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Carcinoma invasion is a complex process regulated by
genetic and epigenetic factors as well. A relevant supportive
condition for cancer cell migration is the reorganization of the
extracellular matrix (ECM), which is realized in an orchestrated
multicellular manner including carcinoma cells and stromal
fibroblasts. An important key player in the process of ECM
reorganization is Tenascin-C (Tn-C). The molecule occurs as
different isoforms generated by alternative splicing and de
novo glycosylation. Large variants of Tn-C are abundantly re-
expressed in the invasive front of many carcinoma types. A
special role for initiating migration and accompanied
epithelial to mesenchymal transition has been suggested.
Here, we review the current knowledge concerning the tumor
biological importance of Tn-C, the synthesis and alternative
splicing during the invasive process in general, and give an
overview on the impact of Tn-C in urothelial carcinoma of the
urinary bladder (UBC) and oral squamous cell carcinoma
(OSCC).

Introduction

Migration into preexisting normal surrounding tissues is one
of the hallmarks of malignant tumor cells. The invasion of tumor
cells of epithelial origin (carcinomas) is a complexly regulated
process including a loss of epithelial cell-cell contacts, the obtain-
ment of a migratory phenotype, the penetration of the basement
membrane and the infiltration of the neighboring connective tis-
sue. This process is accompanied by an intensive cross-talk
between the carcinoma cells and cells of the tumor microenviron-
ment like fibroblasts, endothelial cells, and inflammatory cells.

In carcinomas, the invasive process is tightly associated with
the development of a tumor stroma, also known as desmoplastic
stroma reaction. The carcinoma stroma is mainly formed by resi-
dent or attracted fibroblasts or fibroblast precursor cells gaining
the myofibroblast phenotype as a result of activation by tumor
derived cytokines – also designated as carcinoma associated fibro-
blasts (CAFs).1 Currently, the carcinoma cell – myofibroblast
(CAF) interaction is intensively studied in the light of phenotype
transition of carcinoma cells (epithelial to mesenchymal transi-
tion (EMT)), tumor progression and modulation of therapeutic
efficacy.2,3

One of the most important steps enabling carcinoma cells to
invade is the reorganization of the extracellular matrix (ECM).
This process entails proteolysis of preexisting matrix structures, de
novo synthesis of migration promoting matrix proteins, as well as
a novel quality of structural 3D organization. Both, CAFs and
carcinoma cells contribute to the remodeling of the ECM in a
concerted manner. Within the last decades it could be evidenced
that the newly formed tumor ECM exhibits a composition and
organization showing many similarities to the situation occurring
in embryonic tissues or healing wounds. This “provisional” matrix
composition is characterized by the re-occurrence of matrix pro-
tein variants generated by alternative splicing, glycosylation or
alternative chain assembly which are over-expressed in early devel-
opment but are virtually absent in healthy adult organs.

With respect to the regulation of cell behavior, extracellular
cell adhesion modulating proteins like fibronectin, the laminins
or tenascins play a critical role. It is hypothesized that the
reexpressed “provisional” isoforms of these adhesion proteins
modulate ECM properties toward a more flexible and migration
promoting state by generating a) new cell-matrix contacts via an
altered integrin expression pattern and b) new interactions with
other matrix proteins modulating their functional attitudes and/
or 3D organization.

In this review, we will recapitulate the current knowledge in
matters of the tumor biological importance of tenascin-C, its
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synthesis and alternative splicing during the invasive process in
general. In addition, Tn-C is discussed in detail in 2 clinically
important tumor types originating from different stratified epi-
thelium: the urothelial carcinoma of the urinary bladder (UBC)
and the oral squamous cell carcinoma (OSCC). For both carci-
noma entities, carcinoma cell invasion into subepithelial connec-
tive or muscle tissue is well investigated and is of high predictive
value for patient outcome. Furthermore, therapeutic strategies
for both tumor types are rare so that understanding of the inva-
sive process is of high clinical interest.

