e
C

hr
on

ic
 S

tr
es

s
↓ 

L
T

P

G
R

 A
nt

ag
on

is
t (

or
al

)
C

hr
on

ic
 S

tr
es

s
↔

 L
T

P

C
O

R
T

20
 m

in
 S

lic
e 

In
cu

ba
tio

n
↓ 

L
T

P

Front Neuroendocrinol. Author manuscript; available in PMC 2015 May 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Myers et al. Page 39

R
ef

er
en

ce
B

ra
in

 S
it

e
G

R
/M

R
 M

an
ip

ul
at

io
n

St
re

ss
 C

on
di

ti
on

R
ap

id
 E

ff
ec

ts
D

el
ay

ed
 E

ff
ec

ts

W
ie

ge
rt

 e
t a

l. 
20

06
C

A
1

C
O

R
T

B
at

h 
A

pp
lic

at
io

n
↑ 

L
T

P

A
lf

ar
ez

 e
t a

l. 
20

03
D

G
N

on
e

C
hr

on
ic

 S
tr

es
s

↓ 
L

T
P

Pa
sr

ic
ha

 e
t a

l. 
20

11
D

G
C

O
R

T
B

at
h 

A
pp

lic
at

io
n

↑ 
m

E
PS

C
 f

re
q

M
ag

gi
o 

an
d 

Se
ga

l 2
00

9a
D

or
sa

l H
ip

p
C

O
R

T
 o

r 
G

R
 A

go
ni

st
B

at
h 

A
pp

lic
at

io
n

↑ 
sI

PS
C

 A
m

pl

C
O

R
T

 +
 M

R
 A

nt
ag

on
is

t
B

at
h 

A
pp

lic
at

io
n

↑ 
sI

PS
C

 A
m

pl

V
en

tr
al

 H
ip

p
C

O
R

T
B

at
h 

A
pp

lic
at

io
n

↓ 
sI

PS
C

 F
re

q

G
R

 A
go

ni
st

 o
r 

C
O

R
T

 +
 M

R
 A

nt
ag

on
is

t
B

at
h 

A
pp

lic
at

io
n

↑ 
sI

PS
C

 A
m

pl

M
ag

gi
o 

an
d 

Se
ga

l 2
00

9a
V

en
tr

al
 H

ip
p

M
R

 A
go

ni
st

 o
r 

C
O

R
T

 +
 G

R
 A

nt
ag

on
is

t
B

at
h 

A
pp

lic
at

io
n

↓ 
sI

PS
C

 F
re

q

M
ag

gi
o 

an
d 

Se
ga

l 2
00

7
D

or
sa

l H
ip

p
C

O
R

T
1 

h 
Sl

ic
e 

In
cu

ba
tio

n
↓ 

L
T

P

C
O

R
T

 +
 G

R
 A

nt
ag

on
is

t
1 

h 
Sl

ic
e 

In
cu

ba
tio

n
↑ 

L
T

P

V
en

tr
al

 H
ip

p
C

O
R

T
1 

h 
Sl

ic
e 

In
cu

ba
tio

n
↑ 

L
T

P

C
O

R
T

 +
 M

R
 A

nt
ag

on
is

t
1 

h 
Sl

ic
e 

In
cu

ba
tio

n
↔

 L
T

P

M
ag

gi
o 

an
d 

Se
ga

l 2
00

9b
D

or
sa

l o
r 

V
en

tr
al

 
H

ip
p

G
R

 A
go

ni
st

1 
h 

B
at

h 
A

pp
lic

at
io

n
↑ 

L
T

D

D
or

sa
l H

ip
p

G
R

 A
nt

ag
on

is
t s

.c
.

