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Abstract

This study presents a framework for viscoelasticity where the free energy density depends on the 

stored energy of intact strong and weak bonds, where weak bonds break and reform in response to 

loading. The stress is evaluated by differentiating the free energy density with respect to the 

deformation gradient, similar to the conventional approach for hyperelasticity. The breaking and 

reformation of weak bonds is treated as a reaction governed by the axiom of mass balance, where 

the constitutive relation for the mass supply governs the bond kinetics. The evolving mass 

contents of these weak bonds serve as observable state variables. Weak bonds reform in an 

energy-free and stress-free state, therefore their reference configuration is given by the current 

configuration at the time of their reformation. A principal advantage of this formulation is the 

availability of a strain energy density function that depends only on observable state variables, 

also allowing for a separation of the contributions of strong and weak bonds. The Clausius-Duhem 

inequality is satisfied by requiring that the net free energy from all breaking bonds must be 

decreasing at all times. In the limit of infinitesimal strains, linear stress-strain responses and first-

order kinetics for breaking and reforming of weak bonds, the reactive framework reduces exactly 

to classical linear viscoelasticity. For large strains, the reactive and classical quasilinear 

viscoelasticity theories produce different equations, though responses to standard loading 

configurations behave similarly. This formulation complements existing tools for modeling the 

nonlinear viscoelastic response of biological soft tissues under large deformations.
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1. Introduction

Many biological soft tissues exhibit viscoelastic responses (Fung, 1981), often with 

relaxation times that depend on the strain magnitude, suggesting a nonlinear viscoelastic 

behavior (Provenzano et al., 2001; Park and Ateshian, 2006; Duenwald et al., 2009). Though 

nonlinear viscoelasticity frameworks such as that of Schapery (1969) are used in 

biomechanics (Provenzano et al., 2002; Duenwald et al., 2010), they have not been adopted 

*Corresponding author at: Department of Mechanical Engineering, Columbia University, 500 West 120th Street, MC 4703, New York, 
NY 10027, USA. Tel.: +1 212 854 2966; fax: +1 212 854 3304. ateshian@columbia.edu (Gerard A. Ateshian). 

Conflict of Interest
The author has no conflict of interest to report with regard to this study.

HHS Public Access
Author manuscript
J Biomech. Author manuscript; available in PMC 2016 April 13.

Published in final edited form as:
J Biomech. 2015 April 13; 48(6): 941–947. doi:10.1016/j.jbiomech.2015.02.019.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



widely possibly because existing formulations remain complex. Nonlinear elasticity 

formulations broadly follow the elegant framework of Coleman and Noll (1963), where the 

stress response is derived from a free energy potential expressed as a function of the 

deformation gradient. However, that simplicity has not yet emerged in formulations of 

viscoelasticity.

Viscoelasticity is a macroscopic manifestation of the dissipation of energy in a loaded 

continuum. Microscopically, in long chain polymeric materials such as biological soft 

tissues, the mechanisms causing loss of free energy are typically related to breakage and 

reforming of weak molecular bonds under loading. Historically, formulations of 

viscoelasticity have relied on the introduction of internal variables to account for the 

relaxation mechanism characteristic of viscoelasticity, as first proposed by Green and 

Tobolsky (1946) for polymer solutions, and subsequently extended by Lubliner (1985) for 

isotropic solids and by Simo (1987) for anisotropic solids.

Internal state variables, also known as hidden variables, are non-observable by definition. 

Coleman and Gurtin (1967) provided a formalism for the thermodynamics of continua that 

employ internal state variables, which influence the free energy and are governed by 

differential equations involving the state of strain. Holzapfel and Simo (1996) and Holzapfel 

(1996) explicitly appealed to the formalism of Coleman and Gurtin (1967) in their modeling 

of solids with linear viscoelasticity.

Other authors, such as Fung (1981) and Puso and Weiss (1998), directly adopted the 

Boltzmann superposition principle for linear viscoelasticity with nonlinear elastic behavior. 

Fung (1981) described this type of material response as quasilinear viscoelasticity. These 

equivalent approaches have become the common standard for modeling viscoelastic tissues 

in the field of biomechanics.

An alternative approach to this traditional framework has been proposed by Wineman 

(2009), based on the concept of elastomer scission and cross-linking introduced by Tobolsky 

(1960), and using the framework of microstructural changes presented by Wineman and 

Rajagopal (1990) and Rajagopal and Wineman (1992).

