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Abstract
Landscape-level shifts in plant species distribution and abundance can fundamentally

change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh

ecotones, where over the last few decades, relatively mild winters have led to mangrove ex-

pansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of

the western Gulf of Mexico, most cases of mangrove expansion have been documented

within specific bays or watersheds. Based on this body of relatively small-scale work and

broader global patterns of mangrove expansion, we hypothesized that there has been a re-

cent regional-level displacement of salt marshes by mangroves. We classified Landsat-5

Thematic Mapper images using artificial neural networks to quantify black mangrove (Avi-
cennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb

species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, man-

grove area grew by 16.1 km2, a 74% increase. Concurrently, salt marsh area decreased by

77.8 km2, a 24% net loss. Only 6% of that loss was attributable to mangrove expansion;

most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative

sea level rise. Our research confirmed that mangroves are expanding and, in some in-

stances, displacing salt marshes at certain locations. However, this shift is not widespread

when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly

implicated as another important driver causing regional-level salt marsh loss. Climate

change is expected to accelerate both sea level rise and mangrove expansion; these mech-

anisms are likely to interact synergistically and contribute to salt marsh loss.

Introduction
Landscape-level shifts in plant species distribution and abundance can fundamentally change
the ecology of an ecosystem. These shifts often occur in response to environmental drivers
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such as climate change, which can cause poleward migration of tropical plant species such as
mangroves [1]. In other cases, climate change increases rainfall or atmospheric carbon dioxide
concentration, which can facilitate woody encroachment into grasslands [2, 3]. Eustatic and
relative sea level rise linked to global warming can cause inland migration of coastal marsh and
mangrove species [4]. Species shifts can also be a response to direct anthropogenic alteration of
the landscape (e.g., overgrazing [5, 6]) or influences on the control mechanisms (e.g., fire sup-
pression [7, 8]). In most cases, patterns of species shifts are caused by a complex combination
of environmental and anthropogenic drivers at landscape-level scales.

Patterns of vegetation shifts in coastal subtropical latitudes where temperate marsh plants
and tropical mangrove species coexist are particularly complex. The boundaries between
marsh and mangrove habitat fluctuate in response to environmental conditions, as cold-sensi-
tive mangroves die back during freeze events and expand during warm periods, creating a dy-
namic ecotone [9]. Vegetation composition within this ecotone is further influenced by a
complex set of environmental and anthropogenic drivers, such as sea level rise, changes in rain-
fall, dredging and filling, structural development, shoreline stabilization projects, subsidence,
and eutrophication [10, 11]. The wide range of critical ecosystem services provided by coastal
habitats [12] suggests that shifts in foundation vegetation species could have substantial impli-
cations for local and regional economies.

Recently, the expansion of mangroves into salt marshes has received substantial attention,
as it is occurring at many sites in both hemispheres [1]. Mangrove expansion into salt marshes
is a coastal case of woody encroachment, where low-stature forbs and grasses are replaced by
taller, woody vegetation [13]. The expansion and contraction of mangrove stands occurs natu-
rally on decadal scales in response to disturbance (e.g., fires, hurricanes) and climate (e.g., tem-
perature, rainfall) [14, 15]. This effectively creates dynamic alternate stable states between
stands of grasses and forest [9]. Of growing concern among coastal resource managers is the
apparent recent acceleration of mangrove expansion [14, 16–20], possibly due to recent climate
changes—specifically, the decrease in winter temperature minima, as predicted by many cli-
mate change models (e.g., [21]).

On the western Gulf of Mexico coastline, mangroves and marshes co-exist, but high salinity
and periodic freeze events have previously limited mangrove expansion [16, 22–25]. There has
been a notable increase in mangrove cover in certain bays throughout the Gulf Coast [14, 16, 17,
19]. For example, on Harbor Island (Aransas Bay, Texas), black mangroves (Avicennia germi-
nans) more than doubled in area from 1930 to 2004 [20]. These studies clearly demonstrate lo-
calized expansion, but it is not yet clear whether mangroves are displacing salt marshes at a
larger, regional scale. Therefore, based on the body of relatively small-scale work and broader
global patterns of mangrove expansion, we hypothesized that there has been a recent regional-
level displacement of salt marshes by mangroves in the western Gulf of Mexico. We focused on
the Texas (USA) coastline because recent work has documented a number of “hot spots” of man-
grove expansion on the portion of the Gulf of Mexico coast over the last 20 years [16, 19, 20].

