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Tenascins are a family of extracellular matrix molecules that
are mainly expressed in embryonic development and down-
regulated in adulthood. A re-expression in the adult occurs
under pathological conditions such as inflammation,
regeneration or neoplasia. As the most prominent member of
the tenascin family, TN-C, is highly expressed in glioma tissue
and rising evidence suggests that TN-C plays a crucial role in
cell migration or invasion – the most fatal characteristics of
glioma – also the other members of this protein family have
been investigated with regard to their impact on glioma
biology. For all tenascins correlations between the expression
levels of the different family members and the degree of
malignancy and invasiveness of glial tumors could be detected.
Overall, the former and recent results in the research on glioma
and tenascins point at distinct roles of each of the molecules in
glioma biology and the devastating properties of these tumors.

Glioma

The most common type of primary brain tumors is repre-
sented by the class of glioma with an incidence of »5/100,000
patients.1,2 Despite intensive research, advanced diagnostics and
improved therapy strategies the prognosis of high-grade glioma
remains devastating.3 The survival time still varies between 15
months (high-grade glioma) and 3 y (low-grade glioma), depend-
ing on the grade of malignancy which is categorized by the World
Health Organization (WHO) as follows: Tumors of grade I and
II were referred to as low grade tumors with a 5-years survival
rate of 58–72% as shown by the NCCTG trial, EORTC 22844
and EORTC 22845.4 Glial malignancies of grade III and IV are
classified as high-grade glioma, with the worst survival rate indi-
cated above.2 Particularly, patients diagnosed with the severest glial
tumor glioblastoma multiforme (GBM, grade IV) who survive more
than 3 y after diagnosis were referred to as long time survivors.
Certainly, this group comprises only 3–5% of patients with a
GBM5 and this underlines that the GBM is not only the most fre-
quently recognized glioma (>51% of all glioma), but also the
malignant endpoint of this cancer type.6 Comparing primary and
secondary glioblastoma both GBM-types share similarities con-
cerning histologic and morphologic features, but differ in their
genetic profiles. Primary glioblastoma arise de novo and are

characterized by EGFR amplification, mutations in rb1, cdkn2a,
p14arf and PTEN and monosomia 10.7-9 Secondary glioblastoma
develop from former low-grade glioma and show unique altera-
tions such as mutations of TP53 or IDH1, or the loss of chromo-
some 19q and 13q and the overexpression of PDGFRa.8,10-12

Histologically primary and secondary glioblastoma display
characteristic attributes, including high mitotic activity, cellular
and nuclear atypia, strong microvascular proliferation and
extended areas of necrosis.6,10 Even though these atypias arise
from different genomic alterations both GBM types respond sim-
ilarly to therapeutic approaches13 with a slightly better prognosis
for patients suffering from secondary glioblastomas.8 The high
heterogeneity within the classification of glioma tumors gained
renewed attention in conjunction with the highly promising
research field of glioma-initiating cells14,15 in order to develop
new, personalized therapy strategies.

Additionally, the highly invasive behavior of glioma cells leads
to quick spreading of the tumor throughout both hemispheres.
This feature dramatically shortens the lifespan of glioma patients.
Despite accurate surgery it is impossible to remove all malignant
cells6 and the recurrent tumors exhibit explicit resistance to che-
motherapy and radiation.16,17 The invasion of glioma cells is
characterized by their ability to migrate as single cells even to dis-
tant parts of the brain. With regard to migration pathways, the
tumor cells display a preference for white matter tracts, subepen-
dymal layers and blood vessel basement membranes as leading
structures.10,18,19 To initiate this migration process glioma cells
degrade the ECM into a migration favorable microenvironment.

