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Abstract

Drug-drug interactions (DDIs) are a major cause of adverse drug effects and a public health 

concern, as they increase hospital care expenses and reduce patients’ quality of life. DDI detection 

is, therefore, an important objective in patient safety, one whose pursuit affects drug development 

and pharmacovigilance. In this article, we describe a protocol applicable on a large scale to predict 

novel DDIs based on similarity of drug interaction candidates to drugs involved in established 

DDIs. the method integrates a reference standard database of known DDIs with drug similarity 

information extracted from different sources, such as 2D and 3D molecular structure, interaction 

profile, target and side-effect similarities. the method is interpretable in that it generates drug 

interaction candidates that are traceable to pharmacological or clinical effects. We describe a 

protocol with applications in patient safety and preclinical toxicity screening. the time frame to 

implement this protocol is 5–7 h, with additional time potentially necessary, depending on the 

complexity of the reference standard DDI database and the similarity measures implemented.
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INTRODUCTION

DDIs cause up to 30% of adverse drug effects (ADEs)1,2, and adverse events are one of the 

primary reasons that drugs fail clinical trials3. Moreover, in a study published in 2007 

assessing the effects of DDIs4, they were estimated to be responsible for 0.57–4.8% of all 

hospital admissions. As a result, DDIs are a drain on public health, costing billions of dollars 

and reducing patients’ quality of life. The detection and preclinical prediction of DDIs 

remains an open research challenge with a broad effect on both drug development and 

pharmacovigilance. The design of tools to help study possible DDIs is of great interest to 

pharmaceutical companies, regulatory authorities, such as the US Food and Drug 

Administration (FDA)3,5, as well as to many researchers working in a variety of fields 

including absorption, distribution, metabolism and excretion (ADME) properties, 

computational biology, translational medicine and pharmacovigilance.

DDIs can occur any time a patient is taking more than one drug concurrently and may occur 

at the pharmacokinetic level (i.e., ADME properties) or at the pharmacodynamic level (i.e., 

drugs targeting the same pharmacological receptor or targeting related pathways). As a 

result, DDIs may manifest as a reduction in efficacy or as an increased toxicity of the drugs. 

The final action can be synergistic, antagonistic or coalistic—whereby a new effect is 

produced that is not associated with either drug taken individually.

Although DDIs are evaluated during drug development, many of them go undetected owing 

to the limited number of participants in clinical trials and the high number of drugs and 

combinations that result from these trials. DDIs are also studied when drugs enter the 

marketplace. However, multiple drug combinations and the presence of different 

comorbidities and confounding factors make the task of detecting DDIs difficult. Depending 

on the severity of the DDI, regulatory authorities such as the FDA can adopt different 

measures to address it, from the introduction of a warning in the label of a drug involved in 

the DDI to the drug’s withdrawal from the market.

We describe herein a protocol for multitype DDI prediction that can facilitate and improve 

DDI detection. This approach can generate sets of potential DDI candidates for both 

pharmacokinetic and pharmacodynamic interactions. The set of new potential DDIs could be 

used to filter out candidates extracted from pharmacovigilance databases, such as Electronic 

Health Records, and to strengthen the signals obtained through data mining6,7.

This protocol, whose workflow is outlined in Figure 1, provides a detailed description of the 

different steps involved in integrating drug information data. The protocol is generalizable 

and can be implemented using sources of data other than those described in the 

PROCEDURE, from other well-established DDI sources to drug similarity measures not 

used in this protocol. In fact, we have been working on the development of this type of DDI 

predictor using three different similarity measures: 2D and 3D molecular structure 

approaches, and interaction profile similarity8–10. In this article, we increased the number of 

similarity measures by introducing in the DDI predictor information related to target and 

adverse-effects similarities.
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Integrated workflow for the multitype DDI predictor

An overview of the general protocol is provided in Figure 1. The protocol involves the 

generation of the reference standard DDI database (matrix M1) and the drug similarity 

databases (matrix M2). These data are integrated through a straightforward process 

consisting of the extraction of the maximum value in each array of the matrix multiplication 

to generate the set of potential new DDIs (matrix M3). The last stage of the protocol is the 

further assessment of the performance of the final model.

Generation of the reference standard DDI database (matrix M1)

This stage is the first in the development of the protocol. In the approach delineated here, the 

DDI database is downloaded from DrugBank (http://www.drugbank.ca/) using the Interax 

Interaction Search module and transformed in a matrix, M1, with binary values (1, 0), 

representing the interaction between two drugs and their lack of interaction, respectively. As 

part of the analysis, the pharmacological or clinical effects associated with the DDIs are 

annotated.

Generation of the drug similarity databases (matrix M2)

In this second stage of the protocol, similarity data are calculated through the 

implementation of three substages: calculation of the similarity measure, computation of 

similarity between drugs pairs and final construction of the matrix M2.

Calculation of similarity measures—Different similarity measures can be calculated 

for all the drugs included in the study and integrated in the system, in particular measures 

such as 2D structural fingerprints, interaction profile fingerprints (IPFs), target profile 

fingerprints, ADE profile fingerprints and 3D pharmacophoric approaches.

The basic 2D molecular structure fingerprint technique consists of representing a molecule 

as a bit vector that codifies the presence or absence of different substructural or 

pharmacophoric features in each bit position. In the development of this protocol, we used 

MACCS (for Molecular Access System) structural keys11, although other types of 2D or 3D 

molecular fingerprints could equally be used. MACCS codifies 166 structural keys in bit 

positions. As an example, some structural keys in the MACCS fingerprint for the drug 

diazepam (Fig. 2) are as follows: bit 19 (seven-member ring), bit 78 (C=N group), bit 92 

(OC(N)C group) and bit 163 (six-member ring). In Figure 2, only a small representation of 

the structural keys included in MACCS for the drug diazepam is reported. As a way to 

represent a sparse binary vector, only the positions codifying the fragments present in the 

molecule are stored in the final fingerprint.

Another similarity measure that can be integrated in the development of the DDI predictor is 

an IPF9. The design of an IPF is similar to that of a molecular structure fingerprint, but 

instead of codifying substructural features in each bit position of the vector, an IPF codifies 

the different drug interactions described for a particular drug (Fig. 3). Through IPF, two 

drugs can be compared on the basis of the similarities between their individual drug 

interaction profiles. The same idea can be expanded to codify, for each drug, its known 

targets (target fingerprints) or the adverse effects already described (ADE fingerprints)12,13. 
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In Figure 3, three different drug fingerprints that can be calculated to determine the level of 

similarity between drugs are represented.

The calculation of 3D molecular structure information follows a different, more complex 

scheme. The idea in this case is to use the 3D structure of each drug included in the study as 

a template and to identify other drugs with similar shape and electrostatic properties through 

pharmacophoric shape screening14. The alignment of the structures is based on the 

identification of atom triplets and the use of a pairwise atom distance distribution approach. 

However, different conformational analysis, alignment algorithms and software packages 

can be used and implemented in the protocol.

