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Abstract

Objective—Developing machine learning and data mining algorithms for building temporal 

models of clinical time series is important for understanding of the patient condition, the dynamics 

of a disease, effect of various patient management interventions and clinical decision making. In 

this work, we propose and develop a novel hierarchical framework for modeling clinical time 

series data of varied length and with irregularly sampled observations.

Materials and methods—Our hierarchical dynamical system framework for modeling clinical 

time series combines advantages of the two temporal modeling approaches: the linear dynamical 

system and the Gaussian process. We model the irregularly sampled clinical time series by using 

multiple Gaussian process sequences in the lower level of our hierarchical framework and capture 

the transitions between Gaussian processes by utilizing the linear dynamical system. The 

experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical 

cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple 

baseline approaches in terms of the mean absolute prediction error and the absolute percentage 

error.

Results—We tested our framework by first learning the time series model from data for the 

patient in the training set, and then applying the model in order to predict future time series values 

on the patients in the test set. We show that our model outperforms multiple existing models in 

terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy 

improvement on ten CBC lab time series when it was compared against the best performing 

baseline. A 5.25% average accuracy improvement was observed when only short-term predictions 

were considered.

Conclusion—A new hierarchical dynamical system framework that lets us model irregularly 

sampled time series data is a promising new direction for modeling clinical time series and for 

improving their predictive performance.
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1. Introduction

The emergence and availability of large electronic health record repositories provide us with 

a unique opportunity to gain novel insights into the dynamics of the patient state, dynamics 

of the disease, or efficacy of its treatments. The development of computer tools that 

facilitate the understanding of this data and that let us build models we can utilize when 

making decisions for future patients is badly needed. The work presented in this paper 

focuses on the development and testing of statistical models of clinical time series for 

numerical labs. More specifically, our goal is to develop: (1) time series models that let us 

accurately predict future lab values and (2) algorithms for learning of these models from 

data. The predictive models we aim to build would help physicians to detect abnormal 

changes or behaviors of patients early, would give them more time to analyze patients’ 

symptoms and possible outcomes, and eventually allow them to make correct decisions in 

time.

Modeling of clinical time series comes with a number of challenges. First, observations for 

the different laboratory tests are collected at different times, and the time elapsed between 

two consecutive observations may vary. This is very different from typical time series 

domains that assume values are collected with some fixed sampling frequency. Second, time 

series for the different patients admitted to hospital may vary in length depending on the 

span of patient’s hospitalization; and they start at different times with respect to the disease. 

The challenge is to build models and algorithms that are both accurate and flexible enough 

to represent such time series.

In this paper we propose and develop (1) a new hierarchical dynamical system model to 

represent the clinical time series data, and (2) algorithms that can (a) learn the model 

efficiently from observational data, and (b) support predictive inferences in this model. Our 

model is built by combining two machine learning frameworks used frequently for modeling 

dynamical systems: the linear dynamical system (LDS) [1] and the Gaussian process (GP) 

model [2]. LDS defines a state-space process with linear transitions between two 

consecutive states taken at discrete time points. It comes with numerous computational 

advantages and well-understood algorithms for both model learning and model inference. Its 

limitation is that it assumes a regular (fixed-period) discretization. However, observations in 

clinical time series are often spaced irregularly in time. To reflect this we extend the LDS 

with a secondary (lower-level) GP defined over time windows. The parameters of the GP are 

controlled by the upper-level LDS. The advantage of the GP is that observations are treated 

as the function of time and can be defined for an arbitrary observation sequence. This 

extension gives us the flexibility needed to model time series with observations sampled 

unevenly in time.
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We experiment with and test the new model on clinical time series prediction problem. The 

ability to predict the future time series values can be useful, for example, for identifying 

negative trends in some of the physiological parameters reflecting the deterioration of the 

patient state. The identification of such a trend would enable (with an appropriate 

intervention) its prevention. In this work, we learn and run our model on data for ten 

laboratory tests from the complete blood count (CBC) panel 1. Our results show that the 

model leads to a more accurate predictive performance than existing time series models.

Our paper is organized as follows. In Section 2 we review the basics of autoregressive (AR) 

process, LDS and GP models. In Section 3 we show how these processes can be adapted to 

model irregularly sampled clinical time series data and discuss limitations of these 

approaches. Section 4 presents a new hierarchical framework that combines the advantages 

of the LDS and GP models. Experimental results that compare our method to alternative 

modeling approaches are presented in Section 5. Finally, in Section 6, we summarize the 

work and outline future model extensions. This work is an extension of [3].

2. Background

In this section, we first review the basics of two models used commonly to represent time 

series data: the autoregressive model and the linear dynamical system. Both AR and LDS 

models are discrete time models. After that, we introduce and review the basics of the GP 

model that works with continuous real-valued quantities and lets us model functions of 

continuous time.

2.1. Autoregressive model

The Autoregressive Model (AR) is the most common approach for modeling time series [4]. 

Let yt denote a d × 1 dimensional vector of observations made at time t, and yt−i a d × 1 

dimensional vector of past observations made at time t − i. The AR(k) represents a stochastic 

process defining sequences of observations in terms of a transition probability distribution 

p(yt|yt−1, yt−2, …, yt−k) that reflects how observations at current time t depend on 

observations yt−1, yt−2, …, yt−k made in previous k steps. The dependency among 

observations is linear and defined by the following equation:

(1)

where influences of past observations on yt at time t are parameterized using d × d transition 

matrices φi, one for each observation vector yt−i. New observations made at time t are 

corrupted by a zero-mean independent-variant Gaussian noise εt ~ (0, σI). Figure 1(a) 

illustrates an AR(k) process and its special case, a one-step AR process, AR(1), is shown in 

Figure 1(b).

AR learning and prediction—Autoregressive models are remarkably flexible at 

handling a wide range of different time series patterns [5, 6]. One advantage of the AR 

1CBC panel is used as a broad screening test to check for such disorders as anemia, infection and other diseases.
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model is that the optimization of its parameters from past time series data can be formulated 

by solving a system of linear equations [7, 8]. Finally, the prediction for future time points 

based on AR corresponds to the application of eq.(1), that is, knowing the values of y1, y2, 

…, yT up to some time T we can predict the values yT+1, yT+2, yT+3 and so on, for all future 

times following time T.

