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Abstract

This paper summarises the proceedings and discussions at the third annual workshop held in
Tubingen, Germany, dedicated to the advancement of the technical, scientific and clinical
applications of combined PET/MRI systems in humans. Two days of basic scientific and
technical instructions with “hands-on” tutorials were followed by 3 days of invited presentations
from active researchers in this and associated fields augmented by round-table discussions and
dialogue boards with specific themes. These included the use of PET/MRI in paediatric oncology
and in adult neurology, oncology and cardiology, the development of multi-parametric analyses,
and efforts to standardise PET/MRI examinations to allow pooling of data for evaluating the
technology. A poll taken on the final day demonstrated that over 50 % of those present felt that
while PET/MRI technology underwent an inevitable slump after its much-anticipated initial
launch, it was now entering a period of slow, progressive development, with new key
applications emerging. In particular, researchers are focusing on exploiting the complementary
nature of the physiological (PET) and biochemical (MRI/MRS) data within the morphological
framework (MRI) that these devices can provide. Much of the discussion was summed up on the
final day when one speaker commented on the state of PET/MRI: “the real work has just
started”.

Key words: Hybrid imaging, Molecular imaging, PET/CT, PET/MRI, PET, MRI, Quantification,

Attenuation correction, Oncology, Paediatric oncology, Neurology, Cardiology

Introduction

C ombined positron emission tomography and magnetic

resonance imaging (PET/MRI) is a potentially unique
clinical imaging modality and key research tool. Following
early attempts to generate pilot data from prototype
combinations of PET and MR hardware with small animal
imaging in the 1990s, whole-body human PET/MRI systems
were introduced in 2010, with significant impetus from the
medical imaging industry. Early adopters of PET/MRI
benefitted from considerable support through national
research foundations. This is interesting as the leap from
the initial, limited results from preclinical PET/MR imaging
to the introduction of systems applicable for imaging
humans was not accompanied by any significant break-
through in combined PET/MRI-guided disease management.
The past decade has seen widespread acceptance of
hybrid imaging combinations such as PET/CT and SPECT/
CT in clinical practice. However, the attitude towards PET/
MRI has been more guarded for a number of reasons,
including the high initial capital cost. Some imaging experts
have high hopes for PET/MRI, calling it “PET/CT without
radiation”, and others foresee it replacing PET/CT entirely,
but the majority, including some manufacturers, would
appear to favour a “wait-and-see” approach. In several
situations, however, PET/MRI is recognised as having
significant potential advantages for patients (e.g., reduced
radiation dose in paediatric PET oncology) and, perhaps
more so at this time, clinical research.
The Tiibingen PET/MRI workshop was initiated in 2012
[1], the second meeting took place in early 2013 [2] and the

third meeting took place a further year later in February
2014. Each meeting has brought together early adopters of
the technology, manufacturers, users, critics and those
simply interested in the new possibilities of PET/MRI.
While the first two workshops were envisaged as a forum for
both exchange of ideas among imaging experts and
panellists and for providing “hands-on” sessions led by
expert readers and technologists, the concept of this third
workshop was modified significantly. The dedicated hands-
on part of the workshop was condensed in 2 days with
parallel interactive sessions on MRI, PET/MRI, PET/CT,
clinical reporting and software solutions, with the latter
being provided and supported by various vendors, who
again willingly engaged in this workshop. The hands-on
sessions were followed by a developmental and exploratory
workshop, which was condensed in 3 days dominated by
dialogue board (DB) sessions. The topics of the dialogue
boards were similar to those of 2013, focussing on the
following:

e Dialogue board 1: oncology

e Dialogue board 2: quantitative correction methods and
standardisation

e Dialogue board 3: neurology

e Dialogue board 4: advanced PET/MRI—multi-parametric
imaging

e Dialogue board 5: paediatric oncology

e Dialogue board 6: Cardiology

This year’s meeting included only one round-table
discussion, on the central theme of “Key applications of
PET/MRI”, which followed from a pilot discussion on the
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topic at the second Tiibingen meeting in 2013. Now that
there are over 50 PET/MRI systems in clinical use, the
organisers felt certain that a broadened perspective on key
applications would emerge from the audience compared with
the limited experience available in 2012 and 2013.

This report summarises the key discussion points from
the six dialogue boards and the round-table discussion. For
each topic, we attempt to provide individual summaries and
indicate major outcomes of the discussions. We attempt to
highlight where progress has been achieved and to comment
on areas that have not advanced as might have been
anticipated. Further, we identify drawbacks in the adoption
of PET/MRI in summary tables referred to as “status quo”
tables. We have expanded on the general conventions to
indicate progress (1), steady state («») and detriments (|)
used in earlier reports [1, 2] to include “suggestive of
progress” () and “advancement falling short of
expectations” (). This year, we have included the results
from the 2012 and 2013 summaries for an immediate
comparison of where there have been changes.

Key to dialogue board summary of recent changes in
PET/MRI:

i Clear documented evidence of improvement in science and
methodology of PET/MRI

/' Suggestion of improvement in methodology applied to PET/MRI but
requires further investigation

No change but satisfactory status since previous workshop 1 year ago

Little advancement in science and methodology of PET/MRI despite
previous recognition of need for improvement

Less clear knowledge now exists than previously, despite further
developments in science and methodology of PET/MRI

<1

Dialogue Board 1: PET/MRI
in Oncology

The Issues

Combined PET/MRI has been available for clinical use since
2010. The installed base of whole-body PET/MRI systems
remains small compared to that of clinical PET/CT systems.
PET/MRI today is performed most frequently for oncology
indications. However, most peer-reviewed publications on
PET/MRI in oncology are feasibility studies based on small
sample sizes and indicate either diagnostic equivalence of
PET/MRI and PET/CT (i.e., no added diagnostic benefit)
[3, 4] or minor but non-significant diagnostic benefits in
selected cases [5].