The main objective of this study is to demonstrate that a complete framework for nonlinear 

viscoelasticity may be formulated using only observable state variables, where the stress is 

derived from a free energy potential using the traditional approach of Coleman and Noll 

(1963). This objective is achieved by reformulating Green and Tobolsky (1946)’s bond-

breaking-and-reforming concept in the context of constrained reactive multigenerational 

solid mixtures (Ateshian, 2007; Ateshian and Ricken, 2010), where bonds are treated as 

mixture constituents whose breakage and reforming into new bonds is modeled as a reaction 

governed by the axiom of mass balance.

Permanent strong bonds are responsible for the elastic response and reacting weak molecular 

bonds that repeatedly break and reform are responsible for the viscous response. Consistent 

with concepts introduced by Green and Tobolsky (1946) and Tobolsky (1960), and reprised 

by Wineman (2009), this approach assumes that weak molecular bonds can only sustain 

their loaded configuration temporarily, eventually breaking and immediately reforming into 
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a new unloaded configuration that coincides with the current configuration of the mixture. 

Multiple generations of breaking and reforming bonds may exist simultaneously, each with 

its own reference configuration.

2. Reactive Viscoelasticity

2.1. General Formulation

The detailed formulation of the reactive mixture viscoelasticity framework is presented in 

section S.1 of the Supplemental Materials. The key finding from this formulation is that the 

strain energy density Ψr of a viscoelastic solid is dependent on the free energy stored in 

strong bonds that are permanent (in the absence of damage), and in weak bonds that break 

and reform in response to the loading. Strong bonds provide the elastic response and weak 

bonds are responsible for the viscous response.

In the master reference configuration X of the viscoelastic solid, all bonds are unloaded and 

intact. Upon loading, weak loaded bonds progressively break over time; when they break, 

they immediately reform into unloaded weak bonds (section S.2). Newly formed weak 

bonds may break and reform again when subjected to further loading. Bonds formed at time 

t = u have a reference configuration Xu that coincides with the current configuration of the 

material at time u, thus Xu = χ(X, u), where χ(X, t) denotes the motion of the solid relative to 

the master configuration X, which also corresponds to the motion of the strong bonds. Weak 

bonds that (re)form at time u are described as u–generation bonds.

Different weak bond species may coexist in a viscoelastic solid, which may break and 

reform at different rates, or in response to different forms of loading. For example, some 

bonds may only break and reform in response to distortional strain, whereas others may 

respond to dilatational strain. These distinctions become important in the context of 

formulating a general viscoelasticity theory as addressed below. However, for simplicity, we 

start by assuming that there is only one species of weak bonds. All weak bonds can break 

and reform at any time t; let wu (X, t) represent the current mass fraction of total weak bonds 

from this species that were (re)formed at u. By definition, wu is bounded (0 ≤ wu ≤ 1) and its 

value is zero for t ≤ u. The bond mass fraction wu represents an observable (i.e., non-hidden) 

state variable in this formulation, whose temporal evolution is governed by the axiom of 

mass balance.

Let the free energy density of strong bonds be denoted by , where θ is the absolute 

temperature and F = ∂χ/∂X is the deformation gradient of the solid. Similarly, let the free 

energy density of weak bonds formed at u be denoted by , where  is the free 

energy density of this weak bond species when all its bonds are intact (section S.3), and Fu = 

∂χ/∂Xu is the deformation gradient relative to the reference configuration Xu. These two 

deformation gradients are related by

(1)
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where F(X, u) = ∂Xu/∂X is time-invariant. Fu (X, t) is equivalent to Truesdell and Noll 

(1992)’s relative deformation gradient F(u) (X, t). When bond generations occur at discrete 

times u (i.e., if the strain changes stepwise at discrete time points), the net free energy 

density of the viscoelastic solid is given by

(2)

where wγ refers generically to all wu’s and the summation is taken over all discrete 

generations u; all state variables in this expression (i.e., θ, F or Fu, and wu) are evaluated at 

(X, t). In the treatment below, the following notational simplification is adopted: For state 

variables v, we may use the simplified notation v (t) ≡ v (X, t). For functions of state f, we 

may use the simplified notations f (v) ≡ f (v; X, t) and f [v (t)] ≡ f (v; X, t) when the time 

variable must be explicit.

