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Tenascin-C (TNC), a multifunctional matricellular glyco-
protein, is highly expressed in the majority of melanoma cell
lines and has been implicated in the progression of
melanoma. A growing body of evidence has implicated the
role of TNC in the process of invasion and metastasis for
melanoma. However, the mechanism and individual signaling
pathways by which TNC drives melanoma progression have
not been illuminated. Herein we provide perspectives from
the investigation of TNC in other settings that may hint at the
mechanistic role of TNC in this disease.

Introduction

Melanoma is the most lethal of skin cancers, originating in the
pigment-producing melanocytes of the basal layer of the epider-
mis. Patients with melanoma can be cured by surgical resection if
they are discovered early in the process of progression, at stages
where the transformed melanocytes have invaded locally, and
radially rather than vertically, where the risk of regional or distant
disease dissemination rises considerably. The 5-year survival rate
for melanoma declines dramatically once tumor cells have
invaded vertically through the dermal matrix, and to distant
organs. The likelihood of dissemination is directly proportional
to the depth of invasion. Thus, vertical invasion represents a key
step in progression, where the likelihood of morbidity due to
relapse, and mortality due to vital organ metastasis rises with pro-
gression of melanoma.

During the past 2 decades, many studies have aimed to deci-
pher the mechanisms by which melanoma cells disseminate from
the primary tumor site, invading through the dermis, and finally
to colonize distant vital organs. Two aspects have drawn atten-
tion – the initial invasiveness and the growth of melanoma at
metastatic sites. (As a note, we will not be discussing aspects of
melanomagenesis that involves mutations of known and putative
oncogenes and tumor suppressors1). As the dermis is comprised
mainly of extracellular matrix (ECM) by mass, there has been a
focus on changes in matrix and on signals that drive the locomo-
tion through this collagen I-rich barrier.2 At the sites of

dissemination, work has delved into the signals that support mel-
anoma cell survival and growth in what should be hostile micro-
environment. In both situations, TNC is striking in its
upregulation and aberrant expression.

TNC Signaling Germane to Melanoma Invasion
and Survival

TNC, the best described member of the tenascin family of
matricellular proteins that consists of 4 tenascin proteins –C, -X,
-R and –W, is a homodimer of homotrimers in which each
monomer has a molecular weight ranging between 180 and
330 kDa depending on the extent of glycosylation at its 23
potential sites and alternative splicing of domains.3 Each TNC
subunit is comprised of a N-terminal rod-like assembly domain,
a domain consisting of 14.5 epidermal growth factor-like
(EGFL) repeats of 30–50 amino acids in length for each repeat, a
domain composed of up to 17 fibronectin type III-like (FNIII)
repeats, and a carboxyl terminus homologous to fibrinogen4-7

(Fig. 1). Each domain imparts select behaviors to the cells adher-
ent to them. Thus the cell responses to TNC are dependent on
the receptor repertoire present on the cell surface.

The FNIII domains and the fibrinogen domain of TNC are
considered adhesive.8-13 However, the complete molecule is con-
sidered anti-adhesive. This function has been mapped primarily
to the EGFL component of TNC. This anti-adhesive aspect of
cell interaction with TNC can shift the adhesion/contractile ratio
to a setpoint that promotes cell migration in a mesenchymal
state14 or reversion to an amoeboid state for penetration of a
denser matrix.7,15-17

The EGFL of TNC functions uniquely as an ultralow affinity
ligand for the EGF receptor18,19 and laminins as well as possibly
SPARC also present such matrikine or matricryptin signal-
ing.11,20,21 The tethering of TNC within the insoluble matrix
converts the select EGFR-binding low affinity EGFL into high
avidity ligands due to limited diffusion and multimeric cluster-
ing. This results in predominantly cell surface signaling that is
preferential for motility over proliferation22 due to the preference
for PLCgamma and ERK m-calpain activation over Ras-triggered
pathways to the nucleus.23-25

More recently, it has been noted that restriction of EGFR sig-
naling to the cell membrane, by tethering ligands, provides for
increased cell survival in the face of death inducing cytokines
(Fig. 2).6,26 As TNC EGFL domains resemble a physiological

*Correspondence to: Alan Wells; Email: wellsa@upmc.edu
Submitted: 07/01/2014; Revised: 10/08/2014; Accepted: 09/10/2014
http://dx.doi.org/10.4161/19336918.2014.972781

www.tandfonline.com 125Cell Adhesion & Migration

Cell Adhesion & Migration 9:1-2, 125--130; January–April 2015; © 2015 Taylor & Francis Group, LLC
REVIEW



correlate of EGF, TNC may also protect stem cells from apopto-
sis.6 Thus, the presence of TNC can serve 2 functions in mela-
noma progression. First, it can promote migration and invasion
through the dermis. Second, in the hostile ectopic microenviron-
ment of the distant target organ, it could support survival of the
disseminated melanoma cells.