Tenascin-C and Alternative Splicing

The large hexameric extracellular glycoprotein Tenascin-C
(Tn-C) was discovered in the early 80s by several laboratories.4-7
8 It is a member of a protein family comprising at least 4 different
molecules in humans: Tenascin-C, Tenascin-R, Tenascin-W, and
Tenascin-X.9 It was shown that, in contrast to normal brain tis-
sue, Tn-C expression is especially high in human glioma tissue
and glioma cell culture supernatant highlighting this molecule as
an interesting tumor marker.4,10 Indeed, in the last 2 decades it
was conclusively demonstrated that in many tumorous patholo-
gies Tn-C is associated with neoplastic transformation and tumor
progression.11

Today, the organization of the Tn-C gene and the molecular
structure of the protein are well described. The entire protein
with a maximal length of 2385 amino acids includes structurally
different domains which are known as epidermal growth factor
(EGF)-like repeats, fibronectin type III like repeats (FNIII) and a
terminal fibrinogen like globular domain (FBG) (Fig. 1). The
number of FNIII repeats included in the “mature” protein is
defined by alternative splicing: in human, 9 of the 17 FNIII
domains can be included or omitted by RNA splicing.12,13 In
addition to the known overall increase in Tn-C in tumor tissue,
there are also changes in the pattern of alternatively spliced Tn-C
isoforms associated with embryonic development, wound heal-
ing, neoplastic transformation and progression as well as reorga-
nization of the tumor microenvironment. In contrast to stable
adult tissues, under these conditions the reexpressed Tn-C var-
iants contain more or less all of the FNIII domains A1 to D. By

analogy with the concept of oncofetal fibronectin variants (e.g.,
ED-BC fibronectin or O-glycosylated fibronectin) in the follow-
ing these isoforms will be designated as oncofetal Tn-C variants
(oncTn-C).

In general, Tn-C expression can be induced by several growth
factors like TGFb1, FGF2 and the phorbol ester tetradecanoyl-
phorbol acetate (TPA). Furthermore, in accordance with its
occurrence in early development, regulation of Tn-C synthesis is
related to homeobox gene products and is functionally linked to
the expression of MMPs and integrins.14,15 Although it is known
that the expression of Tn-C splicing variants is differentially reg-
ulated during development and seems to be of crucial functional
relevance for correct organogenesis, the specific regulation of Tn-
C alternative splicing is not well understood up to now. Alterna-
tive splicing of mRNA is a complex molecular mechanism. The
process is catalyzed by the spliceosome and is regulated by the
serine/arginine rich (SR) family of proteins and heterogeneous
nuclear ribonucleoproteins (hnRNPs).16 Furthermore, tissue
specificity of alternative splicing is mediated by tissue related
splicing factors and their posttranslational modification like
phosphorylation.17 Tn-C alternative splicing seems to be cell
cycle dependent and epigenetically regulated by extracellular pH
at least in normal nonmalignant cells.18-20 Furthermore, also
growth factors like TGFb1 and PDGF-BB seem to influence the
splicing in a tissue specific manner.21,22 Currently, the splicing
factor SRSF6 was shown to be involved in the regulation of Tn-
C alternative splicing and that there is a correlation between
SRSF6 and Tn-C expression with skin hyperproliferation and
neoplastic transformation.23

Invasion Associated Reorganization of Tenascin-
C – a Collaboration of Different Cell Types

It is well known from a large number of immunohistochemi-
cal studies that carcinoma invasion is associated with a stromal
deposition of de novo synthesized tenascin-C especially around
the invading carcinoma cell complexes. However, it seems to be
still a matter of debate, if stromal cells or the carcinoma cells
themselves are the tumor biological relevant source of oncTn-C
and if there are differences in the provided splicing variants.