For self-consistency in the summation of Eq.(2), the free energy density  represents free 

energy per volume in the reference configuration X. The corresponding expression for the 

Cauchy stress T of the viscoelastic solid is derived from this expression using the standard 

hyperelasticity relation, as shown from the theory of constrained solid mixtures (Ateshian 

and Ricken, 2010),

(3)

Substituting Eq.(2) into Eq.(3), employing the relation of Eq.(1) and recognizes that wu’s are 

state variables independent of the deformation gradient produces

(4)

Here, Te (θ, F) is the Cauchy stress resulting from strong bonds,

(5)

where J = det F, and Tb (θ, Fu) is the Cauchy stress of fully intact weak bonds,

(6)

Details of the differentiation are presented in section S.4.
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2.2. Bond Kinetics

The time evolution of the bond mass fraction wu is governed by the kinetics of bond 

breaking and reforming (section S.2), constrained by the axiom of mass balance for each 

bond generation,

(7)

where ŵu is the bond mass fraction supply to generation u from all other generations 

(section S.3). Since ŵu is a function of state, its functional form must be provided by a 

constitutive model that describes the rate of bond reforming and breaking in response to 

loading. In general, ŵu is a function of all the state variables (θ, F, wγ) in this framework. 

According to the axiom of mass balance for the mixture there can be no net change in total 

bond mass from this species,

(8)

Combining Eqs.(7)–(8), integrating the resulting expression and making use of the initial 

condition when there is only a single generation at rest produces a constraint on the mass 

fractions from all generations,

(9)

As shown in section S.5, step loading at time v > u from a prior state of rest shows that the 

solution wu (X, t) to Eq.(7) produces the reduced relaxation function for this reactive 

viscoelastic material, which may be denoted by g (θ, Fu (v); X, t − v) for t ≥ v. This notation 

emphasizes that the relaxation in response to a deformation Fu (v) may depend on the nature 

and magnitude of the strain at time v.

Using this functional representation of the solution to Eq.(7) for the first loaded generation, 

and assuming that all generations of a bond species relax according to the same functional 

response g, a recursive expression may be formulated for subsequent bond generations based 

on the constraint of Eq.(9). Thus, for u–generation bonds (re)forming in an unloaded state 

during the time interval u ≤ t < v, and subsequently breaking in response to loading at t = v, 

the bond mass fraction is given by

(10)

where
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(11)

In this recursive expression, the earliest generation u = −∞, which is initially at rest, 

produces wu (t) = 1 for t < v and wu (t) = g (θ, Fu (v); X, t − v) for t ≥ v; this latter expression 

seeds the recursion for the subsequent generations. Therefore, providing a functional form 

for g suffices to produce the solution for all bond generations u (Figure 1). The evaluation of 

the strain energy density in Eq.(2) and stress in Eq.(4) may now be performed given the 

expression of Eq.(10).

For completeness, the expression for the mass fraction supply of each generation may be 

obtained by substituting Eq.(10) into Eq.(8),

(12)

where ġ is the time derivative of g. This result shows that ŵu is generally dependent upon 

the deformation as well as the bond mass fractions from all extant generations. For the 

earliest generation u = −∞, ŵu (t) = 0 for t < v and ŵu (t) = ġ (θ, Fu (v); X, t − v) for t ≥ v. 

We may refer to this constitutive model for bond breaking and reforming reaction as type I 

bond kinetics.

Type I bond kinetics may be used to model nonlinear viscoelastic responses where the 

reduced relaxation function g varies with a strain measure associated with Fu (v), as 

explained in section S.6 and illustrated in Figure 2.

Consider the special case when the reduced relaxation function g is exponential and 

independent of the strain magnitude,

(13)

where τ(θ) is the relaxation constant (since θ is assumed constant in this isothermal 

framework). In this case, it may be shown that the recursion formula of Eq.(10) reduces to

(14)

and the mass fraction supply is given by ŵu =−wu/τ(θ) for the bond-breaking reaction (t ≥ 

v). This expression for ŵu is representative of first-order chemical kinetics for this reaction 

(Tinoco et al., 1995).