The Extracellular Matrix

Cells of each tissue are surrounded by a dynamic molecular
meshwork filling the extracellular space. This extracellular matrix
(ECM) provides a scaffold for the organization of tissues and
supports the cohesion of cells.20 While the structural task repre-
sents an important function of the ECM, numerous additional
features of the ECM have been uncovered in recent years. The
maintenance of cell-cell-communications21,22 and the construc-
tion of favorable substrates for cell migration20 illustrate central
tasks of the ECM which could be observed ubiquitously in the
context of differentiation, proliferation, survival and polarity in
the regulation of embryonic development as well as in the
homeostasis and tissue remodeling in pathological incidents.23,24

The ECM is composed of a complex mixture of matrix mole-
cules. Glycoproteins like fibronectin, laminins or tenascins
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contribute to it, as well as glycosaminoglycans.24,25 With regard
to the content of collagens the ECM of the central nervous
system (CNS) differs from the classical matrix in other organs.
Whereas the ECM of numerous tissues contains a high
amount of collagen fibers this element is rigorously restricted to
blood vessels and the glia limitans26 in the brain. The proteins
of the ECM interact with each other and their neighboring
cells mainly via the specialized matrix receptors of the integrin
superfamily. As a result of this interaction the ECM is able
to influence different signaling pathways and to give impulses to
the behavior of cells by varying its mechanical properties.27-29

During this remodeling process the ability of sulfated
proteoglycans to bind growth factors allows the ECM to
function as a pool of growth factors which can be released if
possible.30

Especially the involvement of the ECM in the regulation of
cell motility constitutes an area of interest in the glioma research
field because of the known high motility of these cells that results
in invasion and recurrence of the tumor. It has been discovered
long ago that proteins of the ECM such as laminins, fibronectin
or tenascins influence the behavior of glioma cells.31-35 Several
ECM components including collagens I, II and IV as well as lam-
inin, fibronectin and tenascin-c (TN-C) could be detected within
the basal lamina of tumor blood vessels.23,36-38 With exception
of tenascin-c the ECM molecules are not synthesized by the
tumor cells themselves. Rather, the tumor cells induce cells of the
surrounding brain tissue to produce these proteins.39 In contrast,
tenascin-c is autonomously expressed by the glioma cells.35

Hereby the tumor is able to generate an individual overexpression
of matrix components whose secretion alters the ECM in various
manners. On the one hand it could lead to the stimulation of
adhesion and migration of the glioma cells, but on the other
hand the ECM could be condensed in a way that a highly con-
centrated ECM might diminish the diffusion of neuroactive mol-
ecules or therapeutical agents.40,41

Tenascins

Tenascin-C
Tenascin-C (TN-C) is a member of the glycoprotein family of

tenascins (Fig. 1) mainly expressed during embryonic develop-
ment, downregulated in the adult and re-expressed under patho-
logical conditions.42,43 The discovery of TN-C occurred in
parallel in different fields of research (e.g., embryonic develop-
ment, tumor biology, neurobiology). From this follows that TN-
C was originally known under various names. In 1983 it was
introduced by Bourdon & Wikstrand as glial/mesenchymal
extracellular matrix protein GMEM.44 Shortly thereafter TN-C
was named myotendinous antigen,45,46 Hexabrachion,47 Cyto-
tactin,48 J1220/20049 and neuronectin.50 Erickson & Inglesias
introduced the name hexabrachion, refering to the structural
composition of the TN-Cmolecule. TN-C consists of 6 polypeptide
monomers which are combined into the hexamer at their
N-termini.47 Each monomer of human TN-C comprises a cysteine-
rich domain on the N-terminus followed by 14.5 EGF-like repeats.

The EGF-like repeats are connected to 8 constitutively expressed
fibronectin type III (FNIII) domains (1–8). In between the fifth and
sixth FNIII domain up to 9 alternatively spliced FNIII domains
(A1-A4, B, AD2, AD1, C, D) may be integrated. At the C-terminus
a fibrinogen-like globe terminates each monomer (Fig. 1A).51-53 The
alternative splicing of the FNIII domains leads to various isoforms
which influence different cell types in varying manners, depending
on the individual set up of FNIII domains.54,55

Whereas in the adult the smallest isoform with only one alter-
natively spliced FNIII domain is found in static tissues (e.g., car-
tilage),56 the embryonic development57,58,59,60 as well as
pathological situations like inflammation, regeneration or tumor-
igenesis61,62,42,63,60 is marked by the dominant expression of
large isoforms.