It is of interest that the effects of TNC EGFL on cell migration
and survival were noted first on mesenchymal stem cells/multipo-
tent stromal cells (MSC) that have very low levels of EGF recep-
tors (3000–7000 per cell versus the »105 in stromal cells).27 Low
levels of EGFR are important for these responses, as cells with
high levels of EGFR experience excessive signaling. In most adult
cells, tonic EGFR signaling becomes anti-adhesive to the point of
inducing anoikis. Melanoma cells also express low levels of EGFR
protein, at steady state, even though they show increased levels of
message RNA and even gene copy number (functionality is shown
by the cells being dependent on EGFR signaling for proliferation
in vitro28,29). All this suggests a high flux through the system sec-
ondary to autocrine receptor activation/downregulation. However,
the lower level of EGFR protein would modulate the anti-adhesive
effects to bring the adhesion/contractility ratio to the range that
enhances migration rather than driving anoikis.14

Regulation of TNC Expression in Melanoma

The expression of TNC is tightly regulated, and largely pres-
ent in appreciable quantities during organogenesis/embryogenesis
and wound repair and cancer invasion; in adult skin and other
tissues there is only a trace of TNC (reviewed in3,30). During
wound healing, TNC is dramatically upregulated during the
regenerative phase of repair that is marked by rapid angiogenesis,
migration of fibroblasts into the wounded area and re-epitheliali-
zation of migrating keratinocytes; TNC is then suppressed and
removed so that during the resolving phase little if any TNC
expression persists as the tissue undergoes quiescence and the
excess vessels and stromal cells involute. This is recapitulated in
part during melanoma progression.

Previous and recent studies revealed that the melanoma biop-
sies and cell lines present an elevated level of TNC.7,31-34 The
increased expression of TNC accompanies the transformation of
melanocytes into melanoma.35 Microarray analysis and immuno-
histochemical data performed by H€oltt€a’s group showed that the
increased expressions of TNC is associated with a switch from
benign or a non-invasive phase into an invasive growth phase of
melanoma and thus was considered as a potential biomarker of
aggressiveness, and a potential therapeutic target for prevention
of melanoma metastasis.36 Interestingly, coculture of melanoma
cells with fibroblasts significantly enhanced the expression of
TNC in fibroblasts which was mediated by cell-cell contact rather
than secretion of any components by melanoma cells37 although
the precise mechanism remains to be further determined. TNC
is also detected in the sera of human melanoma patients with dra-
matically elevated level in patients with advanced stages com-
pared to normal donors or patients with lower tumor stages.38,39

In light of these findings, it is important to note that expression
of TNC is relevant to the progression of melanoma and is
enriched in the environment of melanoma invasion and metasta-
sis (Fig. 3A).

The mechanism behind the upregulation of TNC is uncer-
tain, as to the key cells that produce the matricellular protein
or the intracellular mechanisms driving greater production.
For the melanoma cells this may relate to mutations in B-Raf,
as pathways downstream from oncogenic Ras upregulate
TNC in mouse mammary epithelial cells.40 However, further
studies are required to determine the relevance of B-Raf
in triggering TNC expression by melanoma cells since
only half of melanomas carry an activating mutation in
B-Raf.41 On the other side, this pathway or others may
increase TNC production by the dermal or immune cells, as
inflammatory stimuli activate the PI3 kinase/AKT and NF-kB
signaling pathway in myeloid cells.42 Another avenue for
exploration involves tracking changes in TNC levels with
response or resistance to generalized or targeted therapies.
Still, these molecular targets needs to be better defined to
develop new therapeutic approaches.

Figure 1. Schematic representation of TNC monomer. Listed above the structure are the domains: TA, TNC Assembly domain allows the assembly of hex-
abrachion. EGFL, Epidermal Growth Factor-Like; FN III, FibroNectin type III homology repeats; FBG, FiBrinogen Globe. Below the structure are known inter-
acting receptors and matricellular proteins. Information on specific TNC binding ligands/receptors is based on.3
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Function of TNC in Melanoma Cell Invasiveness

TNC contains 14.5 EGF-like repeats, of which at least 4
including the last full one bind as low-affinity/high-avidity
ligands to EGFR, resulting in a sustained surface-restricted
EGFR signaling.18,19,43 This mode of signaling is preferential for
motility over proliferation as it activates the motogenic pathways
of PLCgamma for hydrolysis of phosphoinositides at the front,
and m-calpain cleavage of adhesion-related proteins for rear
release.7,44

Most recently, our lab found that TNC, produced by mela-
noma cells in addition to fibroblasts, localizes in the front of mel-
anoma cells invading into an ex vivo matrix.7 Thus, we queried
whether this drove invasion. Interestingly, overexpression of a

TNC fragment which consisted of the N-terminal assembly
domain and the full EGFL repeats in melanoma cells resulted in
reduced cell migration speed and persistence on a 2D in vitro
wound healing area; this parameter is usually correlated with
increased invasion. Of note, there was also delayed cell attach-
ment and spreading when plated onto collagen, suggesting a less-
ened adhesiveness. This impaired adhesion of melanoma cells
expressing TNC EGFL is at least in part due to the increased
Rho-associated kinase (ROCK) activity and myosin light chain 2
as the dual phosphorylation of myosin light chain 2 at Thr-18
and Ser-19 is more constant compared to cells expressing an
empty vector. Thus when tested in matrix invasion, expression of
TNC EGFL in melanoma cells resulted in amoeboidal morphol-
ogy concomitant with an increased movement into the matrix.