Computation of similarity between drugs—In this protocol the Tanimoto coefficient 

(TC) is used to quantify and compare drug similarity using the different measures, including 

MACCS, IPFs, target fingerprints and ADE fingerprints. The TC is also known by the term 

Jaccard index. The TC can adopt values in the range between 0 (maximum dissimilarity) and 

1 (maximum similarity). The TC between fingerprints A and B is defined as follows:

In the formula, NA and NB is the number of features present in fingerprints A and B, 

respectively, and NAB is the number of features present in common to both fingerprints A 

and B. In the case of two ‘identical’ drugs, TC is 1 (NA = NB = NAB), whereas if there is no 

fingerprint overlap between drugs TC is 0.

In the case of the similarity measure based on the 3D pharmacophoric approach, once the 

alignment between the drug structures is made, i.e., the shape of query drug A and that of 

drug B being screened, it is possible to calculate a similarity scoring (Phase Sim property—

Sim(A,B)) by calculating the overlapping volume between pharmacophoric features (Phase 

package, version 3.3; http://www.schrodinger.com). As for TC, the Phase Sim property 

ranges in value between 0 (minimum similarity) and 1 (maximum similarity) and is a 

function of the overlap between structure A and structure B (O(A,B)) and the maximum of 

the self-overlaps, aligning each drug against itself (O(A,A) and O(B,B)).

Construction of the matrix M2—The third stage in the generation of the M2 matrix 

consists in arranging the data into the said matrix M2, so that each cell represents the 

similarity between the corresponding pair of drugs. In the present protocol, five possible M2 

matrices are calculated and weighed with each of the five described similarity measures.

Generation of the new set of potential DDIs (matrix M3): In this stage of the protocol, the 

two databases M1 and M2 are integrated. The objective here is to obtain the matrix M3 that 

contains all the possible scored DDIs through the multiplication of M1 by M2 retaining only 
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the highest value in the array multiplication in each cell (the complete process is explained 

in the PROCEDURE). In the final stage of the protocol, it is possible to associate clinical 

effects with the new DDIs.

Assessment of the model performance: A simple validation to assess the performance of 

the protocol consists in plotting the receiver operating characteristic (ROC) curve. In ROC 

curves, the true positive fraction (sensitivity) is plotted against the false positive fraction (1 – 

specificity). The area under the curve (AUROC) can have values between 1 (perfect 

classifier) and 0.5 (random classifier). In our case, to plot the ROC curve, we considered the 

initial well-established DrugBank interactions (reference standard) as true positives and the 

remaining protocol-generated DDI candidates that are actually not contemplated as existing 

DDIs by the DrugBank database itself as false positives. Statistical measures, such as 

sensitivity, specificity, precision and enrichment factor, could also be calculated to evaluate 

performance. However, a more complete assessment of the performance of the model can be 

carried out in external tests that are used to determine whether the data introduced in the 

model are representative enough to predict DDIs reported in data sources other than the 

DrugBank. It is convenient to test models using a cross-validation approach, i.e., transferring 

25% of the DDIs reported in the data source to a test set (the ‘hold-out’ validation set) and 

constructing the model with the remaining 75% of the DDIs, and an approach that makes 

use of external test sets (i.e., provided by additional reference standard sources, such as 

Micromedex (http://www.micromedexsolutions.com)).

Characteristics, caveats and limitations

A prerequisite for the implementation of this protocol is to have a reference standard 

database with well-established DDIs. On the basis of these data, and through the integration 

of drug similarity information, the protocol relies and expands on a pattern of interactions 

that are already detectable in the initial reference standard DDI data, i.e., similar drugs have 

similar drug interactions. For this reason, a limitation of the present approach resides in the 

comprehensiveness of the initial standard DDI data used to construct it. The model 

performance is expected to be limited if we analyze DDIs with no representation in the 

initial database. The example procedure reported below makes use of the DDI DrugBank 

database, but additional data from large DDI sources could be used to increase the generality 

of the approach.

Prediction models developed using this protocol showed great robustness in hold-out 

validation sets. As described by our research group8,9, the DDI-predicting models were 

generated with 85%, 70% and 55% of the initial DDI reference standard, whereas the 

remaining 15%, 30% and 45% of the DDIs, respectively, were used as (hold-out) validation 

data sets. The performance of the models in the different sets was barely affected by the 

partition of the initial reference standard. As an example, in a protocol including 928 drugs 

involved in 9,454 interactions, and using MACCS fingerprints as a similarity measure8, 

sensitivity was 0.68 and specificity was 0.96 (100% of the DDI reference standard in the 

training). The models generated by implementing a protocol after 45% of the interactions 

were removed from the initial data set (to be used as the hold-out set) showed metrics very 

close to those of the initial system8: sensitivity and specificity in the training data set—the 
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one including 55% of the data set interactions—was 0.54 and 0.96, respectively; when 

evaluating the hold-out validation set, sensitivity was 0.56 and specificity was 0.96. It is 

worth noting, however, that the method’s selection to define the different hold-out sets was 

random; if the method takes into account selectively all the drugs included in defined 

pharmacological categories, the performance of the final system will be negatively affected 

by the division of different sets of DDIs. This decrease in performance is due to the fact that 

not enough representative interaction data will be available in the reference standard to try 

and predict successfully the interactions for a particular drug class in the hold-out set.

The protocol described in this article is designed to be used on a large scale. The generation 

of a large list of drug pair candidates along with the associated biological or clinical effect is 

a useful resource to be combined with other methodologies of large-scale analysis, such as 

Electronic Health Records data mining, to improve signal detection steps. For this reason, 

the work-flow described herein is not suitable for the detection of small variations in the 

similarity measure that can strongly affect the biological effects of the drugs. As an 

example, different biological outcomes caused by small variations in the molecular structure 

could go undetected after implementation of the present protocol. However, some similarity 

measures could be more suitable than others to detect DDI risks in the same category of 

drugs.

The implementation of the present protocol generates new DDI candidates that belong to 

two different categories: (i) a new pair of DDI candidates is generated by comparing two 

drugs that belong to the same pharmacological category, i.e., an initial A–B interaction 

generates a predicted A–C interaction, when B and C are in the same pharmacological class; 

and (ii) the predictor generates new DDI candidates comparing two drugs belonging to 

different pharmacological classes. DDI candidates belonging to the first category are likely 

to be generated when the TC value is very high, i.e., the first DDI candidates highlighted by 

the model with the best score (TC values). The information provided by the predictor in this 

case is more obvious and rather predictable. However, the model is still useful to scientists 

with no pharmacological background. The generation of DDI candidates belonging to the 

second category is more frequent as the TC value decreases. Although the certainty of the 

DDI and the associated effect is lower in the second category (higher likelihood of false 

positive DDIs), the new DDI candidates are more unexpected and challenging than those 

belonging to the first category.