By binding to integrins as their main receptor type TN-C
affects the cell behavior in a direct way.43 Indirectly, TN-C acts
via binding to other ECM molecules like brevican or neuro-
can.54,64 This leads to a variety of processes TN-C could be effec-
tive in: cell migration,65,66 inhibition of focal adhesion
assembly,67 promotion of angiogenesis,43 increase in prolifera-
tion68,69 and changes in gene expression to modulate the compo-
sition of the ECM.70

The discovery in 1983 of TN-C as GMEM in glioblastoma
tissue and glioma cell lines by Bourdon44 highlighted the interest
of this protein as a characteristic component of tumors. Nearly
all kinds of solid tumors express high levels of TN-C but the
highest concentrations were found in glioma (Fig. 2).71 72 This is
coupled to the correlation of a high TN-C expression with ele-
vated malignancy and poor patients’ survival.18,73,74

The deleterious influence of TN-C could be associated with 3
main areas TN-C plays a crucial role in: angiogenesis, prolifera-
tion and cell migration. Each of these stands for prospects of
high malignancy and in combination they represent the “evil
face” of glioma.

TN-C in tumor angiogenesis
Glioma – like all other cancer types – are in need of receiving

nutrients and disposing metabolic waste. Therefore they trigger
the generation of new blood vessels from pre-existing vessels. In
the last years it could be concordantly revealed that TN-C is
highly associated with tumor blood vessels (Fig. 2A–C).38,75,76

The amount of TN-C in tumor blood vessels is correlated
with the malignancy of the tumor as it is found in higher concen-
tration in high-grade glioma than in low-grade glioma.75 Cer-
tainly, the blood vessels of glioma do not resemble the
architecture of normal blood vessels. Within one tumor different
phenotypes like incipient proliferation of endothelial cells or sar-
comatous structures are found.77

Especially the alternatively spliced domains TNfnC78,79 and
TNfnA238 could be found highly up-regulated in glioma blood
vessels, but also the EGF-type repeats as well as the fibrinogen
globe are supposed to play a role in the formation of tumor blood
vessels.80 The TN-C-induced generation of tumor blood vessels
could be related to the binding to endothelial cells81 and its stim-
ulating effect on this cell type.82,83 Besides TGFbeta as an
expected candidate involved in the underlying pathway,84 it
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Figure 1.Monomer structure of tenascin family members. A Tenascin-C, B Tenascin-R, C Tenascin-W, D Tenascin-X EGF/R epidermal growth factor; N-Cad,
N-Cadherin; a/b, a/b-Integrin; GPC-1, Glypican-1; FGF/R, fibroblast growth factor; Syn-4, Syndecan-4; ANXII, Annexin II; Cont, Contactin, CASP; Contactin
associated Protein; Cat, Catenin; PI3K, Phospho-Inositol-3-Kinase; GPa, G-Protein a; FAK, Focal adhesion kinase; PAX, Paxillin; PIP2, Phosphatidyl-Inositol-
Biphosphate, a-Act, a-Actinin; PKC, Proteinkinase C.
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could be revealed that the expression of VEGF is strongly corre-
lated with the expression of tenascin-C in perivascular zones.
Tanaka et al. discovered that TN-C regulates the expression of
VEGF85 and Behrem et al. showed that TN-C has an influence
on VEGF action and that the microvascular density shows a
dependency of TN-C expression.86 Additionally to the high
expression of TN-C in glioma blood vessels the known receptor
for TN-C, integrin a v, is found in elevated levels in glioma tis-
sue, as well as the protein periostin.77 Periostin was detected as a
promoter of TN-C incorporation into the ECM and to organize
the architecture of the ECM.87 For murine pancreatic neuroen-
docrine tumorigenesis it could be recently shown that the com-
position of upregulated matrisomal genes in pericytes could be
correlated to genes overexpressed also in glioma. Furthermore an

abrogation of TN-C from this matrix
diminishes the number and proportion
of angiogenic islets formed during the
progression of this tumor. 88

TN-C in tumor cell proliferation
It has been convincingly proven that

TN-C stimulates the proliferation of dif-
ferent cell types.86,89 Among them are
not only endothelial cells with their
importance for the tumor angiogenesis82,83

mentioned above, but also the glioma
cells themselves.90-92 Until now only lit-
tle is known about the detailed signaling
pathways TN-C contributes to prolifera-
tion. Much less information has been
obtained about the involvement of dis-
tinct domains of TN-C and their impact
on individual signaling.86,93 Nonetheless
some signaling pathways could be
revealed that are involved in TN-C-stim-
ulated proliferation. One known way to
induce proliferation in glioma cells con-
cerns the interaction between TN-C and
fibronectin. By blocking the adhesion of
cells to fibronectin the activation of
syndecan-4 is impaired, which leads to
proliferation of the cells caused by pre-
vention of cell adhesion and spreading.94