However, numerous mRNA
in situ hybridization studies
evidenced a multicellular
origin of Tn-C at all or
oncTn-C for instance in
breast cancer,24 prostatic
adenocarcinoma,25 skin
tumors,26 and oral squa-
mous cell carcinoma
(OSCC)27 with epithelial
tumor cells and stromal
fibroblasts as the main pro-
ducing cell types. Hinder-
mann and coworkers were
able to show conclusively

Figure 1. Schematic representation of the structure of a single chain of human tenascin-C (TA D Tenascin-C assem-
bly domian, FBG D terminal fibrinogen like globular domain).
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that in OSCC carcinoma cell derived oncTn-C is deposited in
the tumor-stroma interface. A comparable situation was evi-
denced for prostatic adenocarcinoma where the carcinoma cells
show an abundant mRNA synthesis of oncTn-C with special
pronunciation of the invasive front. Comparison of mRNA in
situ hybridization and immunohistochemistry again revealed a
deposition of carcinoma derived oncTn-C in the carcinoma
stroma.25 Furthermore, oncTn-C was also detected in association
to newly formed tumor vessels and seems to be synthesized by
myoepithelial cells, endothelial cells as well as by pericytes.28-30

To the authors best knowledge, there is no study available from
the literature that functionally and structurally compares stromal
and tumor cell derived Tn-C and focuses in the question, if there
are differences with respect to the provision of alternatively
spliced variants. Against the background that there is also a reex-
pression of oncTn-C during fibrosis, wound healing, and tissue
remodeling, the synthesis of Tn-C by fibroblasts / myofibroblasts
/ CAFs can be explained as a sign of cellular activation and may
be linked also to the migratory capability of stromal cells.31-34

Since Tn-C critically modulates cell adhesion to fibronectin and
modulates fibronectin assembly by fibroblasts, stromal and tumor
derived Tn-C may have the same function and the final situation
is more or less determined by the quantity and site-specific mod-
ulation of the deposited protein. Recently, it was indeed shown
that the capability of Tn-C to prevent fibrillogenesis of fibronec-
tin by fibroblasts depends on proteolytic processing and demask-
ing of cryptic domains.35 With respect to Tn-C synthesis by
carcinoma cells, different in situ situations were evidenced: no
mRNA synthesis in carcinoma tissue but positivity in cell lines of
the same tumor type,30 mRNA synthesis in tumor cells but pref-
erential deposition in the carcinoma stroma,25,27 or cytoplasmic
positivity for Tn-C immunohistochemistry in the carcinoma cells
themselves.36 These differences may be tissue specific but also
due to the application of varying detection methods, antibodies,
and probes. More likely, the pattern of Tn-C expression by carci-
noma cells seems to depend on the status of de- or transdifferen-
tiation. This may also explain the repeatedly demonstrated
correlation of tenascin-C positivity to the grade of malig-
nancy.11,37 With respect to this, it was evidenced in situ and in
vitro that oncTn-C reexpression is linked to an EMT phenotype
of carcinoma cells.38-42 Although Tn-C upregulation could be
discussed as a secondary phenomenon of EMT or tumor cell
dedifferentiation, there are multiple effects of Tn-C on tumor
cells mediated by outside-in-signaling leading to increased prolif-
eration, migration and invasion.11

Tenascin-C in Urinary Bladder Carcinoma Invasion

The urothelial carcinoma of the urinary bladder (UBC) is the
most frequently occurring cancer type of the lower urinary tract.
Up to now, there are only limited therapeutic options and bio-
logical markers for noninvasive monitoring the disease progres-
sion, especially the transition from a non-invasive to an invasive
state of the tumor, are rare. Therefore, increasing our knowledge
on the modality of the invasive process is of great clinical

importance. It is well known that, also in UBC, tumor cell inva-
sion is accompanied by a complex reorganization of the laminin,
collagen, fibronectin, as well as tenascin-C matrix.43