The adoption of PET/MRI in oncology has been
continuously challenged by the lack of protocol and
workflow standardisation [1]. The dialogue board heard that
such standardisation is complicated by the fact that there is a
lack of consensus among MRI users and large variations in
MR protocols exist. Further, direct comparison of ostensibly
similar MR sequences between manufacturers is problemat-
ic. The need for integrated reporting of PET and MRI
components in a single report, rather than two separate

reports, was highlighted. This suggests that the imaging
specialists from both disciplines should prepare the report in
a single, combined manner. The panellists engaged in robust
discussions on the need to perform whole-body PET/MRI
examinations while acknowledging the limited flexibility of
the PET/MRI systems for protocol definition and on-the-fly
adjustments. Most PET/MRI in oncology today is performed
with 2-deoxy-2-['*F]fluoro-p-glucose (['*FJFDG) using a
multi-step protocol, following a typical PET/CT protocol
design (see previous meeting summaries for examples). This
may not be optimal and, in fact, is being increasingly
recognised as far from ideal. Workshop attendees and
panellists agreed on the need to limit total acquisition and
in-room time, and therefore, new approaches to PET/MRI
protocols are needed. While the acquisition of PET/MRI
examinations can take up to 60 min or more (with most of time
devoted to the MR acquisition), it was felt that a maximum
PET/MRI examination time of 30 min should be a target to
make it competitive with PET/CT examinations. It was
suggested that a more pragmatic approach to clinical workflow
scenarios was necessary, recognising the fact that most clinical
users today probably acquire more sequences than are essential
or are eventually used and reported. As PET/MRI experience
matures, MR sequences that have direct relevance for cancer-
specific imaging should be employed in place of the “scatter-
shot” approach of acquiring as many sequences as possible to
see which produces an outcome.

Given the challenges of standardising or even
harmonising MRI data acquisition, a typical conventional
imaging trial was considered difficult to achieve. For this
reason, panellists and attendees suggested an alternative of
creating a PET/MRI registry for pooling data acquired at
multiple centres, similar to that which was developed for
PET/CT in the National Oncologic PET Registry (NOPR)
(see, for example, [6—9]). The aim of the registry would be
to gather a sufficiently large amount of clinical data in
specific clinical areas to help derive diagnostic accuracy
measures (e.g., sensitivity, specificity, accuracy) and out-
come data and to document measures of change in patient
management, as in the NOPR project [6-9]. This could be
further improved to supply earlier results if centralised
reading was done at the core registry.

Recent Advances or Achievements

Numerous studies such as Aznar ef al. and Bezrukov et al.
[10, 11] have demonstrated the effect of omitting PET
photon attenuation due to the bone during MR-derived
attenuation correction (MR-AC) in PET. No major method-
ological progress applicable to whole-body oncology imag-
ing has been reported in the past year. From a clinical
perspective, only incremental progress has been demonstrat-
ed in head and neck cancers [12], breast cancer [13],
paediatric oncology imaging [14, 15], peritoneal carcinoma-
tosis [16], glioma [17] and prostate cancer [18-22].
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New Evidence That Has Been Reported (Table 1)

Several groups have proposed refinements to whole-body
imaging protocols [13, 23]. The panellists disagreed on the
clinical usefulness and clinical need for whole-body diffu-
sion-weighted imaging (DWI) sequences in the context of
PET/MRI imaging. DWI and ['*F]FDG-PET imaging were
considered “complementary”, while acknowledging the fact
that standardised approaches to reporting and analysing
these images were still missing. At this point in time,
diffusion-weighted images were considered superfluous if
co-registered ['*FJFDG images were available. However,
DWI could replace ["*FJFDG imaging from a functional
perspective, as they are thought to provide similar informa-
tion, thus permitting an alternative PET radiopharmceutical
to be used (e.g., 3'-['®F]fluoro-3'-deoxythymidine
(['®FJFLT), 6-[18F]fluoro-.-DOPA (['*F]DOPA)). It has
even been hinted in some areas of oncology where MR
imaging plays an important role (e.g., brain tumours,
prostate cancers, pancreatic and liver cancers) that
['"®FIFDG imaging may not be the PET agent-of-choice for
a complementary investigation. This could eventually make
the decision of whether to use PET/CT or PET/MRI easier;
if the cancer is ['*F]JFDG-avid, then the study is likely best
performed with PET/CT, whereas other radiopharmaceuti-
cals may be a better choice for PET/MRI.

Future Challenges

A major challenge as stated by one panellist was that
“technical innovations appear to outpace regulatory process-
es and legislation”. This is demonstrated by the fact that,
while multi-modality imaging was introduced into clinical
use over a decade ago, reimbursement is still often non-
existent and varies widely between countries. Users should
focus on developing unique clinical applications for PET/
MRI and its use to probe human physiology and pathophys-
iology in cardiology, neurology and oncology. In particular,
evidence needs to be gathered to demonstrate that PET/MRI
affects patient-relevant outcomes when compared to separate
MRI and PET/CT; this could be achieved through a registry
as addressed in the round-table discussion on key
applications.

While the training schemes for expert readers of dual-
modality imaging remain a matter of debate and no

Table 1. Status quo DB1: PET/MRI in oncology

consensus has been reached yet, it was agreed that the most
appropriate way to accelerate the advancement of PET/MRI
technology will be through team efforts of imaging experts
with different backgrounds so that they will teach and learn
from each other for the benefit of patients.

Questions raised by the dialogue board include the
following:

e [s PET/MRI equivalent to separate PET/CT and MRI and
what is the advantage of simultaneous PET and MR
imaging?

e How can the advantages be assessed from a health care
perspective? How does each modality influence relevant
clinical endpoints?

e [s PET/MRI currently more suitable for use as a research
tool than for routine clinical practice?

Dialogue Board 2: Quantitative
Correction Methods and
Standardisation

The Issues

The ability of PET to quantify physiological and metabolic pathways
non-invasively needs to be maintained in combined PET/MR. This
requires clinically viable and validated approaches for MR-based
correction of attenuation and scattered radiation. All approaches need
to account for the presence of the scanning bed, positioning aids and
MR radiofrequency (RF) coils employed during the combined
examination. Inaccuracies in generating correct attenuation factors
from the MR-based approaches remain one of the weakest points in the
technology of PET/MRI today. Anything less than achieving accuracy
in attenuation correction factors equivalent to CT-based methods will
be seen as sub-optimal and a regressive step.

Attenuation Correction

Standard PET/MRI AC is based on MR imaging using preselected
sequences followed by image segmentation that classifies the
resulting attenuation map into three or four classes of tissues
(e.g., background, soft tissue, fat, lung) each with a single assumed
attenuation value [24]. This approach is reasonably accurate for
average size patients but fails in very large patients (truncation) or
patients with dense or metallic prostheses (susceptibility artefacts).
In addition, the reproducibility of standard MR-AC with Dixon fat/
water sequences may occasionally be hampered by inverted tissue

Diagnostic quality of PET in PET/MRI equivalent to PET quality in PET/CT

Resolving quantitative bias from MR-AC

Clinical data available on diagnostic accuracy of PET (/MRI) in oncology
PET/MRI protocol standardisation

Definition of key clinical applications

2012 2013 2014
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classifications (e.g., fat/water swaps) and the resulting incorrect
tissue class and attenuation values assigned in the resulting
attenuation maps. In addition, the delineation of lungs on MR
images occasionally fails, and typically, only uniform attenuation
values for the lung tissue are assigned. Furthermore, all MR-based
attenuation maps are currently being presented without the bone
being included, thus leading to a local underestimation of the
attenuation coefficients [2, 25].