In the alternatively spliced region of
the FNIII-domains the highly overex-
pressed domains C, AD1 and AD2 in
glioma79,95,96 correlate with the
proliferation rate of cancer cells.97 More
detailed information about underlying
mechanisms of glioma proliferation has
been obtained for the N-terminal EGF
type domains69,98 and the C-terminal
fibrinogen knob.97 These pathways
including phospholipase Cg1, Ras/
MAPK, phosphatidyl inositol 3-kinase/

Akt could be activated by binding of EGF domains to the EGF
receptor69,99-101 and increase cell proliferation. In line with this
observation the inhibition of the phosphatidyl-inositol-3-kinase/
Akt pathway via modulated suppression or inhibition of the
EGFR leads to a decrease in the proliferation of glioma
cells.102,103 Additionally, the fibrinogen domain of TN-C plays a
pivotal role in stimulating the proliferation of chondrocytes via
the ERK/MAPK-pathway.104 In contrast, the combination of all
FNIII-domains decreases the proliferative effect of intact TN-C
on glioma cells.38

TN-C and tumor cell migration
The most fatal attribute of glioma is the capability to invade

into healthy brain parenchyma as single cells to build new

Figure 2. Tenascin-C strongly expressed in cells and tissues of glioblastoma multiforme (A–C) Stain-
ing of glioblastoma tissue specimen probed for Tenascin-C with monoclonal antibodies mAb
20A1TN-C, mAb 608TN-C and mAb606TN-C (D–F) Staining of glioblastoma cell lines examined with
monoclonal anti-tenascin-C antibodies mAb 578TN-C, mAB 608TN-C and mAb 19H12TN-C.
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tumors.10 This leads to severe problems for therapeutic
approaches because the secondary tumors could arise even in dis-
tant parts of the opposite hemisphere.1,10 Cell migration in gen-
eral can be separated into 4 distinct steps. After an initial
polarization step the cells generate cell protrusions and in the
third step create new contacts with the surrounding matrix.
Finally, the previous cell matrix contacts are disrupted.105 The
ECM modulates this sequential mechanism.106,107 As known for
other cells types also in glioma cells TN-C leads to a highly
motile and invasive phenotype.108,109

The alternatively spliced domains of TN-C are thought to
play a crucial role in the migratory behavior of glioma cells.
Thus, the domain TNfnA2 has been reported to induce the gen-
eration of stress fibers and focal adhesion sites in dependency of
b1 integrin110 – 2 highly important processes in the context of
motility. Whereas the decrease of stress fibers and focal adhesion
sites leads to weakening of the contractile forces, inducing a
decrease in cell migration.111,112 For example, the initiation of
contractile forces due to strengthened stress fibers and an aug-
mentation of focal adhesion sites by TNfnA2 could support an
increase in cell motility. The underlying pathways of these mor-
phological changes influencing migration are related to the acti-
vation of the focal adhesion kinase (FAK) and the GTPases of
the RhoA-subfamily.113

Another mechanism by which TNfnA2 may boost cell migra-
tion could be mediated by the transmembrane heparan sulfate
proteoglycan syndecan-4. This proteoglycan favors the activation
of a cryptic binding site in TNfnA2 resulting from the action of
MMP-2110 and leads to changes in stress fibers and focal adhe-
sion sites which can produce alterations in cell migration in
mouse embryonic stem cells.114,115 Considering the high expres-
sion of TN-C71,72 and MMP-2116 in glioma cells this pathway is
a possible candidate to induce glioma migration.