2.2. Linear dynamical system

The LDS is a real-valued time series model that represents observation sequences indirectly 

with the help of hidden states. Let {zt}, {yt} define sequences of hidden states and 

observations respectively. The LDS models the dynamics of these sequences in terms of the 

state transition probability p(zt|zt−1), and state-observation probability p(yt|zt). These 

probabilities are modeled using the following equations:

(2)

where yt is a d × 1 observation vector made at (current time) t, and zt an l × 1 hidden states 

vector. The transitions among the current and previous hidden states are linear and captured 

in terms of an l × l transition matrix A. The stochastic component of the transition, et, is 

modeled by a zero-mean Gaussian noise et ~ (0, Q) with an l × 1 zero mean and an l × l 

covariance matrix Q. The observations sequence is derived from the hidden states sequence. 

The dependencies in between the two are linear and modeled using a d × l emission matrix 

C. A zero mean Gaussian noise vt ~ (0, R) models the stochastic relation in between the 

states and observation. In addition to A, C, Q, R, the LDS is defined by the initial state 

distribution for z1 with mean π1 and covariance matrix V1, z1 ~ (π1, V1). The complete set 

of the LDS parameters is Λ = {A, C, Q, R, π1, V1}. Notice that if l = 1, LDS reduces to an 

AR(1) model defined in Section 2.1.

LDS learning—The parameters of the LDS model can be learned using either the 

Expectation-Maximization (EM) algorithm [9] or spectral learning algorithms [10, 11]. The 

EM algorithm iteratively finds the distribution over hidden states that maximize the 

likelihood of the observed data. Spectral approaches like Ho-Kalman SSID2 [12], N4SID3 

[10] provide a non-iterative, asymptotically unbiased solution in closed form. Due to 

iterative reestimation the EM is slower than spectral methods that do not iterate. However, 

the EM tends to perform better than spectral methods when the number of examples 

available to train the model is small.

LDS prediction—The predictions for future time points based on LDS involve two steps: 

inferring the hidden states and making predictions. The first step can be accomplished with 

Kalman Filtering algorithm [1] that for observed values of y1, y2, … yT up to some time T 

infers hidden state zT. In the second step, by applying eq.(2), we can get predicted hidden 

state value zT+1, zT+2, zT+3 …, and therefore, we can predict the values yT+1, yT+2, yT+3 and 

so on, for all future times following time T.

2SSID = SubSpace System IDentification
3N4SID = Numerical Algorithm for Subspace State Space System IDentification
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Comparing AR and LDS model, the observations in the AR model directly depend on 

previous observations, which makes the model more sensitive to noisy observations and 

outliers. In contrast to AR, the LDS represents the dynamics indirectly using hidden states 

which gives one additional flexibility to better capture the different modes the system may 

exhibit and is more robust when observations are noisy. A drawback of the AR, is to decide 

how many past observations are needed to model the dynamics. Similarly, the quality of the 

LDS depends on the number of hidden states one uses to model observation sequences.

2.3. Gaussian process model

The GP is a popular nonparametric nonlinear Bayesian model in statistical machine learning. 

A GP is a collection of random variables, any finite number of which have a joint Gaussian 

distribution. The GP is best viewed as an extension of the multivariate Gaussian to infinite-

sized collections of real-valued variables defining the distribution over random functions. 

Table 1 summarizes the relationship between Gaussian distribution, multivariate Gaussian 

distribution and the GP.

A GP is represented by the mean function m(x) = [f(x)] and the covariance function K(x, x
′) = [(f(x) − m(x))(f(x′) − m(x′))], where f(x) is a real-valued process and x is the input 

vector. The mean function m(x) indicates the central tendency of the process and the 

covariance function controls the variation in terms of the similarity or distance of the two 

input vectors x and x′.

The GP can be used to calculate the distribution p(f(X*)) of f values for an arbitrary set of 

inputs X*. The distribution is a multivariate Gaussian p(f(X*)) = (m(X*), K(X*, X*)). It 

defines the prior distribution of f(X*). In addition, the GP can be used to calculate the 

posterior distribution p(f(X*)|(X, Y)) of f values for inputs X*, given a set of observed values 

Y for X, where Y = f(X) + ε, assuming additive independent identically distributed Gaussian 

noise ε with variance σ2, ε ~ (0, σ2). The posterior is again a multivariate Gaussian p(f(X*)|

(X, Y)) = (m(X*|(X, Y)), Cov(X*|(X, Y))) where the mean and covariance expressions are:

(3)

(4)

Figure 3 illustrates the examples of functions drawn from the GP prior and posterior in a 1-

D space; Figure 3(a) shows functions drawn from the prior distribution function values at 

X*. Figure 3(b) shows functions drawn from the posterior distributions given that some data 

points (X, Y) are observed.

The GP methodology can be applied to time series modeling problem by representing 

observations as a function of time. As a result, there is no restriction on when the 

observations are made and whether they are regularly or irregularly spaced in time.

The parameters of the GP are formed by parameters defining the mean and covariance 

functions. Typically, the covariance function makes sure the function values for two nearby 
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times tend to have high covariance, while values from inputs that are far apart in time tend 

to have a low covariance. The parameters can be learned from data that consist of one or 

many examples of time series. The predictions of values at future times correspond to 

calculation of posterior distribution for these times.

In summary, the advantage of the GP model is that it lets us represent the functions of time. 

A disadvantage is that one has to apriori pick and parameterize the mean and covariance 

functions, and the mean function must be a function of time.

3. Modeling clinical time series

The focus of our work is on the development of time series models that are able to represent 

and learn as accurately as possible the dynamics of clinical time series from data. The key 

distinguishing feature of clinical time series corresponding to lab tests is that they are 

collected irregularly in time and that the time series may be sparse, that is, values may not be 

obtained for longer periods of time. The primary reason for this is the cost of the lab test, 

hence the lab orders and their frequencies strongly depend on the patient’s health condition. 