Materials and Methods

Ethics statement
This study used publicly-available Landsat 5 TM images; no permits are required to obtain or
analyze these images. No human or other vertebrate subjects were involved in this study.

We used remotely sensed imagery at a uniquely large, regional spatial scale to test our hy-
pothesis that mangroves are replacing salt marshes on the western Gulf of Mexico coastline.
Satellite remote sensing provides a cost-effective approach for regional-scale reconstructions
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with comparable accuracy to aerial photos [26]. Multiple sensors make repeated return passes
that facilitate wetland mapping and provide the ability to conduct land cover change analysis.

Our study area included the entire Coastal Zone Management (CZM) boundary of the State
of Texas and is covered by six Landsat images (Fig 1). This large study area covers a total of
26,241 square kilometers, 71% of which is land. Landsat 5 TM images were obtained from
USGS for 1990 and 2010 as close to near anniversary in terms of date and water level as cloud
cover would allow (Table 1). Water levels in 1990 were not available for all paths, but the subset
of available data indicates that for each site, 1990 tidal levels were slightly higher than in 2010,
and that tide levels varied among paths (Table 1). However, within each path, the 1990 and
2010 water levels were within< 0.1 m of each other (Table 1).

Image pre-processing steps included calibration to reflectance values and atmospheric cor-
rection through dark object subtraction. The data used to train supervised classifications was
developed using several different sources. Imagery from 2010 was classified first using training

Fig 1. Coastal Zone Management study area and Landsat 5 TM footprints.

doi:10.1371/journal.pone.0125404.g001

Table 1. Landsat 5 TM image locations, acquisition dates, and water level at time of image acquisition
(select stations).

1990 2010

Path-Row Date Water level (meters above MLLW) Date Water level (meters above MLLW)

24–39 5/23 NA 4/28 0.088

25–39 4/28 NA 5/5 0.113

25–40 4/12 0.429 5/5 0.387

26–40 5/29 0.085 3/25 -0.008

26–41 3/18 NA 3/25 0.287

26–42 3/18 0.258 4/26 0.220

NA indicates that water level data were not available for that date.

doi:10.1371/journal.pone.0125404.t001
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data developed from a combination of 2010 DOQQs from the National Agriculture Imagery
Program and seven verified field sites (three mangrove sites near Rockport and four salt marsh
sites near Rockport and Galveston, Fig 1). Training data for 1990 was developed using a combi-
nation of National Aerial Photography Program (NAPP) imagery from 1989 and National
Wetlands Inventory (NWI) data (codes E2E1N for salt marsh and E2SS3N for mangroves).
The NWI data was used as an initial guide to locating probable salt marsh, mangrove, and
other wetlands. Once located, NAPP imagery was used to confirm and delineate training areas.
Approximately 30 sites per scene were used to train the classifications for each land cover class.
To improve classification accuracy, we defined the boundaries of the salt marsh/mangrove eco-
tone and delineated the transition to upland habitats by delimiting contours along elevations
optimal for marsh and mangrove vegetation (0.1 to 0.4 meters above mean sea level) [27, 28].
We defined these elevation contours using 30 meter digital elevation models from 1990. To
minimize the effect of potential error in those models, we used exactly the same marsh bound-
aries area again in 2010. In addition to classifying mangroves and salt marsh during the two
time periods, eight other coarse land cover classes were classified within the study area in order
to improve the classification accuracy. upland (primarily grasses and forbs at elevations above
our upper salt marsh boundary), bare/fallow land, forest, beach, urban, tidal flats, other wet-
lands (primarily non-tidal grasses and forbs), and submerged habitat (“water”).