Not only the alternatively spliced domains contribute to cell
migration but also the constitutively expressed domains such as
TNfn3 are involved. This domain contains an RGD-sequence
and could mediate cell adhesion via different integrins to modu-
late cell motility (reviewed in43). Yokosaki et al. have reported
that the integrin a9b1 increases cell migration independently of
the RGD-sequence.117

Another prominent pathway involved in cell migration
includes signaling via the a2b1-integrin and can be neutral-
ized by blocking this receptor.109 Possibly, this integrin repre-
sents a potential candidate for the still unknown signaling
cascade that is activated by the EGF-type domains of TN-C
and induces glioma cells migration.69 It is noteworthy that a
HER2-specific phosphorylation of the EGFR could lead to an
activation of this receptor and an N-Cadherin mediated stimu-
lation of glioma cell migration.118 As the fibrinogen domain
plays a role in the migration of vascular smooth muscle and
bladder cancer cells through an ICAM-1-mediated path-
way119,120 including Akt- and MAPK-dependent signaling, it
is conceivable that the fibrinogen domain of TN-C exhibits
analogous properties. This hypothesis, however, remains to be
examined in future studies.

Tenascin-R
TN-R as a member of the tenascin family121,122 was first dis-

covered in 1985 as “low molecular weight J1 glycoprotein (J1–
160/ 80)”.49 Similar to TN-C also TN-R has originally been
independently discovered in different species and designated
with different names, that is janusin123,124 and restrictin.125

Structurally TN-R appears in 2 variants of the glycoprotein: TN-
R 160 (160 kDa) and TN-R 180 (180 kDa) that differ by one
alternatively spliced FNIII-domain.126 Each molecule starts at
the N-terminus with a cysteine-rich region followed by 4.5 EGF-
like repeats and 8 constitutively expressed FNIII domains, possi-
bly supplemented with one alternatively spliced FNIII domain.
At the C-terminus the molecule is completed with a fibrinogen
like domain (Fig. 1B).127 The expression of TN-R is restricted to
the nervous system. It could be found in motor neurons, on
motor axons,125 in the hippocampus, cerebellum, olfactory bulb,
myelinating oligodendrocytes as well as type-2 astrocytes.127

The function of TN-R depends on distinct ligands and recep-
tors, for example chondroitinsulfate proteoglycans (CSPGs) of
the lectican-family, the membrane-based part-time proteoglycan
CALEB, or the Ig-superfamily-based receptor F3/contactin.128

The resulting effects comprise influences on cell adhesion, neural
cell migration, the size of the extracellular space, regulation of
cell-matrix interaction and axon outgrowth (extensively reviewed
in128). Additionally the CS-GAG chains of TN-R are involved in
an interaction with TN-C in a Ca2C-dependent manner and lead
to a regulation of cell-matrix interactions in cases of tissue repair
and neoplasms.128-130 Although studies on TN-R-deficient mice
reveal that they have a normal life span and display only few his-
tological aberrations with mild behavioral changes124,131,132 the
outcome of EEG-examinations support the hypothesis that TN-
R could play a crucial role in the development of epilepsy.128 A
possible role for TN-R in other CNS diseases is suggested by the
observation that TN-R is reduced in tissue samples from patients
suffering from multiple sclerosis.133 Already in 1996 Carnemolla
et al. have reported that TN-R is expressed in the healthy brain.
Furthermore, TN-R was found in samples of human astrocytoma
and meningioma, where the small isoform with one FNIII-repeat
less amounted for 10% of the whole TN-R content.127

Studies on TN-R in glioma have in common that tumors with
non-invasive behavior and/or grading into WHO I or II (e.g.
pilocytic astrocytoma,134 medulloblastoma in children135) show
a high expression of TN-R. In contrast, a decrease of TN-R
expression has been observed in correlation with increasing
malignancy. At the endpoint of glioma progression, that is in the
glioblastoma of WHO grade IV only a weak TN-R expression
could be detected. Whether there is an inverse correlation
between the grade of malignancy and the expression level of TN-
R and whether TN-R plays a role in the non-invasive behavior of
tumors is still unclear and remains to be clarified further.134

