
Biophysical Journal Volume 108 May 2015 2291–2299 2291
Article
Flanking A$T Basepairs Destabilize the B* Conformation of DNA A-Tracts
Earle Stellwagen,1 Qian Dong,2 and Nancy C. Stellwagen1,*
1Department of Biochemistry and 2Department of Internal Medicine, University of Iowa, Iowa City, Iowa
ABSTRACT Capillary electrophoresis has been used to characterize the interaction of monovalent cations with 26-basepair
DNA oligomers containing A-tracts embedded in flanking sequences with different basepair compositions. A 26-basepair
random-sequence oligomer was used as the reference; lithium and tetrabutylammonium (TBAþ) ions were used as the
probe ions. The free solution mobilities of the A-tract and random-sequence oligomers were identical in solutions
containing <~100 mM cation. At higher cation concentrations, the A-tract oligomers migrated faster than the reference oligomer
in TBAþ and slower than the reference in Liþ. Hence, cations of different sizes can interact very differently with DNA A-tracts.
The increased mobilities observed in TBAþ suggest that the large hydrophobic TBAþ ions are preferentially excluded from the
vicinity of the A-tract minor groove, increasing the effective net charge of the A-tract oligomers and increasing the mobility.
By contrast, Liþ ions decrease the mobility of A-tract oligomers because of the preferential localization of Liþ ions in the narrow
A-tract minor groove. Embedding the A-tracts in AT-rich flanking sequences markedly alters preferential interactions of mono-
valent cations with the B* conformation. Hence, A-tracts embedded in genomic DNA may or may not interact preferentially with
monovalent cations, depending on the relative number of A$T basepairs in the flanking sequences.
INTRODUCTION
DNA A-tracts, runs of four or more A$T basepairs not inter-
rupted by a TpA basepair step, exhibit a unique conforma-
tion, often called the B* conformation, that differs from
that of normal B-DNA by having a narrow minor groove,
propeller twisted basepairs, and bifurcated hydrogen bonds
between the two strands (1–5). NMR experiments have
shown that DNA A-tracts are intrinsically curved, although
the curvature is delocalized and extends into the nucleotides
flanking the A-tracts (6–8). Bending at the junctions be-
tween B-form and B*-DNA can lead to macroscopic curva-
ture of the helix backbone when the A-tracts are repeated in
phase with the helix screw (3–5,9).

DNA A-tracts have been the focus of much attention in
recent years because they are overrepresented in genomic
DNA (10) and are found near many origins of replication
and transcription factor binding sites (5,10–12). However,
the biological role of DNA A-tracts in the cell is not
well understood (5), most likely because the B* conforma-
tion is in rapid equilibrium with normal B-DNA under
physiological conditions. The midpoint of the B*4 B tran-
sition occurs at temperatures between 30� and 40�C,
depending on the A-tract sequence and the ionic strength
of the solution (13–18). Furthermore, the macroscopic cur-
vature of the DNA backbone caused by A-tract phasing is
nearly eliminated in solutions containing ~200 mM mono-
valent cations (19).
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To better understand the role of DNA A-tracts in the cell,
it is important to characterize the interaction of various
monovalent cations with A-tract and non-A-tract DNAs in
various sequence contexts. Recent experimental studies
(20,21) and molecular dynamics simulations (22–24) have
indicated that monovalent cations in the counterion cloud
(25) fill the major and minor grooves of the DNA, as well
as forming a shell of condensed ions around the helix.
Various x-ray and NMR experiments have shown that
monovalent cations can be preferentially localized in the
A-tract minor groove, displacing some of the water mole-
cules in the spine of hydration at the base of the groove
(6,26–30). Whether the localization of monovalent cations
in the A-tract minor groove leads to narrowing of the
groove and the formation of the B* conformation, or
whether cation localization is due to the presence of the
intrinsically narrow A-tract minor groove, is still a matter
of debate (6,24,31–37).

Most studies of the interaction of monovalent cations with
DNAA-tracts have focused onA-tracts flanked byG$Cbase-
pairs, even though A-tracts are surrounded by a variety of
flanking sequences in genomic DNA. Here, we use free solu-
tion capillary electrophoresis (CE) to analyze the effect of
the flanking sequences on the interaction of monovalent cat-
ions with DNA A-tracts. CE is a useful technique for such
studies because the electrophoretic mobility of a small
DNA oligomer is directly proportional to its effective charge
after counterion condensation (38–42) and inversely propor-
tional to its translational friction coefficient (19,43,44).
Because the translational diffusion coefficients of small
DNA oligomers containing the same number of basepairs
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TABLE 1 Acronyms and sequences of oligomers containing