Fo
rc

ed
 S

w
im

m
in

g
L

T
D

 c
on

ve
rt

ed
 to

 L
T

P

D
or

sa
l o

r 
V

en
tr

al
 

H
ip

p
M

R
 A

go
ni

st
1 

h 
B

at
h 

A
pp

lic
at

io
n

L
T

D
 c

on
ve

rt
ed

 to
 L

T
P

V
en

tr
al

 H
ip

p
M

R
 A

nt
ag

on
is

t s
.c

.
Fo

rc
ed

 S
w

im
m

in
g

↑ 
L

T
D

G
R

 A
nt

ag
on

is
t s

.c
.

Fo
rc

ed
 S

w
im

m
in

g
L

T
D

 c
on

ve
rt

ed
 to

 L
T

P

D
uv

ar
ci

 a
nd

 P
ar

e 
20

07
B

L
A

C
O

R
T

20
 m

in
 I

nc
ub

at
io

n
↓ 

eI
PS

Ps

K
ar

st
 e

t a
l. 

20
10

B
L

A
C

O
R

T
B

at
h 

A
pp

lic
at

io
n

↑m
E

PS
C

 F
re

q

C
O

R
T

20
 m

in
 P

ul
se

↑ 
m

E
PS

C
 F

re
q 

(s
ev

er
al

 h
ou

rs
 

la
te

r)

G
R

 K
O

 +
 C

O
R

T
B

at
h 

A
pp

lic
at

io
n

↑ 
m

E
PS

C
 F

re
q

↔
 m

E
PS

C
 F

re
q

M
R

 K
O

 +
 C

O
R

T
B

at
h 

A
pp

lic
at

io
n

↔
 m

E
PS

C
 F

re
q

↔
 m

E
PS

C
 F

re
q

M
R

 A
go

ni
st

 +
 G

R
 A

nt
ag

on
is

t
B

at
h 

A
pp

lic
at

io
n

↑ 
m

E
PS

C
 F

re
q

↔
 m

E
PS

C
 F

re
q

G
R

 A
go

ni
st

B
at

h 
A

pp
lic

at
io

n
↓ 

m
E

PS
C

 F
re

q
↓ 

m
E

PS
C

 F
re

q

K
ar

st
 e

t a
l. 

20
10

B
L

A
C

O
R

T
 +

 C
yc

lo
he

xi
m

id
e

B
at

h 
A

pp
lic

at
io

n
↑ 

m
E

PS
C

 F
re

q
↔

 m
E

PS
C

 F
re

q

C
O

R
T

2 
Pu

ls
e 

A
pp

lic
at

io
n

↓ 
m

E
PS

C
 F

re
q

C
O

R
T

A
cu

te
 R

es
tr

ai
nt

 +
 B

at
h 

A
pp

lic
at

io
n

↓ 
m

E
PS

C
 F

re
q

↓ 
m

E
PS

C
 F

re
q

G
R

 K
O

 +
 C

O
R

T
A

cu
te

 R
es

tr
ai

nt
 +

 B
at

h 
A

pp
lic

at
io

n
↔

 m
E

PS
C

 F
re

q
↔

 m
E

PS
C

 F
re

q

G
R

 A
go

ni
st

A
cu

te
 R

es
tr

ai
nt

 +
 B

at
h 

A
pp

lic
at

io
n

↓ 
m

E
PS

C
 F

re
q

↔
 m

E
PS

C
 F

re
q

G
R

 A
nt

ag
on

is
t +

 M
R

 A
go

ni
st

A
cu

te
 R

es
tr

ai
nt

 +
 B

at
h 

A
pp

lic
at

io
n

↔
 m

E
PS

C
 F

re
q

↔
 m

E
PS

C
 F

re
q

Front Neuroendocrinol. Author manuscript; available in PMC 2015 May 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Myers et al. Page 40

R
ef

er
en

ce
B

ra
in

 S
it

e
G

R
/M

R
 M

an
ip

ul
at

io
n

St
re

ss
 C

on
di

ti
on

R
ap

id
 E

ff
ec

ts
D

el
ay

ed
 E

ff
ec

ts

C
O

R
T

 +
 C

yc
lo

he
xa

m
id

e
A

cu
te

 R
es

tr
ai

nt
 +

 B
at

h 
A

pp
lic

at
io

n
↓ 

m
E

PS
C

 F
re

q
↓ 

m
E

PS
C

 F
re

q

C
B

1 
A

nt
ag

on
is

t
A

cu
te

 R
es

tr
ai

nt
 +

 B
at

h 
A

pp
lic

at
io

n
↔

 m
E

PS
C

 F
re

q
↔

 m
E

PS
C

 F
re

q

H
ub

er
t e

t a
l. 