Motion Correction and Co-registration Errors

Local misalignment of PET and MR image information can be
limited a priori through more rigid patient fixation (e.g., rigid head
RF coil) compared to PET/CT. However, residual motion-induced
misalignment of structures in the abdomen and thorax remains an
issue. MR does, however, offer the possibility to use certain
acquisition techniques (e.g., “navigator” sequences or fast, time-
resolved 3D data acquisition of body volumes) to measure motion
and the displacement and to allow correction for this during PET
data reconstruction. This represents a potential major development
for PET achieved by using complementary information provided by
MR that PET/CT is unable to provide.

PET Image Reconstruction

All PET/MRI systems employ iterative reconstruction algorithms for
the PET emission data, similar to those used in PET/CT. Point spread
function (PSF) modelling is increasingly being integrated into
commercially available reconstruction software, thus helping to
improve noise characteristics and spatial resolution of the final
emission images. However, the inclusion of PSF modelling into the
reconstruction process may induce ringing (“Gibbs”) artefacts (i.e.,
overshoots at object boundaries) that can lead to substantial
overestimates of true standardised uptake values (SUVs) of up to
about 40 % in small lesions [26]. While this problem is not specific to
PET/MR, the problem is one that needs to be investigated further.

Quantification

Several reports from single-injection, dual-imaging studies demon-
strated discrepancies in SUVs between PET (/CT) and PET (/MR) data
that require further clarification. This is not surprising as differences
could arise from a number of causes such as the following:

e Physiologically different uptake at the two imaging time points
(highly likely)

e Variations of the PET SUV from inaccurate attenuation
correction from MR-AC compared to the CT-AC, including
lacking spatial information about placement of flexible, non-
stationary MR RF coils (likely)

e Differences between reconstruction algorithms between vendors
(likely) and between PET/CT and PET/MR systems of the same
vendor (confirmed)

e Inaccurate calibration of the PET system (possible)

These differences are related only in part to the known
shortcomings of MR-AC. In addition, discrepancies were reported
for different commercial systems.

Recent Advances or Achievements

Attenuation Correction

Since the last workshop, continuous progress has been made in the
understanding and correction of artefacts and bias arising from truncation
and MR surface RF coils. Schramm ez al. proposed a straightforward
compensation technique for truncation artefacts, whereby the missing
attenuation information is estimated from a combination of the truncated
attenuation map and the body outline of the PET images without
attenuation correction [25]. Nuyts and colleagues proposed a maximum a
posteriori algorithm for estimating the missing part of the attenuation map
from the PET emission data [27]. This method is based on prior work on
an algorithm to estimate attenuation data from available emission data
only [28-30]. An alternative method was proposed by Blumhagen e al.
who suggested optimising the imaging read-out gradient field by
compensating for local B, magnetic field inhomogeneities and gradient
non-linearities, thereby extending the MR field-of-view and, thus, the
useful MR image information prior to deriving the MR-based attenuation
correction information [31]. Kartmann ez al. describe a method to align
CT-based templates of flexible MR surface RF coils through the use of
fiducial markers seen on both CT and MRI, thereby accounting for the
additional attenuation effects from ancillary objects [32]. Bezrukov e al.
developed a modified atlas-based attenuation correction for whole-body
imaging [11]. By predicting the bone tissue in selected body regions, the
method improved in calculation efficiency and robustness. Additionally,
an atlas-based detection of artefacts was proposed.

Rezeai and Defrise er al. have shown that if the PET data
component is acquired using time-of-flight acquisition, the attenu-
ation factors may be derived from the emission data alone [29, 30,
33, 34]. This remarkable discovery is extremely promising and may
prove ultimately to be the method of choice for AC in PET/MR.

Motion Correction and Co-registration Errors

Waurslin et al. described a pilot approach towards non-rigid MR-
based motion correction for PET/MRI of the abdomen and thorax
[35]. They demonstrated an increase in SUV of lesions of 30 %
compared to the non-corrected PET data, while the SNR improved
by about 30 % compared to a standard end-expiratory gating.

Image Reconstruction

As mentioned previously, the increasing awareness of Gibbs artefacts
from the combination of iterative reconstruction methods and PSF
modelling has supported the development of alternative reconstruction
algorithms [36]. These authors report on the use of a volume-of-
intersection, or tube-of-response (TOR), approach instead of the
standard line-of-response approach to data storage and reconstruction.
This TOR-based reconstruction was implemented on a Philips Ingenuity
PET/MRI system and has been shown to achieve spatial resolution and
noise levels equivalent to those obtained by conventional PSF modelling
while suppressing Gibbs-based overshoots in small object boundaries.

Quantification

Despite prior focus on the absolute need to preserve the quantitative
accuracy of the PET measurements [37], no major progress leading
to increased quantitative accuracy was reported.
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Complementary information
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lllustration of the concept of multi-parametric imaging providing multiple layers of information that can be combined (or

extracted) into probability maps (based on machine learning), image-based representations of selected information or other
information. sFCM spatially constrained fuzzy c-means, SVM support vector machine (with support of Dr. Gatidis, Tibingen).

In addition to engaging in the topical discussions, panellists presented
new approaches for phantom-based quality control (QC) procedures for
PET/MR, acknowledging the fact that there would be no image
quantification without periodic and appropriate quality assurance of the
systems. On this point, the use of standardised image quality phantoms
filled with water-based solutions was discussed in an effort to obtain
reproducible and accurate MR-based attenuation maps (Fig. 1) [38]. MR-
based attenuation maps of standard phantoms, however, do not account
for plastic phantom housings and, thus, lead to systematic bias in PET
quantification during phantom measurements. For standard phantom
tests, the use of CT-based attenuation templates of the fluid-filled
standards was suggested [39]. In general, quality control requirements of
PET/MRI should be similar to those for PET/CT. In particular, multi-
centre QC programs are hampered by the lack of dedicated QC protocols
and phantom MR-AC methods, in addition to differing implementation
of MR-AC methods. Initial pilot data were presented at the workshop
addressing both phantom-based QC procedures and a novel approach
towards volunteer-based and intra-individual verification of the accuracy
of attenuation maps derived from MR on different PET/MRI systems.