Early in the 90s, Tiitta and coworkers already described Tn-C
in the epithelial-mesenchymal interphase of the urinary bladder
wall and an abundant increase in Tn-C deposition in relation to
inflammation and UBC invasion. For immunohistochemistry,
the authors used the antibody 143DB7 detecting Tn-C indepen-
dent of alternative splicing.44 Tn-C in UBC was predominantly
deposited or localized within the carcinoma stroma. Results were
confirmed by further immunohistochemical studies describing
Tn-C expression in the context with other matrix proteins and
integrins.45,46 Later on, a relationship between the expression of
Tn-C and TGFb1 in UBC was described in vitro and in situ,
supporting the hypothesis that invasion associated Tn-C de novo
expression and deposition is linked to tumor-stroma cross talk
and also EMT.47,48 The tumor biological and clinical importance
of stromal Tn-C reorganization is underlined by the fact, that the
extent of immunohistochemical Tn-C positivity in the tumor
stroma shows a correlation to grade of malignancy, stage, and
proliferative activity and is a prognostic factor for worse survival.
Interestingly, immunohistochemically detected cytoplasmic Tn-
C positivity of the carcinoma cells or the detection of circulating
Tn-C mRNA in low stage diseases is indicative for a better sur-
vival.36,49,50 The tumor biological background of these contra-
dicting findings is not fully clear up to now and should be
the object of further studies. However, it underlines the
hypothesis that the extracellular incorporation of Tn-C is
mandatory for the development of an invasive carcinoma cell
phenotype.

With the availability of splicing domain specific antibodies in
combination with RT-PCR it becomes feasible to investigate the
differential expression and deposition of Tn-C splicing variants
in correlation to the disease progress. Using monoclonal and
recombinant antibodies against the Tn-C A1, A1/A4, B, D, and
C domains, we were able to show that there was a deposition of
A1, B, and / or D containing Tn-C associated with invasive
growth, muscle destruction and vessel formation. mRNA analysis
revealed a higher variability in the B to D region among the
investigated carcinomas and a restricted expression of the AD1 to
compact invasion type.51 Although there are reports on the func-
tional importance of Tn-C domains and changes in the Tn-C
splicing pattern,14 the meaning of these findings is not clear. It is
known that Annexin II is a ligand of the A-D domains and that
the Annexin II / Tn-C interaction may play a role in wound heal-
ing.52 This interaction may also have functional importance in
UBC invasion because it was shown that in UBC annexin II is
upregulated in association to invasion, metastasis and lower sur-
vival rate.53 Interestingly, Tn-C A-D / Annexin II interaction
exerts a comparable effect on endothelial cell mitogenesis and
migration.54 This goes in line with the observation that also in
UBC vessel neoformation is associated with a perivascular depo-
sition of large Tn-C.28 Interestingly, in accordance with our
immunohistochemical results, Hancox and colleagues were able
to demonstrate an invasion promoting effect of Tn-C BC – and
Tn-C B/D C – isoforms in breast cancer cells.55
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20 years ago, Siri and colleagues reported on differences in the
susceptibility of large and small Tn-C to the degradation by
MMP´s. The greater sensitivity of the large isoform was inter-
preted as a sign of the provisional character of the ECM during
tissue reorganization enabling proliferation and migration.56 The
hypothesis that the inclusion of additional domains leads to a
higher degradable Tn-C ECM is supported by the fact, that
indeed there is a relationship between UBC progress, immuno-
histochemical B domain expression, and the concentration of B-
domain containing Tn-C in the urine of UBC patients. Urinary
BC Tn-C / Tn-C fragments may be the results of secretion by the
carcinoma and / or stroma cells or most likely of proteolytic liber-
ation during the invasive process.57,58

Tenascin-C in Oral Squamous Cell Carcinoma
Invasion

Oral squamous cell carcinoma is the most common entity
within the Head and Neck tumors. Although the biology of
OSCC development, invasion, and metastasis is investigated in

detail and novel therapeutic
concepts came up recently,
the prognosis of patients
could not be improved dur-
ing the last years. With
respect to tumor biology
and also impact for diagno-
sis and therapy, the tumor-
stroma interaction and
ECM reorganization more
and more gets in the focus
of research.