20
13

B
L

A
N

on
e

C
hr

on
ic

 S
tr

es
s

↑ 
m

E
PS

C
 F

re
q

V
ou

im
ba

 e
t a

l. 
20

04
B

L
A

N
on

e
Pl

at
fo

rm
 S

tr
es

s
↑ 

L
T

P

N
on

e
C

hr
on

ic
 S

tr
es

s
↓ 

L
T

P

M
ar

ou
n 

20
06

B
L

A
N

on
e

E
le

va
te

d 
Pl

at
fo

rm
↑ 

L
T

P,
 ↔

 L
T

D

Sa
ra

bd
jit

si
ng

h 
et

 a
l. 

20
12

B
L

A
G

R
 A

nt
ag

on
is

t i
.p

.
A

cu
te

 R
es

tr
ai

nt
↓ 

L
T

P
↓ 

L
T

P

M
R

 A
nt

ag
on

is
t i

.p
.

A
cu

te
 R

es
tr

ai
nt

↔
 L

T
P

↓ 
L

T
P 

(G
ra

du
al

)

G
R

 A
nt

ag
on

is
t i

.p
.

N
on

e
↔

 L
T

P
↔

 L
T

P

M
R

 A
nt

ag
on

is
t i

.p
.

N
on

e
↔

 L
T

P
↓ 

L
T

P 
(G

ra
du

al
)

K
ar

st
 e

t a
l. 

20
10

C
eA

C
O

R
T

B
at

h 
A

pp
lic

at
io

n
↔

 m
E

PS
C

 F
re

q
↔

 m
E

PS
C

 F
re

q

Front Neuroendocrinol. Author manuscript; available in PMC 2015 May 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Myers et al. Page 41

T
ab

le
 2

Si
te

-s
pe

ci
fi

c 
ef

fe
ct

s 
of

 g
lu

co
co

rt
ic

oi
ds

 o
n 

lim
bi

c 
ci

rc
ui

ts
 r

eg
ul

at
in

g 
H

PA
 a

xi
s 

ac
tiv

ity

R
ef

er
en

ce
B

ra
in

 S
it

e
G

R
/M

R
 M

an
ip

ul
at

io
n

St
re

ss
 C

on
di

ti
on

H
P

A
 O

ut
co

m
e

D
io

ri
o 

et
 a

l. 
19

93
m

PF
C

C
O

R
T

A
cu

te
 R

es
tr

ai
nt

↓ 
A

C
T

H
, ↓

 C
O

R
T

E
th

er
↔

 A
C

T
H

, ↔
 C

O
R

T

A
ka

na
 e

t a
l. 

20
01

m
PF

C
C

O
R

T
A

cu
te

 R
es

tr
ai

nt
↓ 

A
C

T
H

, ↔
 C

O
R

T

R
ep

ea
te

d 
C

ol
d

↓ 
A

C
T

H
, ↔

 C
O

R
T

M
cK

lv
ee

n 
et

 a
l. 

20
13

pl
PF

C
G

R
 K

no
ck

do
w

n
A

cu
te

 R
es

tr
ai

nt
↑ 

A
C

T
H

, ↑
 C

O
R

T

C
hr

on
ic

 V
ar

ia
bl

e 
St

re
ss

↑ 
B

as
al

 C
O

R
T

ilP
FC

G
R

 K
no

ck
do

w
n

A
cu

te
 R

es
tr

ai
nt

↑ 
C

O
R

T

C
hr

on
ic

 V
ar

ia
bl

e 
St

re
ss

↑ 
C

O
R

T

V
an

 H
aa

rs
t e

t a
l. 