Figure 4 illustrates time series of Mean Corpuscular Hemoglobin Concentration (MCHC) 

lab results for one of the patients in our database.

The presence of irregularly sampled data prevents us from directly applying the discrete 

time models reviewed earlier, since both the AR and LDS assume a fixed sampling 

frequency that defines a unit of time. Hence the challenge is to modify the existing or devise 

new time series models that can deal better with changes in data collection times. In the 

following, we show different ways of modifying the existing time series approaches to 

achieve this goal. However, prior to presenting these methods we discuss the criteria we use 

to judge the quality of these models.

While many different ways of measuring the quality of the time series models can be 

devised, in this work, we judge the model quality in terms of its ability to predict the values 

of future clinical observations for a patient given his/her past clinical data. More formally, 

we judge the models by considering the quality of the time series prediction/regression 

function:

(5)

where Yobs is a sequence of past observation-time pairs , such that, n is the 

number of past observations, 0 < ti < ti+1, and yi is a d-dimensional observation vector made 

at time (ti). Time t, t > tn, is the time at which we would like to predict the future observation 

ŷt. This prediction problem is also illustrated in Figure 5. Please note that in our formulation 

of the prediction problem (eq.(5)), times of the different observations may vary, reflecting 

the data collection irregularities. In general, the labs are collected at the different times of 

the day and the observed sequences may be sparse.

3.1. Modeling clinical data with discrete time models

In general, there are two ways to handle irregularly sampled time series datasets and convert 

them to observation sequences one can model and analyze using the discrete time models: 
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(1) direct value interpolation (DVI) approach; and, (2) window-based segmentation (WbS) 

approach. In the following we briefly summarize these two approaches.

3.1.1. Direct value interpolation approach—The DVI approach assumes that all 

observations are collected regularly with a pre-specified sampling frequency R. However, 

instead of actual readings the values at these time points are estimated from readings at time 

points closest to them using various interpolation techniques [13–18]. The interpolated 

(regular) time series are then used to train a discrete time model (either AR or LDS). The 

approach is illustrated in Figure 6. In terms of predictions of future values, one has to first 

use trained discrete time model to predict the values at time points closest to the target time, 

and after that, apply the interpolation approach to estimate the target value.

The DVI approach converts the time series with irregular observations to discrete time 

observation sequences. The quality of the conversion depends on the number of observations 

actually seen and the sampling frequency parameter R. One straightforward way to set R is 

to use internal cross-validation approach. Briefly, we divide the time series data used for 

training the models to folds and use them to built multiple internal training and testing 

datasets. The models built with different sampling frequencies R are tested on the internal 

test sets, and the best R that leads to the best prediction accuracy on the internal test data 

(averaged over different folds) is selected.

3.1.2. Window-based segmentation approach—The WbS approach is slightly 

different. Instead of values at pre-specified regularly sampled time points, the approach first 

segments time series to fixed-sized windows. The behavior in the window is summarized in 

terms of its statistics γ, such as, the mean, or the last value observed within that time interval 

[19–24]. The values generated by the different windows define sequences of γ statistics. The 

discrete time model (AR or LDS) is then used to represent how the summary statistics γ in 

two consecutive windows change, that is, a sequence of statistics calculated over these 

intervals are considered to be observations of the discrete time model. Predictions at future 

times for the window-based approach are made using the discrete time model by identifying 

the time interval the target time point falls into.

We would like to note that in order to learn the parameters of the window-based discrete 

time model from irregularly sampled data one has to either assure that every time interval 

has at least one reading that is sufficient to calculate the summary statistics; or impute the 

statistics for the window with missing values from its neighbors using, for example, 

interpolation methods. In this work, we implement the window-based approach that relies on 

interpolations to fill statistics in intervals with missing values. Figure 7 illustrates the 

process. Briefly, after segmentation of time series to windows of a fixed size (step 1), the 

summary statistics γi for each window i are calculated (step 2), and for windows with no 

readings, the statistics are interpolated from windows next to it (step 3). Once the missing 

statistics are imputed, the AR or the LDS models can be learned from complete sequences 

γ1, γ2, ···, γm of summary statistics derived from time series of labs for multiple patients. The 

algorithms for learning the AR and LDS models were reviewed in Section 2.1 and Section 

2.2.
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The AR and LDS models (once they are learned) can be used for prediction by taking an 

initial sequence of lab observations for a new patient and predicting lab values at an 

arbitrary future time t. This is accomplished by first applying the WbS to observed data for 

the new patient and by calculating or imputing the statistics γ for each window. The value at 

some future time t is predicted by using the time series model (AR or LDS) to predict the 

statistics γ* for the window the future time falls into and after that infer the value for target 

time t from γ*. We note the simplest implementation of step 3 is to predict the value directly 

with the summary statistic. Briefly, if the summary statistic reflects the value of observations 

in the respective time window, we may directly use this value to predict the lab value for 

any time that falls within the corresponding window.

The above window-based approach can be further refined by overlapping two consecutive 

windows that generate the statistic γ in time. This means some of the observations can be 

shared by two windows and may influence the statistics in two consecutive steps. 

Overlapping the two windows helps to smooth the transitions in statistics. In addition, it 

helps to generate longer sequences one can use to train better models. The idea of window 

overlap is illustrated in Figure 8. Considering windows and their overlaps, the segmentation 

of the time series is induced by two parameters: the window size  and the overlap size . 

These are additional parameters of the WbS approach, and if needed, they can be optimized 

using the internal cross-validation approach. Details are discussed in Section 5.4.

3.1.3. Advantages and limitations of discrete time models—The advantage of the 

above discrete time models is their relative simplicity. The learning and prediction 

procedures are intuitive and well developed. The disadvantages of the models are: (1) AR 

and LDS are linear models. The linearity may prevent them from modeling more complex 

time series data. (2) AR and LDS are discrete models, both learning and prediction are 

restricted to either the fixed time points or fixed time windows which may introduce 

additional errors when modeling observations made at arbitrary times.

3.2. Modeling clinical data with a continuous time GP model

The GP reviewed in Section 2.3 lets us define the distribution over functions and hence can 

model sequential observations as a function of time. This appears to be promising when the 

time series is hard to discretize in time as is the case with clinical time series data in which 

observations are often missing and spaced irregularly in time.