The above-mentioned ability of this protocol to enable researchers to detect similarities 

between drugs in the same or different pharmacological classes is also related to the 

similarity measure implemented in the predictor. In this protocol, M2 is constructed by 

introducing different types of similarity measures between drugs: 2D and 3D molecular 

structure similarity, interaction profile similarity, target profile similarity and adverse event 

profile similarity. A limitation in the predictor could be the ‘upstream’ bias introduced with 

the information provided in the construction of the similarity measurement. This biased 

information could, for example, consist of similarity measures, such as the interaction 

profile, target or side effects, calculated through knowledge databases such as DrugBank 

(http://www.drugbank.ca) or SIDER (http://sideeffects.embl.de/).
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Information included in the data sources used to calculate the similarity measures could be 

highly influenced by pharmacological classification that is biased or dependent on possibly 

partial available information. For this reason, although they can detect interclass similarity, 

these measures could have a tendency to capture intraclass drug similarity with high scores. 

Moreover, as we point out in the ANTICIPATED RESULTS, DDI predictors based on 

knowledge measures performed well in our test detecting differences in drug-specific 

interaction risks for drugs belonging to the same pharmacological category. Notably, 

however, although 2D and 3D molecular structure methodologies offer the opportunity to 

capture molecular similarities between drugs in the same pharmacological class, they also 

potentially enable researchers to detect high similarity between pairs of drugs that belong to 

different pharmacological categories (interclass similarity). As mentioned above, this ability 

to detect interclass similarity has the potential of pointing out challenging and unexpected 

DDI candidates. Moreover, knowledge-dependent similarity measures cannot be applied to 

drugs for which no relevant information is available–that is, it cannot be applied to drugs 

that have been recently introduced in the market, for which limited target or adverse event 

profile information exists.

The integration in the analysis of other types of similarity measures or the implementation of 

a complex and common measure with information from all the similarity estimation 

approaches may improve the results and contribute to making this protocol more robust.

Other methods to discover DDIs

Different methodologies have been described to identify and analyze new DDI candidates, 

including pharmacokinetic and pharmacodynamic interactions. Metabolism-related 

interactions have a relevant clinical impact. In fact, cytochrome P450 (CYP) enzymes are 

responsible for the metabolism of many drugs. Different approaches have been developed to 

identify DDIs between CYP-metabolized drugs, which are approaches that integrate in vitro 

data to predict in vivo (animal and human) CYP-mediated interactions15. Computational 

modeling has also been used to predict CYP metabolism–based DDIs16. Other 

pharmacokinetic processes, such as absorption, distribution or excretion, could be of interest 

from the point of view of DDI prediction17. Some researchers have also studied 

pharmacodynamic interactions and their mechanisms using response surface analysis18.

Informatics has an important role in the discovery of new DDIs. Cheminformatic methods, 

such as 2D/3D quantitative structure-activity relationships (QSAR) and molecular docking, 

can be useful to predict DDIs19–21. In contrast, data mining of scientific literature, electronic 

medical records or adverse event databases is an emergent approach for DDI 

detection2,22–24. In a manner similar to the present protocol, a large-scale method was also 

published on the basis of the integration of similarity measures with knowledge DDI 

databases25. Our research group has also introduced large-scale DDI predictors based on 

similarity measures8–10. The novelty of the present protocol resides in the simplicity of the 

database integration and the pharmacological effects associated with the final candidates. An 

important feature of our approach is that it is a multi-type predictor that can isolate the 

pharmacological or clinical effect associated with the predicted interactions.
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Experimental design

In the implementation of the protocol and calculation of similarity measures, i.e., 2D 

molecular fingerprints, molecular modeling packages, such as Molecular Operating 

Environment (MOE; http://www.chemcomp.com/), or free open-source initiatives, such as 

Open Babel (http://www.openbabel.org/) and Python (https://www.python.org/), can be 

used. Both procedural routes are good alternatives for the similarity measures calculation. 

MOE also provides a tool for performance analysis through ROC curves. However, the use 

of some free packages, such as R (http://www.r-project.org), could be a great 

multifunctional tool with interesting options for calculating multiple ROC curves and 

confidence intervals. The order in which the fingerprint calculations should be carried out is 

not definite, and the order laid out in the PROCEDURE is not mandatory. Similarity 

measure selection criteria could be dependent on the characteristics of the study, and only 

one similarity measure can be implemented in the development of the protocol.

MATERIALS

EQUIPMENT

Computational requirements

• Computer: the DDI model can be developed using a computer with Windows, OS 

X or Linux/Unix operating systems, with no special memory requirements

• Software: although different software packages can be used for this protocol, the 

PROCEDURE is implemented using the molecular modeling software MOE 

2011.10 (http://www.chemcomp.com/) and the Schrödinger package (http://

www.schrodinger.com/). Excel software is used in the generation of the different 

matrices, and STATISTICA26 (http://www.statsoft.com/) for the final integrative 

data analysis. Alternative procedures to those involving MOE and Schrödinger 

(Boxes 1–3) are also provided in this protocol, which make use of the open-source 

software Open Babel (http://www.openbabel.org/), Python (http://

www.python.org/) and R (http://www.r-project.org/)

Box 1

Using Python to calculate molecular fingerprints and TC between all drug 
pairs with Open Babel ● TIMING <5 min

Name of the script: calc_pairwise_Tc.py

Summary: given a .txt list of tab-delimited chemical IDs and SMILES codes, e.g.,

CHEMBL973 C\C(=C(/C#N)\C(=O)Nc1ccc(cc1)C(F)(F)F)\O

CHEMBL1382 CC(C)N(CC[C@H](c1ccccc1)c2cc(C)ccc2O)C(C)C

this script generates an output .csv file containing all pairwise TCs above a specified 

cutoff (T_CUTOFF, default 0.45). TCs are calculated using Open Babel and MACCS 

fingerprinting (http://openbabel.org/docs/dev/Features/Fingerprints.html). The fingerprint 
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can be changed by specifying a different string for FINGERPRINT. Available 

fingerprints are FP2, FP3, FP4 and MACCS.

1. Import modules in Python:

import csv

import subprocess

import re

import os

2. Specify the TC cutoff. This option is useful if only the TCs of similar molecules 

above the established cutoff are needed. Otherwise, set T_CUTOFF=0 to 

provide all TC pair values:

T_CUTOFF = 0.45

3. Specify fingerprint (‘FP2’, ‘FP3’, ‘FP4’ or ‘MACCS’); as an example, to 

specify fingerprint MACCS, use the following command:

FINGERPRINT = ‘MACCS’

4. Assign a filename (e.g., SMILES.txt) and open the input file:

FILENAME = ‘SMILES.txt’

input = open(FILENAME,’r’)

5. Create a temporary formatted chemical list:

input_temp = open(‘temp_smi_file.txt’,’w’)

6. Create a dictionary of chemicals to be compared:

input_dict = dict()

7. Read the input and the files previously created (steps 4–6 in this box):

for line in input:

newline = line.split()

id = newline[0]

smiles = newline[1]

input_dict[id] = smiles

input_temp.write(‘%s\t%s\n’ %(smiles, id) )
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input.close()

input_temp.close()