The pattern of wu (t) in Eq.(14) suggests that an alternative bond mass fraction solution may 

be proposed for any relaxation function g (t) which is independent of the strain magnitude,
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(15)

This solution satisfies the mass balance for all bond generations, Eq.(9), and the 

corresponding form of ŵu is thus

(16)

which satisfies Eq.(8). Except for the special case when g is exponential, the expressions of 

Eqs.(10) & (15) produce different solutions for wu as illustrated in Figure 3, emphasizing 

that there is no unique form for the constitutive relation of ŵu. We may refer to the 

constitutive relation of Eq.(16) as type II bond kinetics. Unlike Eq.(10), the form given in 

Eq.(15) cannot be used when g depends on strain since it is not possible to guarantee that wu 

(X, t) would remain positive for arbitrary strain histories. Therefore, nonlinear 

viscoelasticity requires type I bond kinetics.

Using the form of g employed in Figure 3, an analysis of uniaxial tensile stress relaxation 

with type I and type II kinetics shows that the responses to a step deformation (single 

breaking bond generation) are identical for the two types, but differ substantially when the 

axial stretch is ramped at a finite rate (Figure 4). This behavior can be explained by the fact 

that type I bonds break at the same rate for all generations including the first one (Figure 

3a), whereas type II bonds break significantly faster starting from the second generation 

(Figure 3b).

2.3. Reactive Quasilinear Viscoelasticity

Now consider the case when the deformation varies continuously over time, such that new 

bond generations come into existence continuously. Letting v = u + du in the type II relation 

of Eq.(15), where du represents a differential increment in time, and recalling that g (0) = 1 

produces wu (t) = −H (t − u) ġ (t − u) du for all generations subsequent to the initial one (u = 

−∞), and w−∞(t) = H (t) g (t) for the initial generation (assuming that loading starts at t = 0), 

where H (·) is the Heaviside unit step function. Therefore, the summations appearing in Eqs.

(2) & (4) may be converted to integrals of the form

(17)

and

(18)
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where Fu (t) = F(t) · F−1 (u) according to Eq.(1). Since the reduced relaxation function is 

independent of the strain magnitude, even though the dependence of the stress on the strain 

may be nonlinear, we may refer to this special case as reactive quasilinear viscoelasticity, 

understanding that reactive QLV generally employs type II bond kinetics.

2.4. Reactive Linear Viscoelasticity

For infinitesimal strains and infinitesimal rotations, the dependence of the functions of state 

on Fu (t) is equivalent to a dependence on ε(t) − ε(u), where ε is the infinitesimal strain 

tensor. In this case, Eqs.(17) & (18) reduce to

(19)

and

(20)

If the constitutive relation for the stress is linear, then Tb [ε(t) − ε(u)] = Tb [ε(t)] − Tb [ε(u)] 

and, recognizing that g (0) = 1, the expression for the stress reduces to

(21)

This equation represents the stress response for linear viscoelasticity with type II bond 

kinetics in this reactive viscoelasticity framework. As shown below, this expression for the 

stress is identical to the classical formulation for linear viscoelasticity. In section S.7, these 

expressions are used to derive the strain energy density and stress responses of a standard 

linear solid in creep and stress relaxation using the exponential relaxation of Eq.(13). 

Representative plots of the strain energy density response to these loading configurations are 

presented in Figure 5. These results demonstrate that the free energy density of weak bonds 

peaks immediately upon loading, then subsides to zero over time. In stress relaxation, the 

total free energy density decreases over time, whereas in creep it increases over time.

2.5. Multiple Bond Species

When there are multiple weak bond species present in the material, such as species that relax 

at different rates or are triggered by different strain invariants, the additive framework 

presented above applies, under the assumption that there are no nonlinear interactions 

among the free energies of the various weak bond species, nor between those of weak and 

strong bond species. Thus, a generalization of Eq.(2) to multiple weak bond species presents 

as

(22)
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where  is made to depend on a reduced relaxation function gb as per Eq.(10), such that gb 

and  may have different functional forms for different bond species. For example, it may 

be used to model anisotropic viscoelasticity, as illustrated in section S.8.

In the case of reactive quasilinear viscoelasticity, the integrals of Eqs.(17)–(18) may be 

generalized to the case of continuous relaxation spectra by assuming that  has the same 

functional form for a continuous range of bond species that have distinct relaxation 

constants τb (θ), in which case the summation over b in the above relation would have to be 

converted to a suitable integral, as illustrated in section S.9.