New Evidence That Has Been Reported (Table 2)

The first data were presented on alternatives to PET-derived SUV
approaches, reducing the dependency on valid system calibration as
well as any non-linear correlation between SUV and metabolic rate, by
using the PET arterial blood pool signal derived from large vessels on
MRIin the FOV as an internal reference and thus replacing SUVs with

Table 2. Status quo DB 2: Quantitative correction methods and standardisation

target-to-blood ratios for quantitative evaluation [40]. This should be
acceptable as long as relative regional contrast is preserved, which is a
much weaker requirement regarding AC than demanding quantita-
tively correct absolute tissue concentrations of the radionuclides (kBg/
ml) cross-calibrated to another piece of equipment such as the dose
calibrator or automated injector. Furthermore, dual-time-point mea-
surements might provide additional advantages for quantitative PET/
MRI [41]. Panellists agreed that the capability to derive absolute tracer
concentrations from the PET data was the ultimate goal of PET/MRI.

Future Challenges

Single-injection, dual-imaging studies involving PET/CT and PET/
MRI comparisons should be discontinued and replaced by single-
injection, single PET/MRI studies. This is mainly because
pathologies that are suited to characterisation and response
assessment with ['*F]JFDG are already well-suited to CT definition,
while pathologies where MRI has an advantage may be better
matched with other PET tracers, as mentioned previously.

Future challenges include the need to refine MR-AC methods
(such as by increasing the repeatability of the MR-based attenuation
maps) and the exploration of potential improvements of PET
quantification through the use of dynamic MR image information
for MR-based quantification of PET (e.g., from an image-derived
input function (IDIF)). Finally, the panellists agreed on the need to
introduce and adopt guidelines for quality control, standardisations
and general imaging procedures.

Critical evaluation of MR-AC methods
Validation of MR-based motion correction

Agreement on acceptable lower limits of quantitative accuracy of PET following MR-AC
Clinical introduction of advanced, MR-based quantitative parameters (e.g., IDIF)
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Dialogue Board 3: PET/MRI
in Neurology

The Issues

Neurology, neuro-oncology and neuroscience are thought to
be potential key applications for PET/MRI in clinical
practice and for research, since both modalities provide
complementary morphological, functional, (patho)-physio-
logical and molecular information regarding the human brain
[42]. The main advantage of integrated PET/MRI systems
for neurology applications is seen in the simultaneity of data
acquisition, which allows both temporal and spatial cross-
correlation and potential cross-validation of PET and MR
measurements [43-45]. Simultaneous PET/MRI may pro-
vide a better understanding of functional (BOLD-MRI),
haemodynamic (arterial spin labelling (ASL), proton-weight-
ed imaging (PWI), ['°O]H,O PET) and metabolic (dynamic
PET with different radiotracers, MR spectroscopy) interac-
tion during brain activation as well as in various neurolog-
ical disorders [46]. Furthermore, it is thought that the use of
MRI data can help improve PET quantification through, for
example, motion correction. To balance these issues, MR-
based attenuation correction in the brain remains problem-
atic especially around dense areas of the skull.

Recent Advances or Achievements

Several technical improvements have been achieved in
recent times. Most are related to improving accuracy of the
PET (/MR) reconstruction through the use of improved MR-
AC methods [47, 48]. Further, combining segmentation and
atlas-based algorithms by incorporating dual-echo ultrashort
echo time (DUTE) and T1w-MRI data with a probability-
based atlas yields attenuation maps similar to those from
CT-based approaches [49].

New Evidence That Has Been Reported (Table 3)

Simultaneous PET/MRI in acute stroke has revealed an
insufficient estimation of the penumbra volume by
perfusion-weighted MRI as compared to the gold standard
approach to non-invasively measuring cerebral blood flow,
['°O]H,O PET.

Dual time-point amyloid PET/MRI enables an integrated
approach to imaging in dementia. More specifically, early

Table 3. Status quo DB3: PET/MRI in neurology

post-injection amyloid imaging can be used as a surrogate of
neuronal integrity, while delayed amyloid imaging provides
information about amyloid load in the brain; anatomical
MRI examines morphological changes such as atrophy,
vascular lesions and space-occupying lesions. Alternatively,
MR-based ASL might be useful to provide information
regarding neuronal injury when acquired in parallel with the
amyloid PET signal [44, 50].

Simultaneous PET/MRI acquisition does not necessar-
ily come with full simultaneity of PET and MR, due to
inherent differences in measurement algorithms and the
temporal resolution of both imaging methods (e.g.,
continuous measurement for tracer kinetics vs. repetitive
block design for fMRI). Emerging evidence for imaging
brain tumours by means of integrated PET/MRI with
amino acid analogues supports the notion that this
approach has great potential to improve diagnostic
accuracy, for instance, in early detection [51], in image-
guided biopsy planning [14] and in therapy monitoring
[52]. Further, multi-parametric image data analysis and
interpretation might in the future improve patient-tailored
treatment decisions.

Simultaneous PET/MRI also provides early evidence for
detecting changes in neurotransmission and neuronal activity
and brain networks at the same time [46, 53], which may
help improve the development of new drugs. This accounts,
for instance, for the effect of nicotine on cognition in
Alzheimer’s disease, which may be related to both a specific
action on nicotinic receptors as well as acting on brain
networks in general [54, 55].

Future Challenges

To render combined PET/MRI fully acceptable for clinical
and research applications in neurology, MR-AC methods
need to be implemented that account for bone attenuation
and potential image distortions (e.g., susceptibility arte-
facts in MR-based attenuation maps). This is likely to be
extremely important for PET/MRI of Alzheimer’s disease,
for which clinically approved radiotracers are available
today. Given the subtle differences in radiotracer activity
in Alzheimer’s disease, the PET/MRI must accurately
reflect the tracer distribution to allow confident diagnosis.
Upcoming clinical studies should include the cross-
validation of MR- and PET-based physiological measure-
ments and the continued development of IDIF for
radiotracer modelling.