two phased A4T1-tracts and variable numbers of flanking A$T

basepairs

Acronym Sequence

A4T1in(0) CGCAAAATCGGGCAAAATCGGCGGCG

A4T1in(1) CGCAAAATCGGGCAAAATCGCTGGCG

A4T1in(2) CGCAAAATCGGTCAAAATCGGCTGCG

A4T1in(3) CGCAAAATCTGTCAAAATCGCTGGCG

A4T1in(4) CGCAAAATCTGTCAAAATCTGCGTCG
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are essentially independent of the presence or absence of
A-tracts (42,43,45), the free solution mobilities of small
DNA oligomers reflect differences in effective charge due
to sequence-dependent cation interactions.

We have previously used CE to demonstrate that A-tract
oligomers migrate more slowly than non-A-tract oligomers
containing the same number of basepairs (45–48). We
showed that the decreased mobility depends on the length
and sequence of the A-tract(s), as well as the identity of
the monovalent cation in the solution (46–48). The
decreased mobility is due to the preferential localization
of monovalent cations in the A-tract minor groove, because
no mobility decrease is observed if the minor groove is
blocked by the binding of netropsin (46). We have also char-
acterized the dependence of DNA electrophoretic mobilities
on the ionic strength of the solution and the charge density
of the polyion (49–51). Finally, we showed that the curva-
ture of A-tract-containing DNA molecules is markedly
reduced in solutions containing ~200 mM cation, even
though monovalent cations are still preferentially localized
in the A-tract minor groove (19). Hence, curvature of the
DNA helix backbone and the preferential localization of
monovalent cations in the A-tract minor groove are not
necessarily linked. That being the case, we define the B*
conformation as one in which the A-tract has a narrow mi-
nor groove and is capable of preferentially interacting with
monovalent cations.

In this study, we use CE to analyze the effect of different
flanking sequences on the interaction of DNA A-tracts with
monovalent cations. The oligomers were 26 bp in size, had
AþT contents ranging from 38% to 81%, and contained one
or two A-tracts of different lengths. The reference was a
26-bp random-sequence oligomer containing 46% AþT.
Two different monovalent cations were investigated, the
large hydrophobic tetrabutylammonium ion (TBAþ) and
the small hydrophilic ion, Liþ. The A-tract oligomers
and the reference have the same mobility in solutions con-
taining <~100 mM cation, suggesting that A-tract oligo-
mers exhibit the normal B conformation in low ionic
strength solutions. At higher cation concentrations, TBAþ

ions are preferentially excluded from A-tracts in the B*
conformation, increasing the effective net charge of the
A-tract oligomers and increasing the mobility. By contrast,
Liþ ions are preferentially localized in the A-tract minor
groove, decreasing the effective net charge and decreasing
the mobility of the A-tract oligomers. Embedding the
A-tracts in AT-rich flanking sequences alters the preferential
interactions of TBAþ and Liþ ions with DNA A-tracts.
A4T1in(5) CGCAAAATCTGTCAAAATCTGTCTGC

A4T1in(6) CGTAAAATCTGTCAAAATCTGTCTCG

A4T1in(7) CGTAAAATCTGTCAAAATCTATCTCG

A4T1in(8) CGTAAAATCTGTCAAAATCTATTACG

A4T1in(9) CGTAAAATCTATCAAAATCTATTACG

A4T1in(10) CGTAAAATATATCAAAATCTATTACG

A4T1in(11) CGTAAAATATATCAAAATATATTACG

The A-tracts are underlined for clarity.
MATERIALS AND METHODS

DNA samples

The 26 bp DNA oligomers used in this work were synthesized by IDT (Cor-

alville, IA) and purified by polyacrylamide gel electrophoresis. Duplexes
Biophysical Journal 108(9) 2291–2299
were prepared by mixing equimolar quantities of two complementary

strands (1 mg/mL) in 10 mM Tris-chloride buffer, pH 8.0, heating to

94�C for 5 min and slowly cooling to room temperature. The concentrated

stock solutions were stored at �20�C until needed. The oligomers are

identified in the following text by acronyms denoting the A-tract

sequence and phasing, followed by a number in parentheses indicating

the number of A$T basepairs in the flanking sequences. The acronyms

and sequences of the various oligomers are given in Tables 1 and 2. The

reference, Ra(12), was a random-sequence 26-bp oligomer containing

12 A$T basepairs and 14 G$C basepairs; its sequence is given as the first

entry in Table 2.
Buffers

Most buffers used as the background electrolyte (BGE) contained 200 mM

diethylmalonic acid ((CH3CH2)2C(COOH)2, Sigma-Aldrich, St. Louis,

MO), titrated to pH 7.3, the pKa of the second carboxyl group at 25�C,
with a concentrated solution of the hydroxide of Li þ or TBAþ (Sigma-