19
97

H
ip

p
G

R
 A

nt
ag

on
is

t
D

iu
rn

al
 P

ea
k

↓ 
A

C
T

H
, ↔

 C
O

R
T

M
R

 A
nt

ag
on

is
t

D
iu

rn
al

 P
ea

k
↑ 

A
C

T
H

, ↑
 C

O
R

T

Fe
ld

m
an

 a
nd

 W
ei

de
nf

el
d 

19
99

G
R

 A
nt

ag
on

is
t

A
ud

io
ge

ni
c 

or
 P

ho
to

tic
↑ 

A
C

T
H

, ↑
 C

O
R

T

M
R

 A
nt

ag
on

is
t

A
ud

io
ge

ni
c 

or
 P

ho
to

tic
↑ 

A
C

T
H

, ↑
 C

O
R

T

Fi
tz

si
m

on
s 

et
 a

l. 
20

13
H

ip
p

G
R

 K
no

ck
do

w
n

B
as

al
 (

A
M

 &
 P

M
)

↔
 C

O
R

T

C
on

di
tio

ne
d 

Fe
ar

↔
 C

O
R

T

M
itr

a 
et

 a
l. 

20
09

B
L

A
M

R
 O

ve
re

xp
re

ss
io

n
A

cu
te

 R
es

tr
ai

nt
↓ 

C
O

R
T

A
ka

na
 e

t a
l. 

20
01

C
eA

C
O

R
T

A
cu

te
 R

es
tr

ai
nt

↔
 A

C
T

H
, ↔

 C
O

R
T

R
ep

ea
te

d 
C

ol
d

↔
 A

C
T

H
, ↔

 C
O

R
T

Sh
ep

ar
d 

et
 a

l. 
20

03
C

eA
C

O
R

T
E

le
va

te
d 

Pl
us

 M
az

e
↑ 

C
R

F,
 ↑

 C
O

R
T

K
ol

be
r 

et
 a

l. 
20

08
C

eA
G

R
 K

O
C

on
di

tio
ne

d 
Fe

ar
↔

 C
R

F

M
ye

rs
 a

nd
 G

re
en

w
oo

d-
V

an
 M

ee
rv

el
d 

20
12

C
eA

G
R

 A
nt

ag
on

is
t

R
ep

ea
te

d 
W

at
er

 A
vo

id
an

ce
↓ 

C
O

R
T

M
R

 A
nt

ag
on

is
t

R
ep

ea
te

d 
W

at
er

 A
vo

id
an

ce
↓ 

C
O

R
T

Front Neuroendocrinol. Author manuscript; available in PMC 2015 May 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Myers et al. Page 42

T
ab

le
 3

Si
te

-s
pe

ci
fi

c 
ef

fe
ct

s 
of

 g
lu

co
co

rt
ic

oi
ds

 o
n 

lim
bi

c 
ci

rc
ui

ts
 r

eg
ul

at
in

g 
de

pr
es

si
on

-,
 a

nx
ie

ty
-,

 a
nd

 f
ea

r-
re

la
te

d 
be

ha
vi

or
s

R
ef

er
en

ce
B

ra
in

 S
it

e
G

R
/M

R
 M

an
ip

ul
at

io
n

B
eh

av
io

ra
l P

ar
ad

ig
m

B
eh

av
io

ra
l O

ut
co

m
e

R
oo

ze
nd

aa
l e

t a
l. 

20
04

pl
PF

C
G

R
 A

go
ni

st
D

el
ay

ed
 A

lte
rn

at
io

n 
T

-M
az

e
↑ 

E
rr

or
 R

at
e

B
ar

se
gy

an
 e

t a
l. 