The TM imagery was transformed using the Tasseled Cap transformation. Initially devel-
oped by Kauth and Thomas [29] and later refined for application to TM imagery by Crist and
Cicone [30], the Tasseled Cap transformation is set of linear combinations that reduces the
spectral data into a new set of bands; the approach is similar in nature to other data reduction
techniques such as Principle Components Analysis (PCA). The first three bands of Tasseled
Cap reduced data represent the brightness of the image, associated with soil characteristics; the
greenness of the image, associated with vegetation; and the wetness of the image, associated
with soil moisture [31]. The three brightness, greenness, and wetness bands typically capture
over 95% of the variation in the data [31].

Several classification methods were initially explored using the training data. Following nu-
merous classifications and qualitative assessments, we elected to perform classifications
through the use of Artificial Neural Networks (ANNs) in order to obtain regional-level classifi-
cation at a relatively moderate resolution. ANNs have been increasingly used for classifying
land cover and frequently outperform traditional classifiers [32]. ANNs also offer several ad-
vantages over traditional classification algorithms including flexibility, lack of parametric as-
sumptions, and the ability to handle non-linear and noisy relationships [33, 34]. These
advantages allowed us to utilize the information provided by both the spectral TM bands as
well as the Tasseled Cap transformed bands. More specifically, the ANNs being utilized were
forward-feed, backward propagating, multi-layer perceptrons with a single hidden layer; a
common ANNmodel for the classification of remotely sensed imagery [32]. The ANN classifi-
cation method was applied to a 9-band image stack of Landsat-5 TM bands 1–5, 7, and Tas-
seled Cap brightness, greenness, and wetness bands. All image processing was performed in
ENVI 4.8 (Excelis Visual Information Systems, Boulder, CO).

Error quantification was performed for both resulting land cover classifications. Initial sam-
ple size determination was calculated using a multinomial distribution as described by Congal-
ton and Green [35]. The results from this calculation, assuming a desired precision of 5%,
yielded a necessary sample size of n = 633, or 57 samples per class. However, based on the large
study area size, we expected that the two cover types of interest (salt marsh and mangrove)
would be relatively small proportions of the overall classification area. With this in mind, we
increased the sample sizes for each land cover class to 100. The NAPP (1989) and NAIP (2010)
DOQQs were also used to assess the classification accuracy; there was no overlap between the
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training and error assessment samples. Sampling was performed on separate random sample
of 3 x 3 clusters to avoid issues related to horizontal precision that could arise on a per-pixel
basis [36]. The moderate spatial resolution of this approach was necessary in order to generate
estimates of land cover types on the large spatial scale of coastal Texas.

To characterize the climatic conditions at each time period, we focused on weather condi-
tions in four months prior to each classification event (November 1989—February 1990 and
November 2009—February 2010). Models suggest that mangrove cover on the Gulf Coast is
influenced by several winter severity characteristics, including the number of days below freez-
ing (0°C), the number of days below -6.7°C, and the absolute minimum temperature [37].
These winter temperature data were obtained from the NOAA National Climatic Data Center
and compared between the two time periods. As shown in Fig 2, weather conditions across the
coast were temporally and spatially variable. On balance, the winter severity characteristics in
November and February were similar between classification periods. December was colder in
1989, with four or more additional days below freezing at most sites, relative to 2009. In Janu-
ary, there were more days below freezing in 2010 than in 1990 (Fig 2). However, minimum
temperatures in 1989–1990 were lower than in 2009–2010, and there were two days in Decem-
ber 1989 with low temperatures less than -6.7°C; winter temperatures in 2009–2010 did not
cross that severity threshold, as defined by Osland et al. [37] (Table 2).

We used data from the National Oceanic and Atmospheric Administration (http://
tidesandcurrents.noaa.gov/sltrends/sltrends.html) to characterize rates of change in relative sea
level at eight stations across the Texas coast; these stations corresponded with the weather sta-
tions used in Table 2. Relative sea level rose at all eight stations; rates of increase ranged from
1.9 to 6.8 mm/year, with an average of 4.7 ± 1.6 mm/year (Table 3).