8. Open the results file (.csv file):

f = open(‘TC_results.csv’, ‘w’)

writer = csv.writer(f)

writer.writerow([‘chemical1’, ‘chemical2’, ‘TC’])

9. For each chemical in input list, calculate the TC between that chemical and all 

other chemicals in the input list using Open Babel:

for chemical1 in input_dict:

babel_command = ‘obabel -ismi -:”%s” temp_smi_file.txt -ofpt -xf%s’

%(input_dict[chemical1], FINGERPRINT)

output = subprocess.Popen(babel_command, shell=True,

stdout=subprocess.PIPE, stderr=subprocess.PIPE)

10. Read and parse output from Open Babel:

TC_list = []

while True:

line = output.stdout.readline()

#line example: “>CHEMBL1382 Tanimoto from CHEMBL973 = 0.2”

if line != “:

newline = re.split(‘>|=‘, line)

#newline: [“, ‘CHEMBL1382 Tanimoto from CHEMBL973 ‘, ‘ 0.2\n’]

#indices: [0] [1] [2]

if len(newline) > 2:

id_catcher = newline[1].split()

chemical2 = id_catcher[0]

TC = float(newline[2].strip())

TC_list.append((chemical2, TC))

else:

break

11. Write the TCs exceeding the cutoff to the output file (exclude chemical1 = 

chemical2—exclude chemicals with the same molecule name—where TC = 1):

for chemical2,TC in TC_list:

if TC > T_CUTOFF and chemical1 != chemical2:

writer.writerow([chemical1, chemical2, TC])
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f.close()

os.remove(‘temp_smi_file.txt’)

12. After the script is run in Python, the output file will produce a list of pairs of 

compounds and the relevant TC that quantifies the level of similarity between 

them. Transform the data thus obtained into a matrix M2 containing a TC in 

each cell and set values in the diagonal to 0, as detailed in Step 10 of the main 

PROCEDURE.

Box 2

Using Python to calculate TCs between fingerprints ● TIMING <5 min

Name of the script: tanimoto.py

Usage: python tanimoto.py < fingprint_file.fpt > similarity_file.txt

Summary: this script computes the TCs between a set of fingerprints from 

the standard input and print them to the standard output.

fingerprint_file.fpt example

----------------------------

id1,1 2 4 10

id2,1 3 4 5 6

id3,2 4 6 10

1. Import modules into Python:

import os

import sys

from collections import defaultdict

2. Define the similarity function:

def tanimoto(a, b):

return len(a&b)/float(len(a|b))

3. Load the fingerprint data calculated as in Steps 7 and 11–13 of the main 

PROCEDURE:

fingerprints = defaultdict(set)

for line in sys.stdin:

identifier, fpt = line.split(‘,’)

fingerprints[identifier] = set(fpt.split(‘ ‘))

4. Print the similarities.
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for id1 in sorted(fingerprints.keys()):

for id2 in sorted(fingerprints.keys()):

if id1 > id2:

continue

similarity = tanimoto(fingerprints[id1], fingerprints[id2])

print ≫ sys.stdout, “%s\t%s\t%f” % (id1, id2,similarity)

5. Through this script, the researcher will obtain a list of drug pairs and the 

relevant TC values. Transform the data obtained into a matrix M2 containing TC 

in each cell and set values in the diagonal to 0, as detailed in Step 10 of the main 

PROCEDURE.

Box 3

Calculating AUROC via R software ● TIMING <5 min

1. Install the ROCR package; create and save a .csv file containing the columns 

‘predictions’ (containing the TC scoring from the predictor) and ‘labels’ 

(containing the values of 1 or 0 for true positives or false positives, 

respectively).

2. In the R console, load ROCR:

> library(ROCR)

3. Read data:

> mydata = read.csv(“file_name.csv”)

4. Calculate ROC and list AUC values:

> pred <- prediction(mydata$predictions, mydata$labels)

> perf <- performance(pred, “auc”)

> perf@y.values

Databases

• Reference standard DDI database: For the development of the predictor, it is 

necessary to use a knowledge database with well-established DDIs. We used the 

DDI database from DrugBank (http://www.drugbank.ca). However, the use of 

larger resources of interactions could be convenient for the development of the 

system. As an example, DDIs from Drugs.com database (http://www.drugs.com/) 

or Micromedex (http://www.micromedexsolutions.com/) can be used to implement 

this protocol ▲ CRITICAL For the development of this protocol, it is necessary to 
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use a database of well-established DDIs (reference standard) with a molecular 

similarity database extracted from structural molecular simulations or the 

comparison of different biological molecular properties acquired from knowledge 

databases.

• Molecular structure database: for the calculation of 2D structural fingerprints and 

3D pharmacophoric approaches, we downloaded the database from DrugBank (and 

it is this approach that is detailed in the PROCEDURE). Other sources of data can 

be consulted, however, to obtain the molecular structure of the drugs, such as 

PubChem (http://pubchem.ncbi.nlm.nih.gov)

• Interaction profile database: to calculate the IPFs, we used the DDIs described in 

DrugBank, although other sources could be used

• Target database: we integrated the drug targets, enzymes, transporters and carriers 

from DrugBank in a unique DrugBank target database to calculate the drug target 

fingerprints. Alternative databases that could equally be used include PubChem 

(http://pubchem.ncbi.nlm.nih.gov) or ChEMBL (https://www.ebi.ac.uk/chembl)

• Adverse effect database: as above, although different databases can be used to 

obtain information on ADEs, the PROCEDURE details the use of a particular one, 

the SIDER database (http://sideeffects.embl.de), which contains adverse effects 

introduced in the drug labels. Other databases of ADEs can also be used, such as 

the Offsides database27 (http://people.dbmi.columbia.edu/tatonetti/resources.html). 

Drug reactions mentioned in the cited databases are possible or likely, but in some 

cases further studies would be necessary to confirm the adverse reactions

PROCEDURE

Generation of the reference standard DDI database (matrix M1) ● TIMING <4 h

1| Use the Interax Interaction Search module in the DrugBank database to check 

for interactions between different drugs at the same time. Save the DDIs found 

in DrugBank into a tab-separated file containing three columns: the first column, 

‘Drug A’, will contain the generic names of all drugs involved in DDIs 

according to the database; the second column, ‘Drug B’, will contain the generic 

names of the same set of drugs reported in the relevant order according to the 

known interactions; and the third column will contain the description of the 

effect produced by the interaction; see Table 1 for an example of how this file 

should look like.

▲ CRITICAL STEP It is worth noting that all the interactions should appear 

twice in the file, as the drugA-drugB interaction is the same as that for drugB-

drugA. The presence of these repetitions is important to generate a symmetric 

M1 matrix.

2| List the drugs in column A and in row 1 of an Excel worksheet.