Improved understanding of brain physiology and function through the use of combined PET/MRI
Methodological progress for improved quantification of PET/MRI neurological examinations (AC, IDIF, SUV)

MR-based motion correction for routine clinical use
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Dialogue Board 4: Advanced PET/
MRI—Multi-Parametric Imaging

The Issues

Most of the installed clinical and custom-built preclinical PET/
MRI systems support simultaneous PET and MRI data acquisi-
tion, thus enabling the contemporaneous collection of complex
and temporally variable biological parameters. These parameters
include the MR-based apparent diffusion coefficient (ADC)—a
measure of intracellular diffusion that reveals information for
oncology about tumour viability, necrosis or apoptosis—along
with complementary ['®FJFDG uptake as a measure of glucose
metabolism. While ADC and ['*FJFDG uptake values can now
be measured simultaneously, it is not clear how these parameters
match under conditions such as tumour progression, post-
therapeutic changes or treatment response. Understanding how
MRI and PET parameters match is perhaps even more
challenging when considering non-["*FJFDG tracers that target
other characteristics of cancer cells such as hypoxia (e.g.,
["®F]fluoromisonidazole (["*FJFMISO), ["*F]fluoroazomycin-ara-
binoside (['*F]FAZA)), proliferation (e.g., ['*F]FLT) or amino
acid metabolism (e.g, [ISF]ﬂuoroethyltyrosine (FET)). In neuro-
logical stimulus experiments, the temporal alignment of PET and
MRI data becomes even more critical, since every read-out must
be linked to a specific stimulus, which may not necessarily be
reproducible if imaging is done separately; this makes synchro-
nous acquisition of PET and MR data a priori a requirement.
One challenge in dealing with multi-parametric data sets
is that the large amount of complex information provided
generally makes it difficult to take into account all measured
parameters and extract core information. Utilising only
conventional image information does not exploit the full
potential of integrated PET/MRI. While in current clinical
approaches that very basic image quantification (e.g., SUV)
dominates, clinical research applications require the
exploration of alternative and perhaps more complex
measures, leading to the analysis of multi-parametric
data, which is not yet fully supported by the available
software platforms provided with today’s standard PET/
MRI hardware (Fig. 2). One possible solution is the

a
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application of automated classification algorithms, which
support objective, reproducible and comprehensive data
analysis. These algorithms make use of unsupervised
[56] or supervised [57, 58] classification.

Recent Advances or Achievements

The preclinical field pioneered the complex analysis of
multi-modality PET/MRI data with enormous potential for
clinical translation. Preclinical PET/MRI studies in neuro-
oncology showed the additional value of co-acquiring
in vivo MR spectroscopic data, T2w images and PET
measurements. Using a glioma mouse model, chemical shift
imaging to detect endogenous choline depicted gliosis, while
["'C]choline PET showed the viable tumour core [59]. Thus,
endogenous choline and [''C]choline uptake in PET
provided complementary, differing, but valuable information
about the tumour microenvironment. Advanced simulta-
neous PET/MRI cerebral activation studies applying
BOLD-fMRI and ['*F]FDG-PET have revealed complemen-
tary brain networks as a response to whisker stimulation in
the rat [60].

Few publications using classification algorithms in
analysis of PET/MRI data already exist. Schmidt et al.
showed that Gaussian distribution models on ['*FJFDG-PET
and ADC can be used to separate different tissue regions
within tumours of bronchial carcinoma patients [61].
Dukart et al. used a support vector machine classification
algorithm to detect and differentiate Alzheimer’s disease
and fronto-temporal lobar degeneration from ['*F]JFDG-
PET and MR images [62].

New Evidence That Has Been Reported (Table 4)

New evidence based on larger cohorts was not presented.
Panellists discussed the promise of anecdotal pilot data from
prostate cancer patients undergoing multi-parametric PET/
MR imaging (T2-weighted MRI, ADC, kinetic parameters

Fig. 2 The IEC 61675-1 standard body-phantom: a For imaging, the phantom can be filled with fluid and tracer. Examples of
inhomogeneous MR excitation in water (b) and inhomogeneous PET-tracer distribution in oil-based substances (c) in the

described phantom are shown in the images on the right.
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Table 4. Status quo DB4: Advanced PET/MRI and multi-parametric imaging

Fully integrated PET/MRI exclusively offers the largest variety of multi-parametric biomarkers
Validation of advanced multi-parametric biomarkers in clinical research (beyond “image fusion”)
Contributions of small animal imaging to the understanding of multi-parametric biomarkers

2012 2013 2014
> N 1
N A 7
“— Ve 1

from dynamic contrast-enhanced MRI and ["'C]choline
PET) hinting at high accuracy values.

Future Challenges

Quantitative MR parameters are often inconsistent and
vary significantly between studies; these variations are
caused mainly by variability in protocols, analysis methods
and non-standardised workflows. In addition, PET tracer
uptake is not entirely dependent on the availability of
specific transporters or receptors but instead depends also
on physiological parameters such as blood flow, oxygen-
ation or, in preclinical small animal research, anaesthesia.
Thus, the inter-study variability of PET and MR data
mandates reliable and standardised imaging protocols.
Furthermore, acquisition protocols and data analysis tools
(in-house or vendor-specific) need to be evaluated or
established. The benefit of multi-parametric imaging data
and its analysis using classification algorithms for detec-
tion of diseases and assessment of therapy response needs
to be addressed in the future.

Dialogue Board 5: PET/MRI in Paediatric
Oncology

The Issues

Paediatric oncology continues to be a focus for expanding
the application of PET/MRI, with an opportunity to take
advantage of the benefits of reduced radiation exposure of
the paediatric patients [15] and the potential gains afforded
by a single integrated PET/MRI examination. The European
paediatric centres to date have been more successful at
implementing PET/MRI protocols than their North Ameri-
can counterparts, but this is a trend that will likely shift in
favour of more universal utilisation of PET/MRI in the
majority of larger medical centres. However, there is general
consensus on the need to produce high-quality evidence to
support and expand the utilisation of PET imaging in
paediatric oncology, where the majority of cases to date
are still primarily the lymphoma and Ewing sarcoma.

Recent Advances or Achievements

Over the past year, representatives of three major German
treatment centres reported that they had moved to
performing PET/MRI almost exclusively for children with

cancer, unless there are specific contraindications to doing
so [63]. Following the presentation of detailed clinical
perspectives, the panellists agreed on standard protocol
considerations when imaging children and adolescents with
combined PET/MRI (Fig. 3).

For staging of Hodgkin’s lymphoma (HL), the panel felt
that PET/MRI can now be used with confidence to evaluate
the sites of disease and is superior to PET/CT for detecting
and characterising spleen and bone marrow involvement.
The use of contrast for the MRI examination is essential, and
dynamic contrast sequences can further enhance the accura-
cy of lesion detection [64]. For restaging of HL in
adolescents, DWI complements the ['*F]JFDG-PET findings
in predicting treatment response, suggesting that PET/MRI
combined with DWI could provide added value [65].
Furthermore, the surveillance of lymphoma patients under-
going chemotherapy may benefit from the incorporation of
chemical shift MR into the protocol to aid in distinguishing
residual lymphoma from thymic rebound [66].

All panellists agreed that PET/MRI can effectively
replace PET/CT for the majority of lymphoma patients,
including patients who underwent a PET/CT for initial
staging. In addition, lymphoma patients receiving a restaging
PET/MRI examination may not require repeat CT imaging
of the thorax unless the MR images are considered
unsuitable for excluding lung nodules.