Results

Classification Accuracy
Overall classification accuracy was 76% (kappa coefficient = 0.75) in 1990 and 69% (kappa co-
efficient = 0.66) in 2010. Despite the generally low overall classification accuracies, the individ-
ual class accuracies for salt marsh and mangrove cover types were appreciably higher.
Classifications performed on the 2010 imagery for salt marsh had an overall accuracy of 89.0%
(conditional kappa = 0.73), user accuracy of 89.0%, and producer accuracy of 66.4% (Table 4).
Overall mangrove classification accuracy in 2010 was 81.0% (conditional kappa = 0.79) with
user and producer accuracies of 81.0% and 98.8%, respectively. The two cover types had similar
accuracies for classifications performed on the 1990 imagery. Salt marsh had an overall accura-
cy of 80.0% (conditional kappa = 0.73), user accuracy of 81.0%, and producer accuracy of 75%
(Table 4). Overall mangrove classification accuracy in 2010 was 85.0% (conditional
kappa = 0.83) with a user accuracy of 85.0% and producer accuracy of 98.8%.

Land Cover Changes
When focusing on our specific habitats of interest—salt marshes and mangroves—we detected
substantial changes in total area. Salt marshes decreased from 318.27 to 240.44 km2, a net loss
of 77.82 km2, or -24% of the 1990 salt marsh area (S1 Table). Salt marshes lost the most area
through conversion to tidal flats (-44.75 km2) or water (-41.16 km2), but only -4.66 km2 due to
mangrove expansion (Fig 3a). These losses were only partially offset by expansion of +22.87
km2 of salt marshes into upland habitat. Mangroves increased from 21.81 to 37.90 km2, a net
gain of 16.09 km2, or +74% of the 1990 mangrove area. Most of the mangrove gain was a result
of encroachment on upland (+8.71 km2) or salt marsh (+4.66 km2); only a small portion (-2.21
km2) was lost through conversion to water (Fig 3b).

Mangrove Expansion in Texas
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Fig 2. Difference in the number of pre-imagery days with minimum temperatures below 0°C from November—February. Positive values (blue)
indicate more freeze days in 2010 compared to 1990 (cooling trend). Negative values (red) indicate more freeze days in 1990 compared to 2010 (warming
trend).

doi:10.1371/journal.pone.0125404.g002
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Based on previous studies [16, 19, 20], we identified three of the areas on the Texas coast
where mangroves have been expanding, and then mapped the land cover changes in each of
those areas. In the Espiritu Santu Bay near Port O’Connor, most of the new mangrove area was
converted from submerged habitat, some of which may have been salt marsh at high tide in
1990 (Fig 4). In contrast, at the state-level, there was a small though detectable net loss of man-
grove habitat to submerged habitats (Fig 3b). In the Harbor Island/Port Aransas/Mustang Is-
land area, there was a large stable mangrove population (Fig 5). Most of the gain in mangroves
in this area was from salt marsh and other wetlands. A substantial amount of salt marsh loss
via conversion to water habitat also occurred on Mustang Island. In the South Padre area, the
absolute increase in mangrove area was comparatively small; most mangrove gain in this area
was converted from salt marsh (Fig 6). There were also several small areas of salt marsh that
were converted to water habitat in the South Padre area.

Discussion
Our results indicate that mangroves in Texas are expanding and, in some instances, displacing
salt marshes. This conclusion supports the numerous localized accounts of mangrove expan-
sion throughout the Gulf coast [14, 16–20, 38] and east coast of Florida [39]. However, our
analysis also reveals that over the twenty-year period from 1990 to 2010, there was no large-

Table 2. The minimum recorded temperature (°C) at weather stations along the Texas coast, with the number of days with minimum temperatures
below -6.7°C in parentheses.