3. Classical Quasilinear Viscoelasticity

Classical formulations of quasilinear viscoelasticity are generally presented in terms of the 

2nd Piola-Kirchhoff stress S(θ, F) and the relaxation function G (t), with the form

(23)

where Se has the functional form of the elastic equilibrium stress and G (t → ∞) = 1 (Fung, 

1981; Puso and Weiss, 1998). With no loss of generality, let G (0+) = 1 + β and recall that Se 

(t → −∞) = 0 in the resting configuration, so that the reduced relaxation function may be 

defined as g (t) = (G (t) − 1)/β and the above integral becomes

(24)

where Sb (θ, F) ≡ βSe (θ, F) for comparison with the reactive framework. Using integration 

by parts and assuming that loading starts at t = 0, this expression may be further rearranged 

as

(25)

The Cauchy stress is obtained from this expression using

(26)

Substituting Eq.(25) into Eq.(26) produces an expression that is generally different from the 

stress formulation for reactive quasilinear viscoelasticity as given in Eq.(18), except for the 

special case of stress relaxation in response to a prescribed step deformation as shown in 

section S.5. The responses to other loading configurations, including stress-relaxation 

following stretching at a constant rate, creep in response to a step normal stress, and simple 

shearing at a constant shear rate, demonstrate various degrees of differentiation based on the 

strain history, as illustrated in section S.10. These results demonstrate that, under large 
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strains, the viscous (weak bond) stresses in the reactive framework dissipate faster than in 

the classical framework, when using an exponential reduced relaxation function.

In the range of infinitesimal strains and rotations however, the deformation gradient 

simplifies to F(t) ≈ I + ω (t) + ε(t) where ε is the infinitesimal strain tensor (symmetric part 

of the spatial displacement gradient) and I + ω is the infinitesimal rotation tensor (ω is the 

antisymmetric part of the spatial displacement gradient). In that case, S(θ, F) ≈ T(θ, ε) and 

the expression of Eq.(25) reduces exactly to Eq.(21), thus these two frameworks agree in the 

limit of linear viscoelasticity.

4. Conclusion

This study presents a framework for viscoelasticity where the free energy density depends 

on the stored energy of intact strong and weak bonds, Eq.(2), and where weak bonds break 

in response to loading. The resulting expression for the stress is evaluated by differentiating 

the free energy density with respect to the deformation gradient, Eqs.(4)–(6), similar to the 

conventional approach for hyperelasticity (Coleman and Noll, 1963). This approach 

becomes feasible because the breaking and reformation of weak bonds is treated as a 

reaction governed by the axiom of mass balance, where the constitutive relation for the mass 

supply governs the bond kinetics. As a result, the evolving mass contents of breaking and 

reforming weak bonds serve as observable state variables in this framework (Figure 1). 

Weak bonds are assumed to reform in an energy-free (and stress-free) state, therefore their 

reference configuration is given by the current configuration at the time of their reformation.

Two types of bond kinetics are presented in this treatment, with mass supplies summarized 

in Eqs.(12) and (16). Both of these constitutive relations employ a reduced relaxation 

function g whose form is also based on constitutive assumptions. When g is exponential, the 

two types of bond kinetics produce the same solution for the evolving weak bond mass 

content; for other forms of g the responses differ (Figure 3), resulting in different stress 

histories under general loading conditions (Figure 4). These examples illustrate the influence 

of constitutive assumptions for bond kinetics on the viscoelastic response.

A principal advantage of this reactive viscoelasticity formulation is the availability of a 

strain energy density function that depends only on observable state variables, also allowing 

for a separation of the contributions of strong and weak bonds (Figure 5). The Clausius-

Duhem inequality is satisfied by requiring that the net free energy from all breaking bonds 

must be decreasing at all times (section S.3). In addition to providing insights about the 

evolving stored energy of a viscoelastic material, this formulation may be further extended 

in future investigations that examine breaking of strong bonds, as may occur in plasticity 

and damage mechanics.

Similarly, it is straightforward to extend this framework to viscoelastic fluids, by letting 

 for compressible fluids, or  for incompressible fluids (J = 1), and adding 

a viscous stress Tv (θ, F, D) which is a function of the rate of deformation D. In that case, 

the total stress would be T = −pI + Tv (θ, F, D) +Σu wuTb (θ, Fu), where p is the pressure 

(  in the compressible case). The constitutive relation for the viscous stress 
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would need to satisfy Tv : D ≥ 0 according to the Clausius-Duhem inequality (Coleman and 

Noll, 1963).

This formulation of reactive viscoelasticity reproduces the framework of linear 

viscoelasticity exactly when g is exponential. This agreement is indicative of self-

consistency between the classical approach and the reactive model. Note that the exponential 

form of g in Eq.(13) satisfies ġ = −g/τ, which represents the axiom of mass balance in the 

special case of a linear first-order ordinary differential equation with constant coefficients. 