Aldrich). Because the second carboxyl group of diethylmalonic acid is

half ionized at pH 7.3, the total cation concentration in the diethylmalonate

buffers was 300 mM; the ionic strength was 400 mM. Mobilities measured

as a function of BGE concentration used Liþ or TBAþ as the cation and

acetate as the anion.
Capillary electrophoresis

Capillary zone electrophoresis measurements were carried out using a

Beckman Coulter P/ACE System MDQ Capillary Electrophoresis System

(Fullerton, CA), run in the reverse polarity mode (anode on the detector

side) with ultraviolet detection at 254 nm, as described previously (52).

Migration times and peak profiles were analyzed using the 32 Karat soft-

ware. The capillaries were internally coated LPA (linear poly-acrylamide)

capillaries from Bio-Rad (Hercules, CA). The LPA coating minimizes the

electroosmotic flow (EOF) of the solvent without affecting the mobility

of the analyte (38). The capillaries were 40.0 cm in total length, with

external diameters of 375 mm and internal diameters of 75 mm, mounted

in a liquid-cooled cartridge. The capillary was conditioned at the beginning

of each day, and between experiments, by rinsing with the BGE for 5 min at

high pressure (25 psi, 0.17 Mpa). The capillary was rinsed with deionized

water at 25 psi for 5–10 min at the end of each day and stored in deionized

water overnight. All samples contained an A-tract oligomer and the

reference, Ra(12), mixed in different molar ratios to enable easy identifica-

tion. The samples were hydrodynamically injected into the capillary by

applying low pressure (0.5 psi, 0.0035 Mpa) for 3 s. The sample volume



TABLE 2 Acronyms and sequences of the reference, Ra(12),

and oligomers with variable A-tracts and flanking sequences

Acronym Sequence

Ra(12) CGCAGTGTACGACTAGACTACAGACG

A3(9) CGCAAAGCGATCGACACTAGTACTCG

A3(13) CGCAAAGTGTCTATACATATGTATCG

A2T2(8) CGCAATTCTATATGCTCCGCAGACCG

A3T3(6) CGCAAATTTCTATGCTCCGCAGACCG

A4T4(4) CGCAAAATTTTCTGCTCCGCAGACCG

A5T5(2) CGCAAAAATTTTTACTCGCCGCGCCG

A4in(4) CGCAAAAGCGTCGAAAACCTCTCTCG

A4in(8) CGCAAAAGTGTCTAAAATCTGTTCTG

A5in(2) CGCAAAAAGCCGCAAAAACCTCGTCG

A5out(2) CGCAAAAAGCCGCCTGAAAAACCTCG

A5¼T5in(2) GCCAAAAAGCTCGTTTTTCCGCACCG

A5¼T5out(2) CGCAAAAAGCTCGCCTTTTTGCACCG

A2T2in(4) CGCAATTCGTCACAATTCTGCGACCG

A3T3in(0) CGCAAATTTCGCCAAATTTCGCGCCG

A3T3in(4) CGCAAATTTCGACAAATTTCTAGTCG

A3T3out(4) CGCAAATTTCGAGTCAAATTTCTACG

A3T4in(2) CGCAAATTTTCGCAAATTTTCAGACG

A4T2in(4) CGCAAAATTCGTCAAAATTCTGTCTG

A4T3in(2) CGCAAAATTTGTCAAAATTTCGCTCG

A4T4in(0) CGCAAAATTTTCGAAAATTTTCGCCG

A4T4out(0) CGCAAAATTTTCGCGCAAAATTTTCG

A4T40in(0) CGCCGCAAAATTTTCGAAAATTTTCG

ApT3in(0) CAAATTCGGCAAATTTCGCAAATTCG

All oligomers contained 46% or 62% AþT. The A-tracts are underlined for
clarity.
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was 22 nL; the length of the sample plug was 0.51 cm, ~1.3% of capillary

length. The DNA concentration ranged from 10 to 50 ng/mL; mobilities

measured within this range are independent of DNA concentration (38).

Unless otherwise indicated, the temperature of all experiments was

20.0� 5 0.1�C. The applied electric field was typically 90–110 V/cm

(3.5 to 4.5 kV applied voltage); the mobilities were independent of the

applied field within this range. The current ranged between 40 and

70 mA, depending on the ionic strength and cation identity. The residual

EOF in the capillary, measured every day by the fast method of Williams

and Vigh (53), was typically ~5 � 10�6 cm2/Vs for a new capillary.