Station December 1989 January 1990 December 2009 January 2010

Port Arthur - - - -

Galveston Scholes Field - - 34 -

Galveston East End -10.0 (2) 6.7 1.7 -3.3

Freeport - 3.3 -1.7 -5.5

Rockport -7.2 (2) -0.5 - -

Port Mansfield -9.4 (2) 4.4 -1.1 -3.3

Brownsville Airport -8.9 (2) 3.3 -0.5 -1.7

Port Isabel -8.3 (2) 5.0 -1.1 -

- indicates that data were not available. Weather data were obtained from the NOAA National Climatic Data Center (http://www.ncdc.noaa.gov/).

doi:10.1371/journal.pone.0125404.t002

Table 3. Average annual rates of change in relative sea level at stations on the Texas coast, listed
from south to north.

Path-Row Station Rate of change in sea level (mm/yr)

24–39 Sabine Pass 5.66 ± 1.07

25–40 Galveston Pier 21 6.39 ± 0.28

25–40 Galveston Pleasure Pier 6.84 ± 0.81

25–40 Freeport 4.35 ± 1.12

26–40 Rockport 5.16 ± 0.67

26–41 Port Mansfield 1.93 ± 0.97

26–41 Padre Island 3.48 ± 0.75

26–42 Port Isabel 3.64 ± 0.44

Rates are calculated from 1965 (or earlier) through 2006. Data are from http://tidesandcurrents.noaa.gov/

sltrends/sltrends.html.

doi:10.1371/journal.pone.0125404.t003
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scale replacement of salt marsh by mangroves along the Texas coast. Our study added
another important insight. mangrove expansion is not the only driver of salt marsh loss, and
may not even be the primary driver of salt marsh loss in some parts of the marsh-mangrove
ecotone.

Based on the classification methods implemented for our analysis, mangrove area is an
order of magnitude smaller (21–38 km2) than that of salt marshes (240–318 km2). We concede
that mangrove extent may have been underestimated because the signature of subcanopy water
may have swamped mangrove signals, especially in low density stands. However, coastal salt
marshes have been remotely sensed and quantified by numerous studies with high levels of ac-
curacy, typically 70% and better [40–44]. The Landsat Thematic Mapper (TM) sensor is reli-
able for this type of wetland detection and classification [41]. Mangroves have also been
delineated with high accuracy using medium resolution imagery. For example, Butera [40]
achieved 87% accuracy in black mangrove classification using Landsat MSS in Florida. Gao
[45] achieved 95% accuracy using Landsat TM imagery, yielding more accurate results than es-
timates using higher resolution 20 m SPOT imagery. Other research focused on mangrove clas-
sification has consistently realized 70%+ classification accuracy using Landsat TM imagery
[46–48]. The history of successful and accurate classification of salt marsh and mangrove envi-
ronments demonstrates the ability to remotely sense these specific cover types at a regional

Table 4. Confusion matrices depicting the accuracy of coastal Texas land cover classification in 2010 and 1990.

2010 Ground
Classified Salt Marsh Mangrove Wetland Tidal Flat Bare/ Fallow Beach Upland Forest Urban Water Total User

Salt Marsh 89 0 3 8 0 0 0 0 0 0 100 89.00%

Mangrove 6 81 2 2 0 0 7 0 0 2 100 81.00%

Wetland 27 0 50 0 0 0 11 0 11 1 100 50.00%

Tidal Flat 1 0 0 80 7 5 0 0 7 0 100 80.00%

Bare/Fallow 3 0 0 3 86 1 4 0 3 0 100 86.00%

Beach 0 0 0 2 47 10 8 0 32 1 100 10.00%

Upland 8 0 3 1 0 0 87 0 1 0 100 87.00%

Forest 0 1 0 0 0 0 57 42 0 0 100 42.00%

Urban 0 0 0 10 13 3 4 0 68 2 100 68.00%

Water 0 0 0 0 0 0 0 0 0 100 100 100.00%

Total 134 82 58 106 153 19 178 42 122 106 1000

Producer 66.42% 98.78% 86.21% 75.47% 56.21% 52.63% 48.88% 100.00% 55.74% 94.34%

1990 Ground

Classified Salt Marsh Mangrove Wetland Tidal Flat Bare/ Fallow Beach Upland Forest Urban Water Total User