As mentioned in Section 2.3, the GP is parametrized by its mean function and covariance 

function, where the mean function is the function of time. The question now is how to pick 

the mean and covariance functions that work well with clinical time series data.

Mean function—The mean function of the GP is a function of time. We want to learn a 

function that fits many patients and their clinical time series. Since the patients may be 

encountered at different age and under different circumstances, there is no good way to align 

their time origins. Hence the only way to feasibly align them is to set their mean functions 

equal to a constant m(t) = M, which makes the mean function of a GP time invariant.
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Covariance function—The covariance function measures the similarity of two function 

values f(t) and f(t′) based on their input time t and t′. In general, the covariance function 

should reflect the properties of the modeled time series, such as its smoothness or 

periodicity. In order to model covariances of clinical time series for numerical labs we make 

the following assumptions: the readings made at times t and t′ which are close are likely to 

have similar reading values f(t) and f(t′), and the readings very close in time may change 

more abruptly. To represent these assumptions we choose and combine two covariance 

function models: the Gaussian kernel eq.(7)) and the mean reverting kernel eq.(6):

(6)

(7)

The Gaussian kernel is the most frequently used kernel in literature [25–27] that promotes 

smoothness and pushes two different readings closer when they are close in time. The 

second kernel represents the mean reverting process and while it forces the two readings 

close in time to be similar, it also permits more abrupt changes in their observed values [2, 

Chapter 4]. To approximate the clinical time series we use a linear combination of eq.(6) and 

eq.(7) together with the observational noise component ε ~ (0, σ2) (See Section 2.3) as our 

covariance function:

(8)

In this model, Θ = {σ1, α1, σ2, α2, σ} are parameters of the covariance function that can be 

learned directly from data. δt,t′ is a Kronecker delta which is one iff t = t′ and zero otherwise.

3.2.1. Learning the GP model—As discussed in the previous section, we set the mean 

function to a constant M to ensure its time invariant property. To obtain M, we can average 

all the observations from all the patients and use that averaged value as the constant M for 

the mean function. This gives us a constant mean which reflects many patients and their 

clinical time series.

To learn the parameters of the covariance function, we seek Θ that can maximize the 

marginal likelihood p(Y|X) [2]. The log marginal likelihood for GP is shown in eq.(9).

(9)

where Y denotes all the training observations. KY = K + σ2I is the covariance matrix for the 

noisy observations Y and K is the covariance matrix for noisy-free function values from 

function f, Y = f(X) + ε, ε ~ (0, σ). n is the number of observations.

The partial derivatives of the marginal likelihood with respect to each parameter θi in Θ is 

shown in eq.(10).
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(10)

where Θ represents the entire set of parameters in covariance function, θi ∈ Θ = {σ1, α1, σ2, 

α2, σ}. Tr is the trace operator.

Once we have the partial derivatives with respect to each parameter, any well developed 

gradient based methods can be directly applied to maximize p(Y|X).

3.2.2. Predicting with GP model—Since GP is a function of time, it can be easily 

applied to make future time prediction. Given any time index t we can calculate its posterior 

mean with eq.(3), and use it to predict the values at that time. Figure 9 illustrates this step.

3.2.3. Advantages and limitations—Continuous time models, like GP, define a 

continuous time process, as opposed to discrete time models such as AR or LDS. This 

appears to be promising especially when the problem is hard to discretize in time and 

particularly useful for our problem in which observations are spaced irregularly in time.

Unfortunately, this approach also comes with limitations; the most serious one is that the 

mean function of the GP is a function of time and in order to make the GP independent of 

the time origin we need to set it to a constant value. However, this significantly limits our 

ability to represent changes or different modes in time series dynamics.

4. Hierarchical dynamical system framework

While AR, LDS and GP models can be adapted to model irregularly sampled clinical time 

series data they also come with drawbacks that may limit their performance. More 

specifically, discrete time models are not able to represent well sequences of lab values in 

real time because values need to be re-estimated from quantities with a discrete time step. 

On the other hand, a continuous time GP model with a constant mean function is too 

restrictive and cannot model the different modes of dynamics or different subpopulations of 

patients well. On the positive side, discrete time models, especially LDS, are good at 

modeling changes in both the dynamics and different modes in time series behavior, while 

GP models are good at modeling time series in real time. Considering the respective 

advantages and limitations of the two frameworks, a combination of the two appears as the 

best solution to offset their limitations.

4.1. The model

To follow the above intuition, we propose a new hierarchical dynamical system model that 

splits the process into a sequence of dependent local GPs that are combined with LDS to 

better capture higher-level changes in the time series dynamics. The local GPs’ 

dependencies naturally account for the transitions of mean functions and irregular samples 

are handled by the local GPs themselves.

The structure of our model is shown in Figure 10. Briefly, the model consists of two 

hierarchically related processes: a Gaussian process and a linear dynamical system. The GP 
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is restricted to a time window of finite duration and is used to represent a time series and its 

dynamics for shorter time spans. Longer-term process changes are modeled and controlled 

by the LDS. In the lower layer, which is shown using a dashed line box, we map the entire 

irregular time series data into m windows wis, i = 1, …, m using the Wbs approach. Each 

window wi (see Figure 10) relates observations { } using the same window-

specific GPi, where Ni is the number of observations in window wi. Hence, instead of using 

a single GP, we capture a time series by using many different window-specific local GPs 

and model global changes in dynamics using the upper level LDS that controls the means of 

the window specific GPs.

That is, the LDS represents the dynamics and changes of summary statistics γis defining 

individual GPis. The upper level LDS is defined as:

(11)

where summary statistics γis act like observations, and ei and vi are zero-mean normally 

distributed random variables with covariance matrices Q and R respectively. Similarly to 

regular LDS introduced in Section 2.2, π1 and V1 are the initial state mean and variance.

4.2. Learning

We learn the parameters of our hierarchical dynamical model by devising solutions to two 

estimation/learning problems: (1) learning of the parameters Θ of the covariance function 

defining the lower level GPs, and (2) learning of the parameters of the upper level LDS.