Imaging of other tumour types, e.g., soft tissue sarcoma,
germ cell tumours and thyroid cancer, will likely follow the
sarcoma protocol for initial staging and response assessment,
with tumour-specific sequences, contrast agents, and imag-
ing planes as appropriate (Fig. 3).

New Evidence That Has Been Reported (Table 5)

Panellists from Tiibingen reported on a local study of 20
examinations of 18 patients undergoing PET/CT and PET/MRI
on the same day, which showed that MRI provided additional
value in characterising soft tissue lesions, and offered
significant radiation dose reduction as compared to CT [67].
There was evidence suggesting that clinically significant lung
nodules were visualised by both PET/MRI and PET/CT,
although CT remains superior for detecting small lung nodules
[63]. The panellists further emphasised the role of PET/MRI in
neurofibromatosis-1 (NF-1) patients being screened for devel-
opment of malignant peripheral nerve sheath tumours
(MPNST). However, there was no consensus on how
frequently the combined PET/MRI imaging surveillance scan



306 D.L. Bailey et al.: Combined PET/MR: The Real Work Has Just Started Summary Report

Disease specific considerations

Coverage Contrast Separate chest CT
Lymphoma (HL and some NHL)
Staging/Restaging (in case of relapse) Eyes to Thighs Yes Yes*
Re-staging/Response assessment Same as staging Yes Yes®
Note: May reduce coverage if allowed by Note: May consider eliminating if staging Chest
protocol (e.g. Neck/Chest for stage 2 HL) CT is negative and allowed by protocol
Sarcoma (Ewings, osteosarcoma, RMS, NRSTS)
Staging Whole body (vertex to toes) Yes Yes
Re-staging/Interim response assessment Whole 8ody Yes Yes
Note: Coverage may be reduced to torso, Note: May consider eliminating if staging Chest
depending on disease type and stage CT is negative and allowed by protocol

Other Tumor Types

Likely to follow the sarcoma algorithm for initial staging, with tumor specific sequences,
contrast agents, and imaging planes as appropriate for the tumor type.

Core Whole Body Diagnostic MR sequences for Pediatric Oncology PET/MR

Purpose Coverage area MR Sequence type
Required
Attenuation Whole body Coronal T1 3D VIBE Dixon
Correction
Recommended
Pre-Gd contrast
Whole body Coronal STIR, with navigotor/respiratory gating
Whole body Coronal T1 (or T1 VIBE, 3D mode)
Axial fat-suppressed T2 (FSE-T2, STIR, T2-BLADE, T2-HASTE)
Neck/torso
Whole body Axial DWI (b=50, 800)
Post-Gd contrast
Whole body Coronal T1 VIBE
Axial T1/fs VIBE (vs constructed from isotropic 30 mode
Coronal acquistion)
Optional
Neuro Brain Sag T1 (MPRAGE)
Brain Axial T2 FLAIR
Entire spine Sagittal STIR
Body Liver or Lesion DCE-MRI
Lungs Thorax T2-HASTE (with breath hold)

T1/fs 3D VIBE (post-Gd, with breath hold)
Optimal with a short training explanation to the child before
the examination

Fig. 3 Current recommended applications of PET/MRI in paediatric oncology. Note that separate chest CT (all indications)
may be omitted if MRI clearly demonstrates pulmonary manifestations and if allowed by protocol (*if required by protocol or in
the case of inconclusive MRI).

Table 5. Status quo DB 5: PET/MRI in paediatric oncology

2012 2013 2014
Clinical evidence on the usefulness of PET/MRI in paediatric oncology R / 7
Reduced radiation exposure as a key driver for PET/MRI of children a il )

Initial results of a complementary role of advanced MR techniques for restaging of lymphoma patients — « 7
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should be performed compared with MRI alone, and perhaps
not surprisingly, in which SUV cut-off will provide the greatest
accuracy for detecting MPNST.

Hirsch et al. reported an improved detection of small lung
metastases with the use of respiratory-triggered thoracic MR
as an alternative to chest CT [63]. Others have reported on
the added value of a contrast-enhanced VIBE sequence for
lung nodule detection [68]. Chest CT is still mandatory in
both ongoing US and European paediatric HL treatment
protocols, although in some cases, lymphoma patients
undergoing a PET/MRI examination for response assess-
ment may not need repeat CT imaging of the thorax as
discussed previously. The panellists reported that the
majority of patients (including children as young as 6 years
of age) were able to undergo the examination without
sedation, noting that child-specific patient preparation
procedures, particularly in the outpatient setting, are
essential.

All panellists provided compelling arguments for moving
to PET/MRI in an effort to achieve radiation doses that aim
for “As Low As Reasonably Achievable” (ALARA). It was
shown that substantial reductions in effective patient
radiation dose from ~25 mSv [67] for combined diagnostic
CT and PET/CT exams to ~7 mSv for the PET/MRI
examination can be achieved using the recommended
activities for 3D acquisition of the European Association of
Nuclear Medicine (EANM) guideline for ['*FJFDG-PET in
paediatric oncology [69, 70].

Future Challenges

To date, there has been considerable variability in adminis-
tered dose levels of ['*F]JFDG, particularly with some PET/
MRI studies being performed after PET/CT as part of
combined examinations. ['®F]FDG administration should
follow the EANM paediatric dosage card with the recom-
mended weight-dependent standard activities for 3D PET
acquisitions [71]. Discussions are ongoing regarding the
higher ['®F]FDG radioactivity levels given in the
harmonisation project of 2014 [72]. However, in view of
the increased PET(/MR) acquisition times (~7 min/bed
position), panellists noted an opportunity to further reduce
the amount of injected activity by 30-50 % of the weight-
dependent standard activity, leading to additional decreases
in patient exposure without compromising image quality.
This could result in effective doses for ['*F]JFDG-PET/MRI
in children well below 3 mSv.

The panel agreed on including whole-body DWI in their
standard whole-body MR protocol as part of the combined
PET/MRI study. There are limited data showing the added
value of combining ADC measurements with quantitative
['®F]FDG uptake. Standard MR-AC methods today do not
adequately account for bone attenuation. Extending existing
ultrashort TE (UTE) sequences to whole-body sequences
will be important for paediatric oncology applications where

bone marrow involvement is common, and bone attenuation
can affect SUV quantification.

Non-oncologic investigations in children are still limited
and include rheumatologic, infectious, neurologic and
orthopaedic/sports medicine applications. The panel agreed
that the future success of PET/MRI depends on expanding
the applications to include both non-oncologic processes and
other non-['®F]FDG-PET tracers (e.g., ['*F]JFDOPA,
[**Ga]DOTATATE in neuroblastoma).