3| Use the function ‘=concatenate’ as described in Figure 4 to bind the drug names.
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4| Substitute the interactions described in each cell and also present in the initial 

list with ‘1’, so as to indicate that a particular cell contains a DDI described in 

the initial DrugBank database. Place a ‘0’ in all cells representing ‘interactions’ 

not actually existing according to the DrugBank list. Through this process, the 

researcher will generate the matrix M1, with binary values, 1 and 0, representing 

the interaction between two drugs and their noninteraction, respectively.

▲ CRITICAL STEP Make sure that matrix M1 thus obtained is symmetrical 

and contains the same interactions A–B and B–A in the relevant cells.

Calculation of similarity measures and TCs between drugs (matrix M2): 2D MACCS 
fingerprints ● TIMING <1 h

▲ CRITICAL Please note that the instructions provided in the main PROCEDURE are 

given with the assumption that the researcher will use the MOE software. However, open-

source software can also be used for the purpose of fingerprint and TC calculation. In Box 1, 

we provide directions to be implemented in Python to calculate MACCS fingerprints using 

Open Babel. In Box 2, we provide directions to calculate TCs between every type of 

fingerprint that has been calculated by implementing the relevant directions in this 

subsection of the PROCEDURE, as well as the next. This option is useful for calculating the 

TC between the interaction profile, target fingerprints and ADE fingerprints.

▲ CRITICAL Figure 5 illustrates the general workflow for the generation of M2.

5| Download the drug structures included in the study from DrugBank in .sdf 

format. Upload this .sdf file with the molecular modeling software MOE. As 

mentioned in the INTRODUCTION, although the use of DrugBank for the 

generation of M1 and M2 is detailed here, this protocol can be also implemented 

using other sources of drug structures. The model also enables the calculation of 

additional drugs as a test set.

6| By using the ‘Wash’ module in the MOE software, disconnect group I metals in 

simple salts and keep only the largest molecular fragment. Add hydrogen atoms 

to the structures and homogenize the protonation state—i.e., consider all the 

molecules to be in a neutral state. Save the data in a new field in the file.

▲ CRITICAL STEP It is important to preprocess the structural data using the 

Wash module to avoid possible problems with the structure of the molecules. By 

implementing this step, researchers make sure that the molecular structures are 

suitable for fingerprint calculation.

7| To calculate MACCS fingerprints, open Compute→Fingerprint in the data file 

window and select FP:MACCS and the field in which to apply the calculation—

i.e., in the present case, the name of the field with the molecules that have 

already been preprocessed in Step 6.

▲ CRITICAL STEP Although in Steps 5–7 researchers are directed to 

calculate 2D MACCS fingerprints because they showed good results in previous 

studies6–8, other types of molecular fingerprints could also be calculated. As an 
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example, researchers can calculate pharmacophoric fingerprints or typed atom 

distance fingerprints weighed with information related to atom types and 

distances (atom types: acid, basic, hydrogen bond donor or acceptor, 

hydrophobic). This type of fingerprinting procedure could capture better the 

similarity between two drugs when a particular charged group could be 

important for the interaction with the receptor (i.e., the bioisosteric replacement 

of carboxylate moiety by tetrazole motif, both with anionic characteristics). In 

this case, the protonated or deprotonated state of a drug, rather than its neutral 

state, would be considered to define the ionization state.

8| Use the ‘Fingerprint Cluster’ module in MOE to calculate the TC, and thus 

measure the similarity between the different fingerprints. Save the resulting 

matrix file containing the similarity between molecules. Each cell in this file 

represents the similarity between the relevant pair of drugs.

9| Use the ‘sim_matrix2txt.svl’ script in MOE to convert the similarity matrix 

constructed in Step 8 from binary to ASCII format. For this purpose, after 

opening the .svl file with MOE upload the database with the molecular 

structures (Step 5); next, upload the matrix file that you want to convert, and 

save the similarity matrix output as a .txt file. Please note that the final similarity 

matrix contains the TC between the drugs in an inverted scale (0 means 

maximum similarity).

We recommend inverting the matrix at this point so that the TC spans values 

between 0 (maximum dissimilarity) and 1 (maximum similarity).

10| Introduce 0 values in the matrix diagonal. Name this matrix M2.

▲ CRITICAL STEP As the method is based on matrix multiplication and 

maximization, the values in the diagonal of the matrix need to be set to 0 to 

avoid the growth of data noise caused by the ‘similarity’ of drugs with 

themselves.

Calculation of similarity measures and TCs between drugs (matrix M2): IPFs ● TIMING <1 
h

▲ CRITICAL Figure 6 shows a general workflow for the generation of IPFs.

11| Include a position number for all the drugs listed in the columns of the matrix 

M1 generated in Step 4 of the PROCEDURE. Substitute values 1 in each cell in 

matrix M1 with the vector position number. Each vector position number will 

codify a drug interaction.

12| Construct the final IPFs retaining only the vector position numbers for each 

drug. This is an efficient way to represent a sparse binary vector. Through this 

process, the researcher will calculate the IPFs for all the drugs included in the 

study. Save the file as .txt.

13| Read the .txt file containing IPFs using MOE, and repeat the process described 

in Steps 8–10 to calculate the TC between all the pairs of drugs and generate 

Vilar et al. Page 15

Nat Protoc. Author manuscript; available in PMC 2015 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



M2, but in this case use IPF similarity information to calculate the TC. 

Alternatively, TC between IPF fingerprints can be calculated using the open-

source Python according to the instructions in Box 2.

? TROUBLESHOOTING

Calculation of similarity measures and TC between drugs (matrix M2): target fingerprints ● 
TIMING <1 h

▲ CRITICAL The workflow for the calculation of target fingerprints is detailed in Figure 

7.

14| Download the DrugBank database containing target information. As we have 

done, we recommend putting together information on the target, enzyme, 

transporters and carriers in a unique target database. In the construction of the 

target database, eliminate repeated targets present in the different databases. 

Eliminate other redundant information from the different databases. Specifically, 

we suggest that the same target belonging to different species or organisms be 

considered as a unique case (single target).

15| Similarly to Steps 11 and 12, list the targets for each drug in the study as a 

vector, and calculate the target fingerprints for all the drugs. The approach is the 

same, but instead of considering drug interactions in each bit position you now 

use targets for each bit vector position. Calculate the TC and M2 as in Steps 8–

10. Alternatively, use the script described in Box 2 to calculate the TC between 

fingerprints.

Calculation of similarity measures and TC between drugs (matrix M2): ADE fingerprints ● 
TIMING <1 h

▲ CRITICAL The workflow for the calculation of ADE fingerprints is detailed in Figure 7.

16| Download the SIDER database (see MATERIALS), which contains information 

about marketed medicines and adverse drug reactions.

17| Similarly to Steps 11 and 12, list the adverse reactions for each drug in the study 

as a vector that codifies the presence (1) or absence (0) of the adverse reactions 

in different bit positions. Calculate the ADE fingerprints for all the drugs 

included in the initial M1 according to the procedure described previously for 

IPFs (Steps 11–13). Calculate TC and M2 as in Steps 8–10 (or according to the 

directions in Box 2).