Figure 2. Schematic representation of survival signaling vs. proliferative signaling from the EGF receptor based on surface restriction of EGFR activation.
The TNC EGF-like repeats provide for less efficient activation of the Ras-Raf-ERK and PI3kinase-Akt pathways in a persistent staccato manner; this leads to
survival signaling. However, soluble EGF ligands drive EGFR internalization with the endosomal active EGFR efficiently signaling via the Ras-Raf-ERK path-
way to drive mitogenesis.53 Not shown are the motogenic pathways (PLCgamma, ERK-calpain II, and PKCdelta) that are preferentially signaled from sur-
face restricted EGFR.
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The amoeboid morphology is consistent with other barrier pene-
trating tumor cells.15,45 This finding suggests that the TNC
EGFL promotes vertical invasion through the underlying dermis
from primary melanoma. Thus, this behavior, of amoeboidal
migration could be a novel target to limit melanoma invasion
and dissemination.7

Role of TNC in Melanoma Cell Survival

It is plausible that TNC also promotes the survival of mela-
noma cells based on the above cited data on MSC.6 This would
be beneficial at the metastatic site where tumor cells face an

ectopic microenvironment that lacks the normal trophic factors
and that the mere onset of invasion triggers a non-specific foreign
body response of death promoting cytokines.46 This is consistent
with the upregulation of TNC throughout metastatic nodules,47,48

though this may represent persistent expression by the invasive
cells that attained the distant site rather than an adaptive expres-
sion to promote tumorigenic behaviors in the metastatic site.

For directives as to which, there are data on the presumed can-
cer stem cell phenotype49,50 being modulated by TNC. Mela-
noma has been suggested to contain such stem cell-like
populations.51 In line with this finding, Herlyn’s group recently
reported that expression of TNC in melanoma cells that grew in
a 3D spheres, in which stem-like cells are enriched, is

Figure 3. TNC promotes both vertical invasion to allow for dissemination and then survival at the ectopic site. (A) TNC expression is upregulated as mela-
nomas progress (see7). (B) Schematic of TNC roles during melanoma progression. RGP: radial growth phase; VGP: vertical growth phase; MGP: metastatic
growth phase. TNC secreted from both melanoma cells and fibroblasts enhances the dissemination of melanoma cells from the primary tumor and inva-
sion into the dermal matrix. In metastatic organ, TNC promotes the survival of melanoma cells from tumor environmental stress and chemotherapies.
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significantly upregulated compared to adherent cells.52 As a con-
sequence, highly expressed TNC created a specific environment
for stem-cell like melanoma cells to promote tumor growth and
evade conventional therapy. Downregulation of TNC in mela-
noma cells by shRNA dramatically inhibited the growth of mela-
noma sphere and lowered their resistance to doxorubicin
treatment. This finding implicates that TNC plays an important
role in maintaining stem cell-like population and may extend to
small clusters and nodules in ectopic sites. However, this role of
TNC remains speculative even if strongly correlative, lacking
solid experimental validation.

Conclusion or Perspective

Reports implicate the likelihood that TNC plays important
roles both for invasion through the dermis at the primary site,
and for survival at distant sites in melanoma metastasis (Fig. 3B).
These behaviors relate in large part to the EGFL of TNC signal-
ing via the EGFR in a unique manner to promote both motility
and survival rather than proliferation.6,18,22 Still, while the find-
ings both in human melanoma biopsies and from the laboratory
experiments are highly suggestive, an experimental demonstra-
tion supporting this hypothesis is still lacking. Thus, future
efforts should focus on isolating such behaviors in ex vivo orga-
notypic microphysiological systems and animal models.

A second, but critical aspect of these implications of TNC is
how to approach the patients afflicted with melanoma now. Obvi-
ously if the foundation model is borne out experimentally, new

therapies could be developed and tested based on key trigger
points such as the induction of TNC expression or downstream
signals in the melanoma cells. This would take time, but offer a
new avenue of intervention. More immediately, the approach to
melanoma can be altered upon appreciation that TNC upregula-
tion protects melanoma cells from current general cytotoxic thera-
pies and even targeted biologics such as the B-Raf and MEK
inhibitors (via secondary pathways from EGFR via AKT). One
concept may be to directly evaluate this possibility, and to target
this mechanism of survival advantage, possibly using approved
EGFR inhibitors, in conjunction with current therapies to
improve their efficacy. As TNC upregulation is a general feature
of invasive/metastatic solid tumors, and not limited to melanoma,
such a combinatorial approach could be useful in other cancers.
As such our knowledge of the basic tumor biology of TNC and
tumor progression along with chemoresistance may be more rap-
idly applicable to the bedside using already-existing tools.
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