Dialogue Board 6: PET/MRI
in Cardiology

The Issues

The adoption of combined PET/MRI for cardiology and
cardiovascular disease (CVD) has just begun, and experi-
ences are rather limited. Before PET/MRI can be used in
clinical research, or even routine imaging, a number of
methodological challenges regarding data acquisition, post-
processing and quantification have to be addressed. For
example, standard MR-AC yields a bias in tissue radioac-
tivity concentrations of up to 30 %, which may affect the
differentiation of viable myocardium from scar tissue.
Perhaps more importantly, substantial motion-induced mis-
alignment affects the reliability of absolute quantification of
myocardial perfusion imaging using ['°O]water, ['*N]am-
monia and also [**Rb]rubidium chloride. While the simul-
taneous acquisition of dynamic PET and MRI data is, in
principle, possible in both perfusion and viability protocols,
the extraction of the PET list mode data for post-processing
(e.g., rebinning, gating) is a major challenge in the absence
of user-friendly data-handling tools. Finally, the integration
and joint display of parametric images and other quantitative
data is not yet easily facilitated with the user interfaces
currently available. Likewise, fused dynamic sequences,
whole-heart views, heart axis reorientation or multi-modal
polar plot (“bull’s eye”) displays are missing in many
general software packages, thus rendering the usefulness of
combined PET/MRI low for clinical research applications
today, unless major in-house programming supports subse-
quent data analysis workflows.

Recent Advances or Achievements

There is recent evidence of the ability of specific MRI
protocols to deliver parameters that help identify unstable
plaque structures in the context of atherosclerosis of the
carotids. In addition, vascular inflammation, an important
predicting factor for plaque instability, can be estimated
reliably with ['*F]FDG and also with ['®F]fluoride PET [73,
74], both offering the advantage of a whole-body approach
that includes the assessment of large vessels (Fig. 4). A
number of groups have already commenced feasibility
studies of PET/MR for carotid imaging, where the
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attenuation correction of MR carotid coils potentially
hampers the quantification of the PET signal, so that PET
SUV would have to be adapted from published thresholds of
the PET/CT systems.

New Evidence That Has Been Reported (Table 6)

Besides standard PET biomarkers for perfusion and
viability estimation, there are further imaging biomarkers
available for cardiovascular applications. Of special inter-
est are biomarkers, which potentially add important
information to the MRI parameters, such as innervation
tracers ([''C]-(-)-m-hydroxyephedrine (HED) and N-[3-
bromo-4-(3-['*F]fluoro-propoxy)-benzyl]-guanidine
(LMI1195)), tracers for the detection of infection and
inflammation like sarcoidosis or tracers for the detection
and differential diagnosis of structural heart disease (e.g.,
amyloid deposition, 2-(4'-[''C]methylaminophenyl)-6-
hydroxybenzothiazole (PIB) or novel fluorinated tracers).
Also, chronic inflammation or fibrosis is of increasing
interest, so that, for example, MRI T1w fibrosis mapping
[75] in combination with neo-angiogenesis markers
(["*F]fluoro-RGD) or collagen-specific markers [76] could
improve the differential diagnosis of non-ischaemic
cardiomyopathies.

Table 6. Status quo DB 6: PET/MRI in cardiology

/ 200 px

Fig. 4 An example of psoriatic arteritis imaged with simultaneous ['®F]FDG-PET/MRI: a MRI, b fused PET and MR, and ¢ PET.

Future Challenges

The panellists agreed on the need for analysis tools for
standard and research applications of PET/MRI for cardio-
vascular disease. In parallel, users must identify the strongest
parameters from each modality through fair comparison
studies from simultaneous acquisitions in order to avoid
redundant information from PET/MRI acquisitions. In
parallel, protocols need to be adjusted and tailored to an
overall examination time of 30 min, or less for increased
patient comfort. As with other applications of PET/MRI,
protocol standardisation and harmonisation efforts must be
followed.

Round-table (RT1): Key Applications
of PET/MRI ( ) y APP

The Issues

In concordance with the outcome of the second workshop
[2], panellists and participants of this dialogue board agreed
on the sole term “key application”, rather than the more
emotive and sensationalist “killer application”, to describe a
“a process for gathering new information that is substantially
more useful and provides greater diagnostic clarity than any
other measure at this time”. Despite the agreement on this
definition, the workshop attendees failed to nominate a

2012 2013 2014
Resolution of methodological issues for CVD imaging (MR-AC, motion correction) NA Vd Ve
Develop analysis tools for standard CVD applications NA “ e
Identification of key parameters/biomarkers from PET and MR to avoid redundancy in PET/MRI data NA — Ve
Standardised imaging protocols NA - o
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single key application. As discussed in DB1, one reason may
lie in the limited usefulness of ['*F]JFDG in key oncologic
imaging applications of MR (and, thus, PET/MRI), such as
imaging of brain tumours and local and metastatic prostate
cancer.

Since the last workshop held a year ago, the rate of PET/
MRI system installations has not increased dramatically; this
attests to the continued lack of clearly defined and accepted
key applications. While several attendees voiced their
preference for the use of PET/MRI for selected indications,
such as paediatric imaging and imaging neuropsychiatric
disorders, little evidence was available to validate the
selection of these applications from multiple centres. This
lack of perceived significant progress can perhaps be
explained by the current focus on clinical indications that
are well served already by MR-only or combined PET/CT
imaging, namely, cardiovascular disease and cancer. While
cancer is perceived by many to represent the largest health
care burden, other diseases such as diabetes, joint disorders
or mental illnesses cause similar health care burdens and
productivity losses as cancer and potentially may be more
promising targets for a new imaging modality such as PET/
MRI. Other applications of PET/MRI in the future may
include imaging of advanced coronary artery disease and
heart failure and imaging of infection and inflammation.

PET/MRI does hold the potential to provide a number of
methodological improvements over separate PET and MR
imaging and over PET/CT imaging. These include, but are
not limited to, accurate patient alignment, the recording of
dynamic and moving phenomena, an absolute match
between tissue information from both modalities under
identical physiological conditions, and better localisation of
PET signal in the soft tissue. In spite of more research teams
making greater efforts to assess these potential improve-
ments, no major advance has been reported yet for clinical
routine use.

Expanding on the clinical scope, workshop attendees
discussed the need to standardise PET/MRI imaging
protocols as a prerequisite for supporting PET/MRI for
selected key applications. While PET and PET/CT
standardisation are comparatively well advanced and accept-
ed among nuclear medicine specialists, MR standardisation
remains problematic. With PET/MRI, in particular, imaging
protocols can become “open-ended” as more, often super-
fluous, MR sequences are added to the examination. This
observation has prompted further discussions aimed at

Table 7. Status quo RT1: Key applications for PET/MRI

reducing the overall examination time to 30 min or less for
oncology indications.