Again, early in the 90s,
the histological distribution
of Tn-C in OSCC was
extensively investigated by
several groups worldwide. It
was reported that the de
novo deposition of Tn-C is
strongly increased in the
stroma of highly invasive
tumors and metastases
implicating a role of Tn-C
in stroma reorganization
supporting tumor cell pro-
liferation and migration.59-
61 Although Tn-C expres-
sion is increased in invasive
and metastatic OSCC,
interestingly, the predictive
value of Tn-C is critically
discussed. Atula and co-
workers were not able to
evidence a correlation of
Tn-C to survival and

patient characteristics in an immunohistochemical study includ-
ing 65 cases of primary oral and pharyngeal SCC.62 In contrast,
on mRNA expression level, Tn-C seems to be helpful to predict
lymph node metastasis and prognosis and was suggested as a can-
cer biomarker.63-65 The discrepancies in the assessment of the
predictive value of Tn-C may be, at least in part, caused by meth-
odological differences in the estimation of Tn-C matrix reorgani-
zation in OSCC. Most of the studies were performed using
different antibodies detecting all variants with varying specificity
and sensitivity. Furthermore, it has to be considered, that extra-
cellular stromal deposition and cytoplasmic positivity of OSCC
cells may have different tumor biological significance.66 Addi-
tionally, quantification of mRNA and protein expression may
have different prognostic impact. With respect to this, Fialka and
colleagues observed that Tn-C mRNA was up-regulated espe-
cially in early stage and not in late stage OSCC.67

Concerning the role in cancer invasion, the mode of the
3dimensional organization of Tn-C and it´s structural re-associa-
tion with other provisional matrix proteins may play a critical
role. Ramos and colleagues were able to show that indeed the
interaction of carcinoma cells with peritumoral fibroblasts is

Figure 2. Tn-C and its proposed role during invasion and epithelial to mesenchymal transition of carcinoma cells in
oral cancer. The process of the development of an invasive carcinoma cell phenotype starts with the mutual activa-
tion of stromal and cancer cells, followed by an increased synthesis and secretion of oncofetal Tn-C variants (oncTn-
C) by carcinoma cells and stromal fibroblasts (1) This process is accompanied by growth factor mediated fibro-/myo-
fibroblast phenotype transition co-activated by an autocrine ED-AC

fibronectin signaling via avb7 integrin
82,83 (2).

Activated myofibroblasts / cancer associated fibroblasts (CAF´s) produce oncofetal fibronectin variants (oncFn) and
reorganize the oncTn-C / oncFn matrix together with other adhesion proteins like Laminins in a provisional manner
(3). This provisional matrix mediates invasive phenotype conversion of cancer cells via b6 integrin signaling associ-
ated with up regulation of for instance MMP9, Tn-C itself and the migration promoting laminin g2 chain (Lng2) (4).
Finally, the carcinoma cells develop an epithelial to mesenchymal transition (EMT) phenotype (5).
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necessary to organize a Tn-C matrix.68 Although it is a matter of
debate also in OSCC which cell type provides the relevant stro-
mal Tn-C, Tn-C matrix organization is dependent on fibronectin
reorganization as a result of tumor-stroma cross talk.69 Further-
more, we were able to show that Tn-C matrix reorganization in
OSCC seems to be associated with the formation of new quality
extracellular multi-protein complexes at least including oncofetal
fibronectin and the migration promoting laminin gamma2 chain
(Lng2) suggested as guides for invasion.70,71 That indeed the
“collaboration” of especially oncTn-C with the basement mem-
brane (BM) protein laminin 332 plays a pivotal role in OSCC
invasion was evidenced by a quantitative colocalization analysis
of oncTn-C/Lng2 in the OSCC basement membrane region.
We were able to show that with raising malignancy grade and
mode of invasion, there is an increased incorporation of oncTn-
C into the OSCC BM region colocalized to laminin 332. This
finding suggests that the incorporation of oncTn-C modulates
the flexibility of the BM structure with increased accessibility for
proteolytic degradation, and may provide new integrin binding
sites to promote tumor cell proliferation and migration.72