When the EOF increased to ~2 � 10�5 cm2/Vs, indicating deterioration

of the capillary coating, the capillary was replaced.
Mobility calculations

Because the EOF was negligibly small, DNA electrophoretic mobilities, m,

were calculated from Eq. 1:

m ¼ Ld=E t; (1)

where Ld is the distance to the detector (in cm), E is the electric field

strength (in V/cm), and t is time required for the sample to migrate from
FIGURE 1 (A) Dependence of the mobility ratios, m(A-tract)/m(random),

observed for: (�,B), A4T1in(0); (:,D), A4T1in(6); and (A,>),

A4T1in(10) as a function of cation concentration in BGEs containing:

TBAþ (solid symbols) or Liþ (open symbols). The error bars correspond

to the standard deviation of replicate measurements in each BGE. (B) Frac-

tional change of the mobility ratios observed for A4T1in(0) and A4T1in(6)

as a function of cation concentration; the transition midpoint occurs at

150 5 10 mM cation.
the capillary inlet to the detector (in seconds). The mobilities were analyzed

either by calculating mobility differences [m(A-tract) – m(random)] or

mobility ratios [m(A-tract) /m(random)]. Mobility ratios were used when

comparing mobilities measured at different temperatures or in BGEs con-

taining different cation concentrations; the more intuitive mobility differ-

ences were used when comparing mobilities measured in the same BGE.

Negative mobility differences, or mobility ratios <1.000, indicate that the

A-tract oligomers migrated more slowly than the reference; positive

mobility differences, or mobility ratios >1.000, indicate the opposite. For

convenience, the mobility differences are reported in mobility units

(m.u., 1 m.u. ¼ 1 �10�4 cm2V�1s�1). Transitions were analyzed either

by 4-parameter sigmoidal fits or 3-parameter exponential decays using
the equations given in SigmaPlot; the transition midpoints and estimated

uncertainties were taken from the fits.

All mobility measurements were repeated at least twice; duplicate mea-

surements made on the same day usually differed by <50.2%. Mobility

measurements made on different days could differ by up to51.0% because

of transient changes in the capillary coating, which affected the EOF. These

EOF variations had no effect on the mobility differences and only a small

effect on the mobility ratios, as shown below in Fig. 1 A.
RESULTS AND DISCUSSION

TBAD and LiD ions have opposite effects on the
mobility of A-tract oligomers

The free solution mobilities of oligomers A4T1in(0),
A4T1in(6), and A4T1in(10) were determined as a function
of cation concentration in BGEs containing various concen-
trations of TBAþ or Liþ ions, with the results shown in
Biophysical Journal 108(9) 2291–2299



FIGURE 2 Dependence of the mobility ratios observed for oligomer

A4T1in(6) on temperature in: (B), 300 mM Liþ; and (�), 300 mM

TBAþ. The midpoints of the thermal transitions are 39 5 1�C in Liþ

and 27 5 1�C in TBAþ.
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Fig. 1 A. Mobility ratios are used to eliminate differences in
the viscosities and dielectric constants of BGEs containing
different concentrations of Liþ or TBAþ. The mobility
ratios observed in TBAþ (solid symbols) were close to
1.000 at low [TBAþ] and increased sigmoidally to
values >1.000 before leveling off at constant plateau values
at TBAþ concentrations of ~300 mM and greater. The
amplitudes of the plateau mobility ratios decreased with
the increasing number of flanking A$T basepairs in the
oligomer.

In BGEs containing Liþ, the mobility ratios observed for
A4T1in(0) and A4T1in(6) were equal to 1.000 at low [Liþ],
and then decreased sigmoidally at higher [Liþ], as shown by
the open circles and triangles in Fig. 1 A. The mobility ratios
leveled off at a plateau value of 0.993 at Liþ ion concentra-
tions of ~250 mM and greater. Mobility ratios <1.000 indi-
cate that oligomers A4T1in(0) and A4T1in(6) migrated
more slowly than the reference at high [Liþ]. By contrast,
oligomer A4T1in(10) migrated with the same mobility as
the reference, as shown by the open diamonds in Fig. 1 A,
so that the mobility ratio was equal to 1.000 at all [Liþ].
Mobility ratios equal to 1.000 are also observed for oligo-
mers without A-tracts (46).