This linear equation is a manifestation of first-order kinetics in the reaction of breaking and 

reforming bonds. Any other postulated form of g would necessarily be the solution of a 

nonlinear equation of mass balance, therefore only the exponential form in Eq.(13) strictly 

describes the framework of linear viscoelasticity.

For large strains, the classical quasilinear viscoelasticity framework has been constructed 

from the assumption that Boltzmann’s linear superposition principle may be extended to the 

case when the stress varies nonlinearly with the strain. In particular, the superposition 

principle has to be applied to the second Piola-Kirchhoff stress since it is insensitive to rigid 

body rotations, as needed to enforce objectivity of the time derivative appearing in Eq.(23). 

In contrast, the reactive viscoelasticity framework does not depend on Boltzmann’s principle 

and does not involve a time derivative of the stress. Instead, the Cauchy stress for weak 

bonds appearing in Eq.(4) is a function of the relative deformation gradient Fu (t), a concept 

also found in the framework of Wineman and Rajagopal (1990); Rajagopal and Wineman 

(1992); Wineman (2009). Therefore, for large strains, there is no exact equivalence between 

the reactive and classical quasilinear frameworks. Nevertheless, as illustrated in section S.10 

with an implementation of reactive viscoelasticity in the FEBio finite element software 

(Maas et al., 2012), the responses may remain very similar for a broad range of loading 

conditions.

In conclusion, this study demonstrates that it is possible to formulate a viscoelasticity 

framework that depends only on observable state variables. This formulation complements 

existing tools for modeling the nonlinear viscoelastic response of biological soft tissues 

under large deformations. It also sets up a framework for accommodating more complex 

combinations of energy loss from viscoelasticity and various forms of damage and repair, 

which represents a significant concern in the modeling of pathological processes in 

biological tissues.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of the temporal response of mass fractions wu for six generations of a bond 

species, evaluated from Eq.(10) with g = e−t/τ where (a) τ = 0.5 for all generations and time 

increments between consecutive changes in deformation are uniformly spaced; (b) τ= 0.5 for 

all generations and time increments between consecutive changes in deformation are non-

uniformly spaced; and (c) τ varies with the state of deformation (from 0.5 at t = 0 to 0.9 at t 

= 4, by increments of 0.1) and time increments between consecutive changes in deformation 

are uniformly spaced.
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Figure 2. 
Representative stress-relaxation responses to a ramp-and-hold deformation in uniaxial 

tension, when g either varies with (black curves), or is independent of (gray curves) the 

deformation Fu (v). Three pairs of responses are shown, with increasing values of the stretch 

ratio λ at the end of the ramp. The functional form of g is given in Eqs.(S.28)–(S.29), with 

τ0 = 0.05, β = 0.5, α = 2, and τ1 = 100 (black curves) or τ1 = 0 (gray curves). The functional 

form of  and  is given in Eq. (S.42), with E = 1, ν = 0.3 and β = 0.5 for strong and weak 

bonds.
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Figure 3. 
Comparison of the temporal responses of mass fractions wu for six generations of a bond 

species, when using (a) the solution of Eq.(10) for type I bond kinetics and (b) the solution 

of Eq.(15) for type II. In both cases, the reduced relaxation function is g = (1 + t/τ)−β, with 

τ= 0.05 and β = 0.5, and step changes in the deformation occur at uniformly distributed time 

increments.
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Figure 4. 
Stress relaxation in response to (a) a step deformation and (b) a ramp-and-hold deformation, 

using type I and type II bond kinetics as described in Eqs.(10) and (15), respectively. The 

reduced relaxation function corresponds to that of Figure 3. The functional forms of  and 

 for evaluation of the stress from Eq.(4) correspond to a Hookean isotropic solid under 

infinitesimal strains, each with Young’s modulus = 1 and Poisson’s ratio = 0.3. The 

prescribed axial normal strain is 10−3.
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Figure 5. 
Temporal response of the strain energy density for the standard linear solid in (a) stress 

relaxation and (b) creep, based on Eqs.(S.30) & (S.34), with β= 1 and τ= 1. The plotted 

strain energy density is normalized to  in stress-relaxation and  in creep. Also 

shown are the contributions from the strong bonds, , and from the weak bonds, .
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