Salt Marsh 81 0 4 13 1 1 0 0 0 0 100 81.00%

Mangrove 5 85 0 5 0 1 0 0 1 3 100 85.00%

Wetland 21 1 45 1 8 0 22 0 0 2 100 45.00%

Tidal Flat 0 0 0 81 6 10 2 0 1 0 100 81.00%

Bare/Fallow 0 0 0 0 91 3 6 0 0 0 100 91.00%

Beach 1 0 0 1 12 79 0 0 7 0 100 79.00%

Upland 0 0 1 0 6 0 89 0 3 1 100 89.00%

Forest 0 0 4 0 1 0 49 46 0 0 100 46.00%

Urban 0 0 0 16 8 7 2 0 67 0 100 67.00%

Water 0 0 0 0 0 1 0 0 0 99 100 99.00%

Total 108 86 54 117 133 102 170 46 79 105 1000

Producer 75.00% 98.84% 83.33% 69.23% 68.42% 77.45% 52.35% 100.00% 84.81% 94.29%

doi:10.1371/journal.pone.0125404.t004
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scale, using medium resolution (30 m), multi-spectral imagery. Therefore, despite our potential
underestimation of mangrove cover, our classification errors were relatively low, and our anal-
ysis strongly suggests that the state-level ratio of mangrove to salt marsh area was very small.
Therefore, recent mangrove expansion has remained a relatively local, rather than a regional

Fig 3. Net change in (a) salt marsh and (b) mangrove area.Changes are broken down by land cover type and are summed across the entire Texas coast
from 1990 to 2010.

doi:10.1371/journal.pone.0125404.g003
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issue in the western Gulf of Mexico. Salt marsh loss, on the other hand, was widespread
throughout the study region.

Localized mangrove expansion in Texas coastal ecosystems is mirrored in other marsh-
mangrove ecotones around the world [1, 39, 49, 50]. The ecological, hydrological, and geomor-
phological implications of these expansions include changes to fishery support, carbon seques-
tration rates, and shoreline stabilization [19, 51–53], though many effects still need to be better
quantified. Many further questions remain regarding the implications of mangrove expansion
for regional economies [54].

Fig 4. Change in land cover type from 1990 to 2010 near Port O’Connor, Texas.

doi:10.1371/journal.pone.0125404.g004
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The role of freezing events—specifically, a decrease in their frequency and intensity—has
been widely implicated in the local and regional expansion of mangrove stands [37, 39, 55].
Mangroves are sensitive to cold temperatures, and Avicennia germinans experiences partial or
full mortality in laboratory experiments if air or soil temperature is less than -6.5°C for 24
hours [56]. In the field, temperatures less than -4°C can cause mangrove mortality [39], and
models predict that temperatures less than -6.7°C are necessary to cause substantial mangrove
mortality [37]. Correlative and modeling studies have clearly demonstrated that mangrove
cover is lower in years with more days below freezing [37, 39]; lowered mangrove cover may

Fig 5. Change in land cover type from 1990 to 2010 near Port Aransas, Texas.

doi:10.1371/journal.pone.0125404.g005
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persist for several years following a hard freeze [39, 55]. In fact, a severe freeze event in 1983
temporarily reduced mangrove density in some Gulf populations by over 90% [57, 58]. There
is, as of yet, no strong evidence of a dramatic decrease in freezing event frequency or severity in
Texas over the last 100 years [59]. However, most climate change models suggest a future re-
duction in the frequency, severity, and length of freezing events in the Gulf of Mexico [21].
When local mangrove responses are integrated with these climate projections, models predict
regional-scale replacement of salt marshes by mangroves within 100 years [37].

Fig 6. Change in land cover type from 1990 to 2010 near South Padre, Texas.

doi:10.1371/journal.pone.0125404.g006
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Freeze events occurred in the study area in December 1989 and January 2010; in both cases
the freezes occurred 3–5 months before our aerial imagery was collected. These events reduced
mangrove cover in portions of the study area (J.F. Schalles, pers. comm., [60]). Although some
locations recovered quickly within a few months [58, 60], neither survey period had a full
growing season to recover. The 1989 freeze was particularly severe, with lower minimum tem-
peratures and more days below the -6.7°C mortality threshold (Table 2), and regrowth was
likely slower than in 2010. Therefore, we may have underestimated mangrove cover in 1990
and subsequently overestimated the amount of mangrove expansion over the study period.
However, relative to marsh area, the mangrove area was very small, suggesting that other driv-
ers of salt marsh loss shaped the coastal landscape at a large spatial scale.