Tenascin-W
Cloned from zebrafish and mice in the late 1990s136 and early

2000s,137,138 human TN-W was cloned and characterized in
2007.139 Like TN-C it appears in hexamers composed of 2 £ 3

www.tandfonline.com 135Cell Adhesion & Migration



monomers. Each monomer starts with the typical cysteine-rich
region at the N-terminus. 3.5 EGF-like domains are connected
to this region, followed by varying FNIII-repeats (in mice: 12, in
human: 9 repeats). The sequence ends with a fibrinogen-like
globe at the C-terminus (Fig. 1C).138 Like the other tenascins
TN-W is expressed during embryonic development and partially
co-expressed with TN-C.136,138 In adulthood it is nearly absent
from most types of tissues but could be found re-expressed under
pathological conditions, especially in tumor development. In
human cancer TN-W was found highly enriched in colon carci-
noma and breast tumors, whereas the healthy tissue is devoid of
any TN-W.139 In the special case of highly destructive brain
tumors TN-W has been reported in elevated levels in astrocy-
toma, glioblastoma and oligodendroglioma while the healthy
adult brain is devoid of TN-W expression.140

In contrast to the best-known tenascin family member TN-C,
TN-W is not expressed by glioma cells, but exclusively by endo-
thelial cells in tumor blood vessels, where it colocalizes with von-
Willebrand-factor.140 TN-W could be associated with different
cellular activities. Distinct from TN-C, TN-W is not able to
mediate any adhesion to cells138-140 or to induce proliferation.141

TN-W-dependent signaling could partially be attributed to the
activation of the b1-integrin subunit138,139 that is highly
expressed in glioma tumors.142,143 Therefore, it is not surprising
that TN-W is able to induce the migration of tumor139 as well as
of endothelial cells.140 Concerning tumors of the glioma type
investigations of the influence of TN-W on cell motility or
angiogenesis are still outstanding but the previous results point to
a potential role of TN-W also in this cancer type.

Tenascin-X
The latest discovered member of the tenascin family TN-X

possesses the same molecular organization than the other family
members TN-C, TN-R and TN-W. Initiated by a N-terminal
cysteine-rich assembly domain, 18.5 EGF-like domains are
attached and followed by 32 FNIII domains (human). The
C-terminus is formed by a fibrinogen like globe (Fig. 1D). In
contrast to the other tenascins, the TN-X molecule integrates a
proline-rich stretch of about 100 amino acids.144 Via disulphide
bonds TN-X is assembled into trimers145 and achieved promi-
nence as it is related to the human heritable disorder named
Ehlers-Danlos syndrome.146 The research on this syndrome has
led to insights that TN-X is involved in network formation of
the ECM as patients suffering from this disease show joint laxity
and skin hyperextensibility.146,147

Found in many adult tissues TN-X plays a crucial role in the
modulation of cell-matrix communication.145 By interacting
with numerous ECM molecules like collagens148,149 or
decorin150 it is involved in the adhesion and spreading of cells.

The mechanisms behind these effects are still mostly unclear but
2 structures are thought to be part of the used signaling pathways:
the C-terminal fibrinogen-like globe could interact with a still
unknown integrin containing the b1 subunit whereas the signal-
ing via heparansulfate proteoglycans might use the heparin bind-
ing site contained in the FNIII domains 10 and 11.151

Which of these signaling pathways – if any – is responsible for
the inhibition of tumor cell invasion and metastasis152 is pres-
ently unknown. But considering the results by Hasegawa et al.
showing that there is an inverse correlation between the expres-
sion level of TN-X and malignancy of glioma tumors153 there is
rising evidence that TN-X could play a role in the invasion of gli-
oma cells. Comparing the expression patterns of TN-C which is
found in the intercellular spaces and in tumor blood vessels of
high grade glioma38,153 and TN-X which is restricted to the
tumor stroma and surrounds blood vessels153 the question
remains whether TN-X is a potential key for the restricted inva-
siveness of low-grade glioma.

Conclusion

Considering the data discussed above there is no doubt that
the family of tenascin proteins is involved in regulating the
behavior of glioma cells and/or the development of glial tumors.
Although TN-C is so far the most intensely examined member of
the tenascin family, a substantial portion of its mechanisms of
action and signaling pathways still remains unclear. In particular,
the effects of the FNIII-domains on tumor cell migration and
invasion as well as on angiogenesis remain to be clarified. Ongo-
ing research in this direction is very encouraging and seems on
the right track toward elucidation. Concerning the other mem-
bers of the family only few studies have been published and fur-
ther investigations are required to understand the contribution to
glioma development and inhibition of increasing malignancy due
to expression of TN-R, TN-W and TN-X.
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