Estimation of the covariance function—Since all window-specific GPis share the 

same covariance function, we set Θ by maximizing the like-lihood using the partial 

derivative of the likelihood with respect to each parameter θi in Θ as defined in eq.(10).

Estimation of the LDS parameters—The LDS controls the means of individual 

window-specific GPs. We learn its parameters as follows:

Step 1. Use WbS approach to estimate summary statistics γis from observations in 

windows wis. The γis represent the means of window-specific GPis. In general, there are 

many different ways to estimate γis. Let h denote a function used for estimating the 

mean of the GP from observations { }. Examples of h can be max, mean 

or last functions that return the maximum, the mean, or last observed value in the 

window. In this work, we use the mean function as the estimator of window-specific GP 

means.

Step 2. Use sequences of γ statistics as observations of the upper level LDS in our 

hierarchical dynamical system. To learn the parameters of the LDS, we use the EM 

learning algorithm to iteratively re-estimate the parameters Λ = {A, C, Q, R, π1, V1} 

defining the LDS [9], similarly to standard LDS learning.
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4.3. Prediction

Once the hierarchical dynamical system is learned from the training data we would like to 

use it to support predictions on future time series. Given the initial observations Yobs and an 

arbitrary future time t, the value yt is predicted as follows:

Step 1. Split Yobs into windows and continue splitting time after Yobs into windows 

until one contains t. The index of the window containing t is λ and the index of the 

window containing the last observation in Yobs is τ.

Step 2. Estimate summary statistics γis for all windows up to window τ using Yobs 

using the WbS approach. After that use these statistics to predict γλ with the upper level 

LDS system.

Step 3. Compute the value ŷt at future time t using the posterior mean of the GP with 

the mean function γλ, covariance parameters Θ and past observations Yobs

5. Experiments

5.1. Data description

We have tested our new approach on time series data obtained from electronic health 

records of 4,486 post-surgical cardiac patients stored in PCP database [28–31]. To test the 

performance of our prediction model, we have randomly selected 1000 patients that had at 

least 10 CBC tests ordered during their hospitalization. We used ten tests from the CBC 

panel to learn ten different time series models, and evaluated them on the time series 

prediction task. The ten tests, their means and standard deviations, are listed below:

• White blood cell (WBC) is a count of the total number of white blood cells in a 

person’s sample of blood. The number of white blood cells give important 

information about the immune system. Mean: 11.9778(×109/L); standard deviation: 

6.0826.

• Hematocrit (HCT) measures the amount of space (volume) red blood cells take up 

in the blood. The value is given as a percentage of red blood cells in a volume of 

blood. Mean: 28.6673(%); standard deviation: 4.7253.

• Hemoglobin (HGB) measures the amount of hemoglobin in blood and is a good 

measure of the blood’s ability to carry oxygen throughout the body. Mean: 

9.5923(g/dL); standard deviation: 1.6660.

• Mean corpuscular hemoglobin concentration (MCHC) is a calculation of the 

average concentration of hemoglobin inside a red cell. Mean: 33.8588(g/dL); 

standard deviation: 0.8112.

• Mean corpuscular hemoglobin (MCH) is a calculation of the average amount of 

oxygen-carrying hemoglobin inside a red blood cell. Mean: 30.5371(pg/cell); 

standard deviation: 1.7567.

• Mean corpuscular volume (MCV) is a measurement of the average size of patient’s 

red blood cell. Mean: 90.1673(fL); standard deviation: 4.5538.
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• Mean platelet volume (MPV) Mean platelet volume measures the average amount 

(volume) of platelets. Mean platelet volume is used along with platelet count to 

diagnose some diseases. Mean: 8.7310(fL); standard deviation: 1.1834.

• Platelet (PLT) count is the number of platelets in a given volume of blood. Platelets 

are important in blood clotting. Mean: 202.0661(×109/L); standard deviation: 

126.7321.

• Red blood cell (RBC) is a count of red blood cells carry oxygen from the lungs to 

the rest of the body. Red blood cells also carry carbon dioxide back to the lungs so 

it can be exhaled. Mean: 3.2137(×1012/L); standard deviation: 0.5610.

• Red cell distribution width (RDW) is a calculation of the variation in the size of red 

blood cells. It shows if the cells are all the same or different sizes or shapes. Mean: 

16.7745(%); standard deviation: 2.6424.

These time series data are noisy; their signals fluctuate in time, and the time periods between 

observations vary. Figure 11 illustrates such a time series for one of the patients. The X-axis 

is the time index aligned by hour and the Y-axis are normalized values/observations for each 

test.

5.2. Baseline methods

We compare our two-layer hierarchical dynamical system approach with LDS and GP layers 

(HDSGL) to six baseline methods:

1. First-order autoregressive (AR) process trained on the entire time series using DVI 

approach. We applied linear interpolation directly to fill the missing values.

2. Linear dynamical system (LDS) trained on the entire time series using DVI 

approach. We applied linear interpolation directly to fill the missing values.

3. Standard Gaussian process regression (GP) with constant mean function. The 

choice of covariance function is the linear combination of eq.(6) and eq.(7).

4. Window-based AR (WAR). Irregular sampled time series is handled by WbS, as 

described in Section 3.1. It splits the time series first into windows and, after that, it 

trains an AR over the windows’ summary statistics.

5. Window-based LDS (WLDS). Irregularly sampled time series is handled by WbS, 

as described in Section 3.1. It splits the time series first into windows and, after 

that, it trains an LDS over the windows’ summary statistics.

6. Hierarchical dynamical system combined with GP and AR process (HDSGA). 

HDSGA is similar to HDSGL, but we change the upper layer LDS to the first order 

AR process.

We set the summary statistics estimation function h that is used to calculate the summary 

statistics γi for each window i for all WbS approaches (WAR, WLDS, HDSGA and 

HDSGL) to the mean of the values observed in that window. Also, we use the combination 

of the mean reverting and the diagonal squared exponential functions as the covariance 

function for all GP related methods (GP, HDSGA, HDSGL) as was discussed in Section 3.2.
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5.3. Experiment settings

—To evaluate the performance of our hierarchical dynamical system approach we randomly 

divided patients and their time series into the training and testing sets, such that data for 200 

patients form the test data and time series data for 800 patients were used for training.