? TROUBLESHOOTING

Calculation of matrix M2 using 3D pharmacophoric shape screening ● TIMING <5 d

▲ CRITICAL The workflow for 3D pharmacophoric shape screening is detailed in Figure 

8.
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18| Read the .sdf file previously downloaded (Step 5) with drug structure 

information from DrugBank using the Schrödinger package (http://

www.schrodinger.com).

19| Preprocess the data using the LigPrep module in Schrödinger. Select in the 

module the option to optimize the molecular structures with OPLS_2005 force 

field implemented in Schrödinger. In the LigPrep module, select the option to 

generate the protonation state at pH = 7.0 using ‘Ionizer’ in Schrödinger. Retain 

the molecule with the largest number of atoms. Retain only the specified 

chiralities obtained from DrugBank, generating a maximum of three 

enantiomers in the case of chiral centers for which absolute chirality is 

unknown. Save the output file as a .mae file.

▲ CRITICAL STEP Although chirality information about the bioactive 

conformations of drugs is provided by DrugBank, some drugs have multiple 

unspecified chiral centers. As the generation of all possible enantiomers could 

substantially increase the computational cost of subsequent steps, we 

recommend retaining only a maximum of three enantiomers.

? TROUBLESHOOTING

20| Perform a conformational analysis for all the drugs. Select the force field and the 

inclusion of nonsolvent (vacuum)/ solvent (i.e., water) in the calculation. Select 

the nonbonded cutoff distances for hydrogen bond, van der Waals and 

electrostatic contributions. Choose a minimization method, convergence and 

number of iterations. Select the conformational search method and related 

parameters. As an example, Box 4 shows some parameters that can be used to 

run conformational analysis with the ‘Macromodel’ module from the 

Schrödinger package. Please note that we recommend running the 

conformational analysis using water as a solvent to diminish intramolecular 

interactions and to obtain drug conformations that are more representative of the 

biologically active ones than those obtained in vacuum.

? TROUBLESHOOTING

21| In the output file containing the results from the conformational analysis, retain 

only the global minimum energy structure for each molecule as a template for 

the next modeling step and save the file as .mae. Please note that, although for 

simplicity only one conformation for molecule is taken into account as a 

template for the next steps of the PROCEDURE, a more complex system could 

be generated by considering different stable conformations for each molecule.

22| Use the minimum energy structure for each molecule as a template for shape 

screening calculations using the Schrödinger package (Phase, version 3.3; http://

www.schrodinger.com/). To run the calculation, upload to the Shape screening 

module the .mae database generated in Step 21 containing the calculated 3D 

structures of each drug (database 1). Upload the .mae file generated in Step 19 to 

the ‘Shape’ screening module with the molecules you want to screen (database 

2). Select the pharmacophoric approach for volume scoring. Select the option to 
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generate a maximum number of 500 conformers for each drug in the database 2 

and run the calculation. The calculation will align the drug conformations in 

database 2 to each 3D molecular structure (templates) in the database 1 

providing a similarity scoring (Phase Sim property). Save the output as a .mae 

file.

23| Export the output from the previous step as .txt and import it in Excel. For cases 

in which the template structure of a drug (database 1) is compared with different 

enantiomers of other drugs (a maximum of three enantiomers had been 

generated in Step 19 for drugs with multiple undefined chiral centers) or with 

different protonation states, select the pair with highest 3D similarity scoring 

(Phase Sim property). Transform the list of drugs with the name of drug A, 

name of drug B and the 3D similarity scoring (Phase Sim property) into a 

similarity matrix M2. As an example, it is possible to list the name of the drugs 

in a column and in a row of an Excel worksheet, to concatenate the names in 

each corresponding cell of the matrix extension and to substitute the 

cyoncatenated names by other code (i.e., the 3D scoring in this case) using a 

similar script (see Excel Forum, MS Office Application Help; http://

www.excelforum.com), as described in Figure 4.

Box 4

Conformational search options

Herein are some parameters that can be used in Macromodel to carry out a 

conformational analysis. The use of constraints or substructures is not included. Please 

note that the timing of this analysis is highly dependent on the number and complexity of 

the molecules.

Potential

Force field: OPLS_2005

Solvent: water

No-bond cutoff distances (Å): hydrogen bond = 4.0

van der Waals = 8.0

electrostatic = 20.0

Minimization

Minimization method: PRCG (Polak-Ribiere conjugate gradient)

Maximum iterations: 500

Convergence: Gradient

Convergence threshold: 0.05

Conformational search

Conformational search method: MCMM (Monte Carlo multiple minimum)
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Maximum number of steps: 1,000

Number of steps per rotatable bond: 50

Redundant conformers elimination: r.m.s.d. cutoff = 0.5 Å

Generation of the new set of potential DDIs: matrix M3 and association of the DDI effects to 
the list of DDI candidates ● TIMING <10 h for 5 M3 matrices

24| Multiply M1 by M2, retaining only the highest value in the array multiplication 

in each cell. Although in each cell in the matrix different values could be 

obtained from all the possible pairs for one drug, retain only the maximum value 

in the array cell representing the interaction with the highest TC value and the 

maximum similarity to a DDI in the reference standard (see Fig. 9 for more 

details of the process in an Excel worksheet):

25| Generate the transpose matrix M12
T (this matrix can be generated in Excel, 

transposing the M12 calculated in Step 24).

26| Calculate the matrix M3, retaining the maximum value in each cell of the matrix 

M12 and the corresponding cell in the transpose M12
T matrix. M3 contains in 

each cell the interaction score (TC score) of the relevant drug pair (a pair 

constituted by the drugs reported as column and row heads of the cell reporting 

the mentioned score).

▲ CRITICAL STEP As M12 is not symmetric (Step 24), this step should be 

carried out to make sure that the interactions drugi–drugj and drugj–drugi are 

weighed by the same TC interaction score.

27| Use the function ‘=concatenate’ in Excel to bind drugi, drugj and the TC score.

28| List all the DDIs generated by the model, divide them into three columns (name 

of the first drug, name of the second drug and TC interaction score) and sort 

them in terms of decreasing TC score.

29| Eliminate the candidates extracted from the matrix diagonal that represent 

interactions of drugs with themselves. Please note that in our example (see 

ANTICIPATED RESULTS), we used 928 drugs and 9,454 interactions (18,908 

if including interactions i–j as well as j–i). The total number of possible DDIs 

generated in a matrix of 928 × 928 drugs is 860,256 ‘doubled’ DDIs (after 

removing 928 DDIs representing drugs’ interactions with themselves). If only 

unique interactions are taken into account, the total number is 430,128 DDIs.

30| Associate the DDI effects from the DDI reference standard with the new 

potential DDIs. To perform this task, link the DDIs extracted from M3 to the 
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initial source in M1 in terms of DrugBank drug pairs associated with the 

pharmacological effects caused by the interaction (Fig. 10). Through this 

operation, a researcher will ideally obtain a DDI multitype model that provides 

information not only on whether two drugs may interact but also on the possible 

biological effect produced by the interaction.