Based on our analysis, sea level rise was clearly though indirectly implicated as a driver of
salt marsh loss, as indicated by the conversion of salt marsh to water habitat. Sea level is widely
acknowledged as rising across the Gulf Coast of the United States at a relatively rapid rate, driv-
en by local and eustatic forces [61]. Sea level rise is a known driver of salt marsh loss, particu-
larly when coastal development limits the potential for upland migration, causing a
phenomenon known as coastal squeeze. Even moderate sea level rise can therefore cause exten-
sive coastal wetland loss [62]. Accordingly, in our study, the majority of the area lost from salt
marsh was converted to water (subtidal habitat) or tidal mudflats. This estimate of salt marsh
loss due to relative sea level rise is probably conservative, since tides during the survey period
were slightly higher in 1990 than in 2010. Some areas of salt marsh may have been inundated
in 1990, leading us to under-calculate the areal extent of marsh and thus underestimate the loss
of marsh to subtidal habitat from 1990–2010.

The implications of relative sea level rise for coastal wetland distribution and vegetation
type are complex, given the potential differences between mangroves and salt marshes in terms
of resilience to sea level rise [38]. In some regions, mangrove stands have higher accretion rates
than marshes [63, 64], which can subsequently lead to accelerated expansion of mangroves
[65]. These differences in marsh and mangrove accretion rates are well documented in Austra-
lia [63, 64]; accretion rates in marsh and mangrove stands in the Gulf of Mexico are more vari-
able and not as clearly linked to vegetation type [27]. Our analysis detected relatively little
mangrove conversion to subtidal (water or tidal flat) habitat at a state-level spatial scale, sug-
gesting that marshes have been more severely affected by near-term sea level rise on the Texas
coast. However, both marshes and mangroves are potentially vulnerable to inundation; neither
habitat type has accretion rates that are consistently above the recent rate of relative sea level
rise on the Gulf Coast, which sometimes exceeds 6 mm/year [27, 61].

The dynamic changes in the relative distribution of salt marshes and mangroves is further
complicated by the potential influence of changes in freshwater supply. Freshwater is a careful-
ly and contentiously managed resource in most estuaries [66–68], and increases in freshwater
supply may increase mangrove encroachment rates [38]. Some species of marsh vegetation are
more tolerant than mangroves to the hypersaline conditions that are typical of the southern
Texas Gulf Coast [23]. In these types of arid environments, a small change in rainfall may result
in a dramatic shift in foundation plant species cover [69]. Rainfall and resultant estuarine salin-
ity on the Texas coast have high interannual variability [20]. However, there was an El Niño
event, associated with above-average rainfall, within two years prior to each of our sampling
periods [70, 71], suggesting that coarse variation in freshwater supply was not the primary driv-
er of the state-level changes in the coastal landscape from 1990 to 2010.

Our study revealed a recent state change in the coastal landscape of Texas. Substantial areas
of salt marsh have been submerged over the last 20 years, with only partial replacement by
mangrove expansion. Recent models suggest that mangrove expansion will continue, leading
to nearly complete mangrove replacement of salt marshes on the Texas coast within the next
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100 years [37]. Alternatively, given the complex interplay between accretion rates, cold toler-
ance, and carbon dioxide response, the Texas coastal landscape may oscillate between alternate
stable grass- and mangrove-states [9]. Regardless of the climate-related trajectory of mangrove
expansion, our analysis showed that salt marsh loss is extensive, and is not exclusively linked to
mangrove expansion. Relative sea level rise is also a likely cause of irreversible marsh loss in the
western Gulf of Mexico. The rate of coastal wetland loss highlights the importance of avoiding
coastal squeeze by integrating upland migration “escape” routes into land management and
restoration practices [64].
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