Evaluation metric: Our objective is to test the predictive performance of our approach by 

its ability to predict the future value of an observation for a patient for some future time t 

given a sequence of patient’s past observations. We judged the quality of the prediction 

using the Mean Absolute Error (MAE) on multiple test data predictions. Instead of Root 

Mean Square Error (RMSE), which gives a relatively high weight to large errors (the errors 

are squared before they are averaged), MAE is the average over the absolute values of the 

differences between predictions and the corresponding observations. The MAE is a linear 

score which means that all the individual differences are weighted equally in the average. 

More specifically, the MAE is defined as follows:

(12)

where yi is the true value, ŷi is the predicted value and n is the number of prediction tasks 

attempted.

To conduct the evaluation, we use the test dataset to generate various prediction tasks as 

follows. For each patient i and complete time series for that patient, we calculate the number 

of observations ni in that time series. We use ni to generate all different pairs of indices (ψ, 

ϕ) for that patient, such that 1 ≤ ψ < ϕ ≤ ni, where ψ is the index of the last observation 

assumed to be seen, and ϕ is the index of the observation we would like to predict. By 

adding time stamp reading to each index, the two indices help us define all possible 

prediction tasks, we can formulate on that time series. Let Γi be the total number of different 

indices pairs (or Γi different prediction tasks) for patient i and  is total number of 

prediction tasks in our test data. For each method, we use the MAE on these tasks to judge 

the quality of test predictions and run the pair-wise t-test on the  prediction tasks’ 

results from our method and all the other baselines to check the statistical differences 

between them. In addition, we use the bootstrap approach [32] to compute the 95% the 

confidence interval on MAE for each method.

5.4. Settings of window parameters

All methods, but the GP that is applied directly to observed data, rely on some discretization 

of time to reflect either the sampling frequency for the DVI or the window and overlap sizes 

for the WbS. These define additional parameters our methods depend on and that need to be 

optimized. To optimize them we use the internal cross-validation approach. Briefly, we split 

800 time series in the training data using four-fold cross-validation into four 600:200 

internal training and testing datasets. We vary the window size parameter  for every fold 

by checking values {1, 2, 3, 4, 5, 6, 7} days and the overlap size  using {0, 1, 2, 3, 4, 5, 6} 

days and pick the parameters that achieve the best average performance across all four folds. 
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The parameters are optimized independently for each method tested. For the DVI 

approaches we optimize the sampling frequency parameter R using the same internal four-

fold cross-validation approach. We vary the sampling frequency parameter  for every fold 

by checking values {1, 4, 6, 8, 12, 24} hours.

5.5. Results

5.5.1. Overall prediction performance—In the overall prediction experiment, we 

follow the procedure described in Section 5.3 to generate and randomly select different 

prediction tasks. These contains both short-term and long-term predictions depending on the 

difference in between the time at which we predict the value and the time of the last 

observation seen. Figure 12 shows the results of the prediction experiment for all methods. 

(Detailed numerical results are shown in Table 2 in Appendix.) The result shows the mean 

MAE for each method.

The results of our experiments (Figure 12 and Table 2) show that our hierarchical dynamical 

system (HDSGL) outperforms all other methods in terms of prediction error on the CBC test 

data. The results are statistically significantly different at 0.05 level for all labs. We 

determined the significance by running the pairwise t-test comparing the HDSGL to all other 

methods on all corresponding prediction tasks.

We believe the main reason for the hierarchical approach outperforming all other methods is 

that it directly models and works with real time series (via lower level GP) and that it 

minimizes the effect of noisy observations by using window-based summary statistics. The 

hidden states of the upper layer LDS are able to capture the change of those summary 

statistics. The lower layer GP can adjust the prediction values based on the mean of the 

upper layer and the few observations we have, which gives us the lowest MAE.

Furthermore, by comparing methods with hidden states (HDSGL, WLDS, LDS) to methods 

without hidden states (AR, GP, WAR, HDSGA), we can see that methods involving hidden 

states are more accurate than methods that model the dynamics using only observations. We 

believe that hidden states increase the hidden state models’ ability to capture the complexity 

of the time series, and that methods directly learned from observations are more sensitive to 

the observation noise, which is quite common in real clinical time series datasets.

5.5.2. Short-term prediction performance—The above experiment randomly selects 

from among many different prediction tasks. These may include both short-term and long-

term predictions depending on the difference in between the time at which we predict the 

value and the time of the last observation seen. We expect that short-term predictions that 

are close to the last value observed should be better. To verify this expectation, we conduct a 

new experiment where observation indices for the prediction tasks involve (ψ, ϕ) pairs that 

satisfy ϕ = ψ +1, that is, we always try to predict the next lab reading. Figure 13 compares 

our method and the baselines in terms of their corresponding overall and short term 

prediction performances. Detailed numerical results for short-term prediction are shown in 

Table 3 in Appendix.
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As we can see from Figure 13, for all lab tests, short-term predictions are much better than 

overall predictions (that include both short and long term prediction), which supports our 

intuition that the further we predict, the worse predictions we make. In addition, we see our 

method remains the best in all the lab tests for the short term prediction tasks.

5.5.3. Performance summary—In order to summarize the predictive performance of our 

algorithm and its benefits, we compute, for each CBC lab test, the relative prediction error 

improvement against the best alternative method in both overall prediction and short-term 

prediction tasks. More specifically, we compute the relative prediction error improvement 

percentage by calculating the MAE difference between the best baseline method and our 

algorithm and then dividing the difference by the best baseline error. By averaging the 

relative prediction error improvements over all CBC labs, our method achieved a 3.13% 

average prediction accuracy improvement on ten CBC lab time series in the overall 

prediction tasks and a 5.25% average prediction accuracy improvement in the short-term 

prediction tasks.

5.6. Clinical expert evaluation

In Section 5.5, we compare our hierarchical model HDSGL with different baselines using 

MAE and show that our model performs better in both overall prediction and short-term 

prediction tasks. However, it is not clear whether the predictions made by our model are 

clinically acceptable or not. In order to assess the clinical relevance of predictions, we 

consulted a clinical expert, and converged to the following clinical evaluation.