▲ CRITICAL STEP This step is very useful in decision-making, as all the 

information provided by the initial DDI source can be linked to the DDI 

candidate. In fact, the protocol as designed is able to point out the clinical 

importance of the DDI candidate based on the clinical significance of the DDI 

source in the DrugBank reference standard. However, an alternative option 

would be to introduce a weight parameter in M1 that quantifies severity, 

frequency or clinical importance of the DDI outcome. Implementing this option 

could lead to a system that prioritizes interactions with clinically important 

associated adverse effects over interactions with outcomes rated as not severe. 

For instance, some severe adverse events produced by the interactions, such as 

heart failure or rhabdomyolysis, could obtain a higher score by the model than 

effects such as muscle pain.

Combining the results in a complex model ● TIMING <5 min

▲ CRITICAL The five DDI scores obtained through the use of five different similarity 

measures can be combined in a unique DDI score (Fig. 11). In this subsection of the 

PROCEDURE, the results of combining the five DDI scores are shown with principal 

component analysis (PCA) using the STATISTICA software, although other data mining, 

statistical techniques or software can be used to integrate the complex model.

31| Collect the information related to the five DDI scores (provided by the five M3 

matrices) and save the resulting file in Excel format (.xlsx). Read the .xlsx file 

with STATISTICA. In the ‘factor analysis’ module, select the five variables 

using ‘principal components’ as the extract method, and set the number of 

factors that will be extracted and the minimum eigenvalue (in our example, 

number of factors = 1, minimum eigenvalue = 1). The calculation will generate a 

new and unique factor score or DDI score.

▲ CRITICAL STEP In this protocol, we direct readers to implement an 

unsupervised method with no labeled training data (i.e., without labeling the 

DDIs as positives or negatives), and to train or select the best variables that 

explain the data. We take this approach to try to avoid an excessive contribution 

to the final model by a DDI score that better performs in a training run of the 

PROCEDURE but that would contribute to a lesser extent to the generation of 

an innovative final model. The number of factors or principal components 

extracted from the initial variables (i.e., in our case the five DDI scores provided 

by the five M3 matrices (Step 31)) will depend on the data and the percentage of 

the variance of the initial variables (the five DDI scores) explained by each 

additional factor. The intention is to account for as much of the variance of the 

initial variables as possible using fewer components or factors. As an additional 
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criterion, in this protocol only factors with eigenvalues >1 are retained26. In the 

example application covered in the present PROCEDURE, only one factor was 

extracted, as a second factor showed an eigenvalue lower than the preestablished 

cutoff (>1). A summary of the results of the actual output in the example 

implementation is shown below:

Factor loadings

IPF_scoring = −0.807

Target_scoring = −0.781

MACCS_scoring = −0.738

3D_scoring = −0.669

ADE_scoring = −0.594

Eigenvalue = 2.607

% Total variance = 52.15

Assessment of the model performance: plotting the ROC curve ● TIMING <5 min

32| Label the list of DDI candidates extracted from M3 (Steps 24–30). As an 

example, label as ‘1’ the DDIs already described in the initial reference standard 

DrugBank interaction database (true positives) and as ‘0’ the rest of the DDI 

candidates (false positives).

33| Save the file produced in Step 32 as .txt, which contains the DDIs extracted 

from M3 (Steps 24–30), the TC (scoring associated to each interaction) and the 

true and false positive labels previously described.

34| Import the .txt file just generated in MOE and save it in .mdb format.

35| Load the roc_plot.svl script with MOE and read it at the Scientific Vector 

Language (SVL) command line:

svl> ROC_Plot[]

36| Select the true or false positive labels as an activity field and the TC scoring 

variable as a prediction field.

37| Plot and report the ROC results (i.e., the AUROC). Please note that the AUROC 

can alternatively be calculated using the open-source software R according to 

the directions in Box 3. The interpretation of the results from this step is 

provided and discussed in the ANTICIPATED RESULTS.

▲ CRITICAL STEP It is convenient to sort the candidates according to TC 

scoring before plotting the ROC.

? TROUBLESHOOTING

Troubleshooting advice can be found in Table 2.

Vilar et al. Page 21

Nat Protoc. Author manuscript; available in PMC 2015 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



● TIMING

Steps 1–4, generation of the reference standard DDI database (matrix M1): <4 h (timing 

in this part will also depend on the DDI database used as a reference standard, 

manageability and size extension)

Steps 5–10, generation of M2 using MACCS fingerprints: <1 h

Steps 11–13, generation of M2 using IPFs: <1 h

Steps 14 and 15, generation of M2 using target fingerprints: <1 h

Steps 16 and 17, generation of M2 using ADE fingerprints: <1 h

Steps 18–23, generation of M2 using 3D pharmacophoric approach: <5 d (depending on 

the number of molecules to be calculated and the potency and capacity of the computer)

Steps 24–30, generation of five DDI predictors (five M3 matrices): <10 h

Step 31, complex model generation: <5 min

Steps 32–37, ROC curves: <5 min

Box 1, using Python to calculate molecular fingerprints and TC between all drug pairs 

with Open Babel: <5 min

Box 2, using Python to calculate TCs between fingerprints: <5 min

Box 3, calculating AUROC via R software: <5 min

ANTICIPATED RESULTS

The example protocol implementation described in the PROCEDURE involves the 

development of a DDI predictor that uses 928 drugs and 9,454 well-established DDIs from 

the DrugBank database. The output of the predictor is 430,128 possible unique DDIs (= (928 

× 928–928) / 2) and an associated DDI score for each of these DDIs. Among these DDI 

candidates are the initial 9,454 well-established DDIs retrieved by the model. The system is 

tested by plotting the ROC curve, considering 9,454 true positives (DrugBank interactions) 

and 420,674 false positives (the rest of the DDI candidates). AUROCs have values that 

range from 0.80 to 0.98, depending on the similarity measure used to develop the DDI 

predictor (see Fig. 12 for ROC curve information for the six predictors).

As it was shown by our research group8–10, predictors obtained by following this protocol 

have great stability and robustness in cross-validation sets. However, to test the predictor, it 

is important to evaluate the performance of the system in external and independent test sets 

that include DDIs not contemplated in the initial reference standard database (the DrugBank 

database in the present PROCEDURE). In Table 3, AUROC results for two different test 

data sets are reported: data from the US Department of Veterans Affairs (VA)28 and the 

interactions described in Drugs.com (http://www.drugs.com/) for the top 25 drugs sold in 

2012.

We also tested the potential of our protocol to detect differences in drug-specific interaction 

risks for drugs belonging to the same pharmacological category. We collected the DDIs 
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described in the VA data for the top 25 drugs sold in 2012 (interactions not described in the 

initial reference standard). For each interaction, i.e., drugs i (top25)-j, we localized other 

drugs in the initial set in M2 with the same anatomical therapeutic chemical (ATC) code as 

drug j. That way we collected an enriched set of possible DDIs that are specific to the 

pharmacological category chosen. We calculated AUROCs for the sets considering true 

positives (interactions described in VA data) and false positives (interactions not described 

in VA data). Table 4 shows the AUROCs for the different models with different similarity 

measures. The protocol showed some potential to differentiate drug-specific DDI risks even 

in the same category of drugs. In this test, knowledge measures, such as IPFs, target 

fingerprints and ADE fingerprints, outperformed 2D and 3D molecular similarity measures. 