The perceived complexity of PET/MRI protocols (as
discussed already in [2]) has led attendees to question
the scope of a key application of PET/MRI. Subse-
quently, several panellists and audience members sug-
gested that “research” was actually the key application
of PET/MRI today. All agreed that for a key clinical
application of PET/MRI to be found, four major hurdles
need to be addressed:

e The number of approved and reimbursed PET tracers
must be increased.

e PET/MRI acquisition protocols must be standardised with
total examination times being tolerable for patients.

e Significant improvements in acquisition and analysis
software matching the state-of-the-art in other imaging
technologies, such as stand-alone MRI and PET/CT.

e Clinical PET/MRI reports must be fully integrated.

Recent Advances or Achievements

Perhaps the most positive statement made during this work-
shop was “Clinical PET/MRI is now feasible”. This comment
reflects the increasing number of studies performed, even with
full awareness of the limitations of combined PET/MRI today,
such as biased, standard MR-AC and a number of imaging
artefacts specific to PET/MRI. Methodological improvements
were discussed in DB2 and include advances in the reproduc-
ibility of MR-based attenuation coefficients. As in 2013,
workshop attendees agreed on paediatric oncology, brain
tumour imaging and neurodegenerative diseases being worthy
indications for combined PET/MRI. However, few (if any)
additional clinical data from prospective studies have become
available to support this consensus.

New Evidence That Has Been Reported (Table 7)

The panel agreed that there is growing evidence
supporting the clinical usefulness of PET/MRI in paediatric
oncology and brain imaging.

Paediatric oncology is to become a key application of PET/MRI
Dementia is to become a key application of PET/MRI
Neuro-oncology is to become a key application of PET/MRI
Cardiovascular imaging is to become a key application of PET/MRI
Multi-centre evaluation of clinical PET/MRI

Multi-parametric imaging is a key driver for PET/MRI

2012 2013 2014
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Future Challenges

The attendees agreed on three main challenges to successful
clinical adoption of PET/MR. First, imaging protocols need
to be standardised, limited in time and limited to the
essential MR sequences for a given clinical indication.
Second, the combination of PET and MR needs to be
mirrored by a cooperative effort of complementary medical
and technical disciplines. As a first step, PET/MRI reports
should be fully integrated. Third, the commercial availability
of PET tracers, interrogating new aspects of tumour biology,
should be expanded.
In summary, a few PET/MRI actions were proposed:

Shorten clinical PET/MRI examination times
Standardise PET/MRI protocols within a given centre
Harmonise PET/MRI protocols across sites

Prepare for collecting multi-centre evidence

Consider a (paediatric) PET/MRI registry

Finally, one of the speakers appeared to sum up the mood
of the entire meeting in commenting that, “the real work has
just begun” with PET/MRI, and exciting times and
challenges lie ahead.

Summary

Combined PET/MR imaging was proposed for imaging
patients in the mid-2000s, and the first prototype designs
became available at selected sites in 2006 [77, 78]. Since
then, tremendous progress has been made with regard to
technical versatility and methodological approaches. Today,
three major imaging hardware vendors offer PET/MRI with
varying system designs. Most notably, more fully integrated
PET/MRI systems than co-planar PET/MRI systems have
been installed. Of the systems installed worldwide, about
one fifth have a co-planar PET/MRI system. Interestingly,
the clinical evidence of the need to perform PET and MR
imaging simultaneously rather than with a minimal offset in
time is limited. However, recent advances in clinical
research with PET/MRI favour the simultaneous acquisition,
as discussed in “Dialogue Board 4: Advanced PET/
MRI—Multi-Parametric Imaging” in particular.

General expectations for PET/MRI remain high. One
author/panellist (CLF) proposed the picture of an “egg-
laying-wool-milk-sow” (a terminology translated from its
German origin—Fierlegende Wollmilchsau), to describe an
animal that provides all kinds of food supplies and materials
at once. It became clear from this workshop that PET/MRI is
a long way from providing all types of information at once,
especially in a given and acceptable time. Perhaps most
importantly, this workshop suggested that consensus on
what information and what range of parameters is desired
was lacking for many applications of PET/MRI. Such
consensus, driven by a particular application or research

interest, is needed to support the establishment of PET/MRI
in clinical routine.

Workshop panellists agreed that lessons should be
learned from the adoption of PET/CT and that PET/MRI
needs to be accepted as a single modality from the start.
This unified recognition will aid the adoption of PET/
MRI in a clinical environment of steadily growing
complexity. Likewise, the future of PET/MRI was seen
not in being used by an individual medical specialist but
rather in providing multi-parametric data that should be
interpreted in a multi-disciplinary approach. PET/MRI,
whilst offering an integrated technical platform, also
requires an integrated approach from complementary
medical specialists. The need to explore data mining of
already acquired (multi-centre) data, as well as of multi-
parametric data to be acquired, was recognised as a key
challenge for PET/MRI users. Finally, this workshop
concluded that technical innovation with PET/MRI
outpaces regulatory processes and legislation that are
essential for the local adoption and wider dissemination
of this imaging technology in modern health care
systems.

Recognising the outcome of the discussions of the
previous two workshops held in Tiibingen in 2012 and
2013 [1, 2], panellists at this year’s workshop were able to
further specify progress made in the areas of oncology,
cardiology, neurology and paediatric imaging as well as in
methodology and quantification and multi-parametric imag-
ing. We have included our summary perspectives in the
status quo tables following the descriptions of each dialogue
board.

This workshop identified four main challenges that must
be addressed to speed up the adoption of PET/MRI in
clinical practice.

1. The total examination time needs to be less than 30 min.

2. PET/MRI imaging protocols must be standardised.

3. To allow full quantification of the PET image data, full
inter-vendor comparability of MR-based attenuation
values must be ensured.

4. Explore a holistic approach to multi-parametric imaging
and data mining

It was the intent of all panellists to continue the course of
this workshop, and therefore, the next workshop will be held
in Tibingen from February 23 to 27, 2015. By then,
workshop attendees will need to review progress on the
following steps identified at this year’s meeting as necessary
short-term activities for bolstering the promise of combined
and integrated PET/MRI: (i) set up a central PET/MRI
registry, (ii) establish common quality control guidelines for
PET/MR and (iii) develop analysis tools that provide
quantitative image information beyond simple SUV analysis.

As stated in the title of this workshop review: “the real
work has just started”. Let us take this as a positive spin on
PET/MRI and join forces.
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