As the clinical expert suggests, the importance of the error should be judged relative to its 

value. Briefly, a deviation of prediction by 10 units for the value of 20 is significantly worse 

than the same deviation for the value of 100. In order to reflect this, we calculate Absolute 

Error Percentage (AEP) to measure the quality of each prediction task made by the HDSGL 

approach. AEP is defined as follows:

(13)

where yi is the true value, ŷi is the predicted value. Briefly, AEP reflects how much 

deviation we have from our prediction to the true value.

After calculating the AEP for each prediction, we categorize its result into four qualitative 

categories suggested by the expert:

1. Excellent. The prediction task’s AEP is less than 5%.

2. Good. The prediction task’s AEP is between 5% and 10%.

3. Acceptable. The prediction task’s AEP is between 10% and 20%.

4. Bad. The prediction task’s AEP is greater than 20%.

These four categories tell us how well the model is able to predict the lab values in terms of 

their clinical acceptance. We use these four categories to calculate the distribution of 

predictions for each lab test in terms of both overall (Section 5.5.1) and short-term 
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predictions (Section 5.5.2). Figure 14 summarizes the distributions of these qualitative 

prediction categories for all ten lab tests. (Detailed numerical results are shown in Table 4 

and Table 5 in Appendix.)

Discussion—In terms of clinical acceptance, we see that the results differ widely for the 

different labs. In particular, very good short and long term predictions are achieved for CBC 

lab components that are less sensitive to blood loss and drip infusions that are rather 

frequent during the management of post-surgical cardiac patients. These labs include: 

MCHC, MCH, MCV, MPV and RDW.

On the other hand, WBC, RBC, HCT, HGB and PLT labs are measured relative to the blood 

volume and hence are sensitive to the above events. Consequently the prediction quality of 

these models goes down. Overall, the results for these labs suggest the predictions based 

only on previous sequences of lab values alone may not be sufficient, and additional 

variables representing the different future events and/or possible patient management steps 

should be included in the model to improve its prediction quality.

6. Conclusion

In this work, we have presented a new two-layer hierarchical dynamical system model for 

time series prediction. Compared to traditional LDSs and modern GP regression, the new 

system adapts better to irregular sampling and it is more accurate when making predictions 

for different future times. Experimental results on real world clinical data from electronic 

health records systems demonstrate that our prediction model leads to errors that are 

statistically significantly lower than errors of other state-of-the-art approaches.

The limitation of the presented work is that it focuses on the analysis and modeling of 

univariate time series. In the future, we plan to extend our study to multivariate time series 

models reflecting the dependences among individual time series. A related open question is 

the dimensionality of the hidden state space that would be sufficient to accurately capture 

the dynamics of all these time series. Finally, we plan to study extensions of our current 

models to controlled dynamical models such as [33–37] that would let us incorporate the 

effect of external events and actions on future lab values and accuracy of their predictions.
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Appendix

Table 2

MAE on CBC test samples for overall prediction tasks.

Method AR LDS GP WAR HDSGA WLDS HDSGL

WBC 4.7941 ± 0.0027 4.6805 ± 0.0026 5.0235 ± 0.0025 4.6400 ± 0.0026 4.5390 ± 0.0026 4.5720 ± 0.0027 4.4710 ± 0.0027

HCT 3.6893 ± 0.0007 3.3925 ± 0.0007 3.4253 ± 0.0007 3.5431 ± 0.0007 3.5315 ± 0.0007 3.3271 ± 0.0007 3.2177 ± 0.0007

HGB 1.3218 ± 0.0004 1.1755 ± 0.0004 1.1208 ± 0.0004 1.3198 ± 0.0004 1.3171 ± 0.0004 1.1577 ± 0.0004 1.1348 ± 0.0004

MCHC 0.6012 ± 0.0004 0.5959 ± 0.0004 0.6724 ± 0.0004 0.5963 ± 0.0004 0.5458 ± 0.0004 0.5701 ± 0.0004 0.5297 ± 0.0004

MCH 0.9941 ± 0.0006 0.9091 ± 0.0007 1.1154 ± 0.0007 0.8480 ± 0.0006 0.7975 ± 0.0006 0.8033 ± 0.0007 0.7831 ± 0.0007

MCV 2.5619 ± 0.0012 2.3410 ± 0.0014 2.8034 ± 0.0018 2.0814 ± 0.0012 1.9804 ± 0.0012 2.0294 ± 0.0013 1.9284 ± 0.0013

MPV 0.9412 ± 0.0005 0.9029 ± 0.0005 1.1392 ± 0.0005 0.9059 ± 0.0005 0.8554 ± 0.0005 0.8406 ± 0.0005 0.7901 ± 0.0005

PLT 102.5242 ± 0.0587 92.2360 ± 0.0561 120.4928 ± 0.0665 103.6683 ± 0.0587 100.6288 ± 0.0587 88.9408 ± 0.0555 85.8991 ± 0.0555

RBC 0.4242 ± 0.0002 0.3812 ± 0.0002 0.4453 ± 0.0002 0.4168 ± 0.0002 0.3663 ± 0.0002 0.3362 ± 0.0002 0.3059 ± 0.0002

RDW 1.4216 ± 0.0010 1.3860 ± 0.0010 1.8794 ± 0.0010 1.3427 ± 0.0010 1.2417 ± 0.0010 1.3185 ± 0.0010 1.2174 ± 0.0010
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Table 3

MAE on CBC test samples for short-term prediction tasks.