However, development of more complex systems with well-established DDIs and non-DDIs 

in the reference standard, and the use of machine learning methods, could be an alternative 

to implement DDI detectors covering all the pharmacological space and assessing different 

risk levels for drugs classified in the same pharmacological category.

Models developed through this protocol enable the researcher to extend the clinical or 

pharmacological effect from the DDIs in the reference standard to the new DDI candidates 

(Fig. 10). As an example described in a publication from our research group8, the effect 

associated with the DDIs retrieved in the reference standard by the MACCS model with a 

TC >0.75 is correct in >90% of the analyzed cases. In a study in which we used the IPF 

model9, we selected 100 random DDI candidates with a TC ≥ 0.7. Forty-three candidates 

were confirmed in Drugs.com and/or the Microemedex-Drugdex databases. The predicted 

effect was correct in 36 out of 43 DDIs (84%). The precision in the predicted effect will 

depend on the similarity measure, although similar values with other measurements are 

expected. The effect predicted by the system is more reliable for the top-scoring candidates, 

and a substantial reduction in the precision is expected as the score decreases. Results 

obtained by following the present protocol are dependent on the quality and 

comprehensiveness of the initial DDI reference standard.
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Figure 1. 
Overview of the protocol to develop the DDI predictor.
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Figure 2. 
Example of some structural keys in the MACCS fingerprint for the drug diazepam. ‘Key 

position’ assigns a specific number to a particular chemical structural feature; ‘Key 

description’ describes the said structural feature; and ‘Key code’ assigns a value of ‘1’ when 

the structural feature is present in the drug being examined, and a value of ‘0’ when the 

structural feature is not present.
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Figure 3. 
Different drug fingerprints codifying in bit positions drug interactions (IPFs), target 

information (target fingerprints) or adverse effects (ADE fingerprints).
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Figure 4. 
Workflow of the different steps implicated in the generation of the matrix M1, containing the 

reference standard DDI database.
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Figure 5. 
Workflow of the different steps implicated in the generation of the matrix M2 containing the 

2D structural MACCS similarity information.
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Figure 6. 
Workflow of the different steps implicated in the generation of the matrix M2 containing IPF 

similarity information.
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Figure 7. 
Workflow of the different steps implicated in the generation of the matrix M2 containing 

target and ADE similarity information.
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Figure 8. 
Workflow of the different steps implicated in the generation of the matrix M2 containing the 

3D pharmacophoric similarity information.
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Figure 9. 
Generation of the new set of potential DDIs (matrix M3).
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Figure 10. 
DDI effect linkage: list of DDIs extracted from M3 are associated with the initial source in 

M1 and with the clinical or pharmacological effects caused by the interaction.
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Figure 11. 
Integration of the five DDI scores into one unique score using PCA.
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Figure 12. 
ROC curves showing the performance of the different DDI predictors in the DrugBank 

database (example provided in ANTICIPATED RESULTS with 9,454 true positives and 

420,674 false positives). TPF, true positive fraction; FPF, false positive fraction.

Vilar et al. Page 37

Nat Protoc. Author manuscript; available in PMC 2015 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vilar et al. Page 38

TABLE 1

Examples of DDIs described in the DrugBank database.

Drug A Drug B Interaction effect

Ketoprofen Acenocoumarol The nonsteroidal anti-inflammatory drug (NSAID) ketoprofen, may increase the anticoagulant effect of 
Acenocoumarol

Troleandomycin Aprepitant The CYP3A4 inhibitor increases the effect and toxicity of aprepitant

Zuclopenthixol Delaviridine Delaviridine, a strong CYP2D6 inhibitor, may increase the serum concentration of zuclopenthixol by 
decreasing its metabolism

Spironolactone Candesartan Increased risk of hyperkalemia

Tobramycin Captopril Increased risk of nephrotoxicity

Zuclopenthixol Dasatinib Additive QTc prolongation may occur

Indinavir Risperidone Increased risk of extrapyramidal symptoms

Sotalol Ranolazine Possible additive effect on QT prolongation

Mesoridazine Quinine Increased risk of cardiotoxicity and arrhythmias

Mazindol Trifluoperazine Decreased anorexic effect, may increase psychotic symptoms

Timolol Verapamil Additive effects of decreased heart rate and contractility may occur. Increased risk of heart block

Prendisone Midodrine Increased arterial pressure
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TABLE 2

Troubleshooting table.

step problem possible reason solution

13 Software does not 
calculate TCs between 
IPFs

IPFs are not implemented in the 
software

Name the field containing IPFs as an existing implemented 
fingerprint and calculate the TC as in Steps 8–10. The same 
problem can occur for target and adverse effects fingerprints
An alternative script in Python, the implementation of which 
could solve the present problem, is provided in Box 2

17 Different terms are used 
in the database to refer to 
the same adverse reaction
No adverse effect 
information for some 
drugs included in the 
study

Depending on the database used, 
adverse drug reactions could be 
repeated under different terms
Data limitations

In the SIDER database, the adverse reactions have been mapped 
to MEDDRA (Medical Dictionary for Regulatory Activities) 
terms. If data from a different database to SIDER is used, it is 
convenient to use MEDDRA mapping
Use other adverse effects sources or assume no ADE similarity 
with other drugs

19 Some molecules are not 
preprocessed

The molecules are too large or their 
structures are problematic from the 
standpoint of force fields 
implemented or protonation states 
modules (i.e., failure to process 
structure as a result of unreasonable 
bond lengths and angles)

Increase the size of the molecule that can be analyzed using the 
LigPrep–ma option. Check the files ‘Jobname_*_bad.mae’, 
‘Jobname-failed.ext’ or the log file to know the failure reason. If 
the problem persists, it is possible to use complementary software 
for molecule preparation

20 Time-consuming 
calculations or no output 
for some molecules

Large molecules with large numbers 
of atoms and torsional and/or 
dihedral angles
Problems with the force field

Establish a limitation in molecular size or dihedral angles
Use alternative force fields
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TABLE 3

AUROC values in test sets from the VA and Drugs.com (top 25 drugs sold in 2012).

Predictor VA data Top 25 Drugs.com

MACCS 0.85 0.68

IPF 0.87 0.66

Target 0.85 0.68

ADE 0.72 0.72

3D pharmacophoric 0.72 0.60

PCA model 0.90 0.73

Nat Protoc. Author manuscript; available in PMC 2015 May 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vilar et al. Page 41

Table 4

AUROC results in the ATC code–enriched test set.

Predictor AUROC VA data (ATC-enriched set)

MACCS 0.53

IPF 0.77

Target 0.64

ADE 0.71

3D pharmacophoric 0.51

PCA model 0.67
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