20
10

pl
PF

C
G

R
 A

go
ni

st
In

hi
bi

to
ry

 A
vo

id
an

ce
↑ 

Sh
oc

k 
A

vo
id

an
ce

C
O

R
T

:B
SA

D
el

ay
ed

 A
lte

rn
at

io
n 

T
-M

az
e

↑ 
E

rr
or

 R
at

e

In
hi

bi
to

ry
 A

vo
id

an
ce

↑ 
Sh

oc
k 

A
vo

id
an

ce

M
cK

lv
ee

n 
et

 a
l. 

20
13

pl
PF

C
G

R
 K

no
ck

do
w

n
Fo

rc
ed

 S
w

im
 T

es
t

↔
 I

m
m

ob
ili

ty

O
pe

n 
Fi

el
d

↔
 C

en
te

r 
T

im
e

ilP
FC

G
R

 K
no

ck
do

w
n

Fo
rc

ed
 S

w
im

 T
es

t
↓ 

Im
m

ob
ili

ty

O
pe

n 
Fi

el
d

↔
 C

en
te

r 
T

im
e

D
on

le
y 

et
 a

l. 
20

05
D

or
sa

l H
ip

p
G

R
 A

nt
ag

on
is

t
C

on
di

tio
ne

d 
Fe

ar
↔

 F
re

ez
in

g

V
en

tr
al

 H
ip

p
G

R
 A

nt
ag

on
is

t
C

on
di

tio
ne

d 
Fe

ar
↓ 

Fr
ee

zi
ng

Fi
tz

si
m

on
s 

et
 a

l. 
20

13
H

ip
p

G
R

 K
no

ck
do

w
n

C
on

di
tio

ne
d 

Fe
ar

↓ 
Fr

ee
zi

ng

R
oo

ze
nd

aa
l a

nd
 M

cG
au

gh
 1

99
7

B
L

A
G

R
 A

go
ni

st
In

hi
bi

to
ry

 A
vo

id
an

ce
↑ 

Sh
oc

k 
A

vo
id

an
ce

D
on

le
y 

et
 a

l. 
20

05
B

L
A

G
R

 A
nt

ag
on

is
t

C
on

di
tio

ne
d 

Fe
ar

↓ 
Fr

ee
zi

ng

M
itr

a 
et

 a
l. 

20
09

B
L

A
M

R
 O

ve
re

xp
re

ss
io

n
E

le
va

te
d 

Pl
us

 M
az

e
↑ 

O
pe

n 
A

rm
 T

im
e

Sh
ep

ar
d 

et
 a

l. 
20

00
C

eA
C

O
R

T
E

le
va

te
d 

Pl
us

 M
az

e
↓ 

O
pe

n 
A

rm
 T

im
e

K
ol

be
r 

et
 a

l. 
20

08
C

eA
G

R
 K

O
C

on
di

tio
ne

d 
Fe

ar
↓ 

Fr
ee

zi
ng

M
ye

rs
 a

nd
 G

re
en

w
oo

d-
V

an
 M

ee
rv

el
d 

20
07

C
eA

C
O

R
T

 +
 G

R
 A

nt
ag

on
is

t
E

le
va

te
d 

Pl
us

 M
az

e
↔

 O
pe

n 
A

rm
 T

im
e

C
O

R
T

 +
 M

R
 A

nt
ag

on
is

t
E

le
va

te
d 

Pl
us

 M
az

e
↔

 O
pe

n 
A

rm
 T

im
e

M
ye

rs
 a

nd
 G

re
en

w
oo

d-
V

an
 M

ee
rv

el
d 

20
10

C
eA

G
R

 A
go

ni
st

E
le

va
te

d 
Pl

us
 M

az
e

↓ 
O

pe
n 

A
rm

 T
im

e

M
R

 A
go

ni
st

E
le

va
te

d 
Pl

us
 M

az
e

↓ 
O

pe
n 

A
rm

 T
im

e

Front Neuroendocrinol. Author manuscript; available in PMC 2015 May 06.