Method AR LDS GP WAR HDSGA WLDS HDSGL

WBC 3.5072 ± 0.0103 3.3998 ± 0.0103 3.9007 ± 0.0111 3.4993 ± 0.0108 3.2973 ± 0.0108 3.4756 ± 0.0116 3.2170 ± 0.0116

HCT 3.4376 ± 0.0096 2.9078 ± 0.0093 3.6121 ± 0.0110 2.9608 ± 0.0087 2.7588 ± 0.0087 3.0218 ± 0.0097 2.8859 ± 0.0100

HGB 0.9972 ± 0.0021 0.9528 ± 0.0023 1.2865 ± 0.0042 0.9627 ± 0.0026 0.8617 ± 0.0026 0.8810 ± 0.0033 0.9227 ± 0.0033

MCHC 0.4098 ± 0.0010 0.4019 ± 0.0011 0.5384 ± 0.0015 0.4091 ± 0.0011 0.3687 ± 0.0011 0.3739 ± 0.0014 0.3129 ± 0.0014

MCH 0.5439 ± 0.0021 0.4911 ± 0.0021 0.6975 ± 0.0045 0.4998 ± 0.0021 0.4594 ± 0.0021 0.5148 ± 0.0042 0.4522 ± 0.0042

MCV 1.3327 ± 0.0057 1.2458 ± 0.0058 1.9629 ± 0.0125 1.2734 ± 0.0059 1.2330 ± 0.0059 1.2288 ± 0.0115 1.1729 ± 0.0115

MPV 0.4628 ± 0.0014 0.4122 ± 0.0014 0.6472 ± 0.0019 0.4213 ± 0.0014 0.3708 ± 0.0014 0.4066 ± 0.0019 0.3055 ± 0.0019

PLT 49.6031 ± 0.1156 43.4901 ± 0.1191 71.5818 ± 0.1603 45.0584 ± 0.1208 45.0584 ± 0.1208 40.8308 ± 0.1669 40.2046 ± 0.1669

RBC 0.3862 ± 0.0011 0.3685 ± 0.0011 0.4120 ± 0.0015 0.3670 ± 0.0013 0.3670 ± 0.0013 0.3346 ± 0.0013 0.2820 ± 0.0013

RDW 0.5036 ± 0.0010 0.4019 ± 0.0012 1.2055 ± 0.0043 0.4476 ± 0.0012 0.3971 ± 0.0012 0.4136 ± 0.0044 0.3751 ± 0.0044

Table 4

Clinical evaluation for overall prediction.

Excellent Good Acceptable Bad

WBC 0.0844 0.0842 0.1557 0.6757

HCT 0.2696 0.2228 0.2911 0.2165

HGB 0.2222 0.2083 0.2938 0.2757

MCHC 0.9205 0.0770 0.0024 0.0000

MCH 0.8343 0.1082 0.0539 0.0036

MCV 0.8815 0.0919 0.0263 0.0004

MPV 0.3411 0.2545 0.2638 0.1405

PLT 0.0866 0.0827 0.1514 0.6793

RBC 0.2919 0.2348 0.2932 0.1800

RDW 0.4754 0.2630 0.1968 0.0648

Table 5

Clinical evaluation for short-term prediction.

Excellent Good Acceptable Bad

WBC 0.1964 0.1798 0.2538 0.3699

HCT 0.3044 0.2469 0.2868 0.1619

HGB 0.2924 0.2320 0.2882 0.1873

MCHC 0.9903 0.0095 0.0002 0.0000

MCH 0.9683 0.0243 0.0063 0.0011

MCV 0.9749 0.0184 0.0057 0.0011

MPV 0.6497 0.2567 0.0839 0.0096
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Excellent Good Acceptable Bad

PLT 0.2164 0.1839 0.2611 0.3386

RBC 0.4355 0.2788 0.2068 0.0790

RDW 0.8400 0.1075 0.0389 0.0136
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Figure 1. 
Graphical representation of the k-th and the first order AR models.
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Figure 2. 
Graphical representation of the LDS. Shaded nodes yt and yt−1 denote observation made at 

current and previous time steps. Unshaded nodes zt and z t−1 denote the corresponding 

hidden states. The links represent dependences among the observations and hidden states.
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Figure 3. 
Graphical illustration of GP prior and posterior. In this example, we create X* as a linearly 

spaced vector from −3 to 3 with step size 0.01. We set the mean function m(·) = 0 and 

covariance function K(x, x′) = exp(−(x − x′)2/2).
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Figure 4. 
An example of an irregularly sampled Mean Corpuscular Hemoglobin Concentration 

(MCHC) data. X-axis shows time in hours since the admission of the patient.
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Figure 5. 
Prediction problem for an irregularly sampled time series data. Blue dots denote past 

observations already made for the patient. The question mark denotes future time points we 

want to predict.
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Figure 6. 
Transformation of irregularly sampled time series to a discrete time series by DVI. The red 

circles denote the interpolated values with no readings. The right panel illustrates the linear 

interpolation process.
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Figure 7. 
Transformation of irregularly sampled time series to a discrete time series by WbS. The 

shaded nodes denote summary statistics calculated from the corresponding windows, such as 

γ1, γi in Step 2. The regular (unshaded) nodes denote empty summary statistics 

corresponding to windows with no readings, such as γ2. h in the right panel denotes the 

summary statistics estimation function.
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Figure 8. 
Graphical illustration of WbS with overlaps on the irregularly sampled time series data.
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Figure 9. 
Graphical illustration of the prediction problem on a GP model on irregularly sampled time 

series data. The solid line denotes the GP we learned from the data and the dotted line 

indicates the GP’s predictions of future values for future time t. The posterior distribution of 

f(t) at time t is shown and the red dot is the mean of that distribution, which is the value 

predicted by the GP.
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Figure 10. 
Graphical illustration of our hierarchical dynamical model combining the GP and the LDS. 

The shaded nodes denote irregular observations. The γ node is the window representative we 

extract from the corresponding window and the z node is the hidden state we introduce in 

LDS to model the change of γs. The Θ node represents the shared covariance function 

parameters for all the GPs.
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Figure 11. 
Time series for ten tests from the CBC panel for one of the patients.

Liu and Hauskrecht Page 32

Artif Intell Med. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
MAE on CBC test samples for random prediction tasks.
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Figure 13. 
MAE on CBC test samples for the random and short-term prediction tasks.
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Figure 14. 
Clinical evaluations of HDSGL for both overall prediction and short-term prediction quality 

distributions.
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Table 1

Relationship between Gaussian distribution, multivariate Gaussian distribution and Gaussian process.

Mean Type (Co)variance Type

Gaussian distribution scalar scalar

multivariate Gaussian distribution vector matrix

Gaussian process function function
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