A possible invasion relevant receptor for Tn-C in OSCC is
the integrin avb6.73 Indeed, a concordant de novo expression of
Tn-C and the b6 integrin in invasive OSCC could be shown.74

There is increasing evidence that the Tn-C – b6 integrin interac-
tion modulates MMP composition in the invasive front by a
TGFb1 associated activation of the uPA / MMP3 / MMP9 axis
and a down regulation of MMP13.75,76 MMP9 is multiply evi-
denced to be a key molecule in OSCC cell invasion. Further-
more, the b6 integrin may also be a link between the known
EMT promoting properties of Tn-C. Ramos and coworkers were
able to show that an overexpression of b6 in OSCC cells leads
to EMT like phenomena 42 and indeed EMT in OSCC is regu-
lated and / or perpetuated by Tn-C and MMP9 expression.77,78

Interestingly, in concordance with invasion of neoplastic kerati-
nocytes, a comparable co-organization of oncTn-C and the integ-
rins a9 and avb6 was shown in healing wounds speaking well
for a comprehensive mechanism during epithelial migration.31

Up to now there are only few reports on the differential
expression and possible function of Tn-C splicing variants in
OSCC. In 1997, Mighell and coworkers published an interesting
study describing the mRNA expression of splicing domains in
normal, malignant, and reactive oral mucosae.79 The group
describes several new Tn-C splice variants which exist in parallel
to the abundantly expressed large Tn-C which includes more or
less all splicing domains. Interestingly, like in UBC, the Tn-C C

domain is rarely expressed. A limitation of this study was that the
authors could not distinguish between tumor cell and fibroblast /
myofibroblast derived Tn-C mRNA. However, it demonstrates
the complexity of Tn-C reorganization during oral carcinogenesis
and associated inflammation and desmoplasia. That indeed large
unspliced variants may play a role during OSCC invasion could
be demonstrated by our group. Using antibodies specific to the
Tn-C slicing domains A1, A1/A4, and C, immunohistochemistry
revealed a de novo deposition of oncTn-C in the invasive front
as a tumor specific process.27,28 By means of mRNA in situ
hybridization, it was further demonstrated that the synthesis of
oncTn-C at least including the A3-A4-B domains is allocated to
invading carcinoma cells and shows an association to the grade of
malignancy and therefore to the mode of invasion. Combining
in situ hybridization with immunohistochemistry evidenced that
the tumor cell derived oncTn-C is deposited in the invasive
front.27 This OSCC cell specific oncTn-C synthesis is shown to
be an excellent additional marker to discriminate tumor cells in
brush biopsies of oral lesions.80,81

Conclusion

Summarizing the available data, Tn-C reorganization with the
de novo synthesis of large, low spliced isoforms is an invasion
associated phenomenon in general and could also be evidenced
in UBC and OSCC. The process seems to be a precondition for
epithelial cell migration and comprises 1) mutual activation of
stromal and cancer cells, 2) increased synthesis and secretion of
oncTn-C by carcinoma cells as well as stromal fibroblasts, 3)
fibronectin / laminin associated structural organization of Tn-C
by cancer associated fibroblasts – modulation of adhesive proper-
ties of the ECM, 4) integrin dependent support of EMT and
modulation of the expression of EMT associated proteins like
MMP9 and Tn-C itself, and 5) in consequence, promotion of
cancer cell migration and invasion (Fig. 2). There is increasing
evidence that some alternatively spliced variants may have a cru-
cial biological function during cancer progression. Variants espe-
cially including the B domain may therefore have the potential to
serve as diagnostic markers and / or therapeutic targets in UBC
and OSCC.
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