Fig. 1 B shows that the mobility ratios observed for olig-
omers A4T1in(0) and A4T1in(6) in Liþ and in TBAþ,
normalized by dividing each data set by the plateau mobility
ratio observed at high cation concentrations, exhibited a
common dependence on cation concentration with a com-
mon midpoint, 150 5 10 mM. Hence, even though the
mobility ratios differed in sign and amplitude in TBAþ

and Liþ, the mobility ratios exhibited the same dependence
on ionic strength. The results suggest that the A-tracts have
the normal B conformation at low ionic strengths and the
B* conformation becomes more highly populated with
increasing cation concentration. Alternatively, it is possible
that the mobilities of B* and B-DNAs are equal at low ionic
strengths and that preferential interactions with monovalent
cations depend on cation concentration. The preferential in-
teractions of TBAþ and Liþ ions with the A-tract oligomers
reached their limiting plateau values in solutions containing
250 to 300 mM cation. Therefore, all further experiments
were carried out in BGEs containing 300 mM TBAþ or Liþ.
The mobility ratios depend on temperature

The mobility ratios observed for oligomer A4T1in(6) as
a function of temperature are illustrated in Fig. 2. In
300 mM Liþ (open circles), the mobility ratio gradually ap-
proached a value of 1.000 with increasing temperature, indi-
cating a gradual loss of the B* conformation with increasing
temperature. This transition, with a midpoint of 39� 5 1�C,
cannot be attributed to duplex melting; strand separation
gives an unmistakable CE signature with a decrease in the
amplitude of the duplex peak and the simultaneous appear-
ance of a peak with a much longer migration time (54,55).
Biophysical Journal 108(9) 2291–2299
Because these effects did not occur, the transition observed
in Liþwith increasing temperature is a premelting transition
characterizing the loss of the B* conformation with
increasing temperature. Similar premelting transitions with
similar melting temperatures have been observed for other
DNA A-tracts, using a variety of experimental methods
(14,16,56,57).

A premelting transition was also observed for oligomer
A4T1in(6) in 300 mM TBAþ, as shown by the solid circles
in Fig. 2. Hence, A-tract oligomers have the B* conforma-
tion in 300 mM TBAþ as well as in 300 mM Liþ. The
premelting transition observed in TBAþwas highly cooper-
ative, with a midpoint of 27 5 1�C. The sharper transition
and the relatively low premelting temperature compared
with Liþ suggest that TBAþ ions preferentially interact
with B-DNA, pulling the B* 4 B conformational equilib-
rium toward B-DNA with increasing temperature. By
contrast, Liþ ions apparently stabilize the B* conformation,
increasing the premelting temperature. The differing results
observed in Liþ and TBAþ suggest that the intrinsic pre-
melting temperature of the B* conformation of oligomer
A4T1in(6) lies somewhere between the premelting mid-
points observed in Liþ and TBAþ.
The observed mobilities are independent of DNA
shape

The mobility ratios and mobility differences observed for
the A-tract oligomers in TBAþ and Liþ could have been
due either to differences in shape or to differences in effec-
tive charge. Three observations suggest that the mobility
differences are not due to differences in shape. First, differ-
ences in shape are not observed in BGEs containing
300 mM cation (19). Second, previous studies have shown
that the translational diffusion constants of small DNA
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oligomers containing the same number of basepairs are in-
dependent of the presence or absence of A-tracts, within
experimental error (43,45). Third, mobility differences due
to differences in shape should depend on A-tract phasing.
Table 3 compares the mobility differences observed for
four pairs of oligomers with A-tracts in- and out-of-phase.
The DDm values [DDm ¼ Dm(in) – Dm(out)] ranged from
0.0001 to 0.0037 m.u. for the four phasing pairs in TBAþ

and in Liþ, with mean values of 0.0017 5 0.0015 m.u.
and 0.0016 5 0.0006 m.u., respectively. The DDm values
exhibited no particular trend with A-tract length or the num-
ber of A$T basepairs in the flanking sequences. Hence, dif-
ferences in shape did not contribute significantly to the
mobility ratios and mobility differences observed for the
A-tract oligomers in Liþ or TBAþ.
The observed mobility differences depend on
effective charge

If differences in shape were not responsible for the mobility
differences observed in Liþ and TBAþ, the observed
mobility ratios and mobility differences must have been
due to differences in the effective charge of the A-tract
and reference oligomers. The decreased mobility ratios
observed in Liþ (Fig. 1 A) indicate that the A-tract oligo-
mers migrated more slowly than the reference in this
BGE, most likely because of the preferential localization
of Liþ ions in the narrow A-tract minor groove (46),
decreasing the net negative charge of the A-tract oligomers
and decreasing the observed mobility. Similar mobility de-
creases have been observed for other small A-tract-contain-
ing oligomers in free solution (46–48).

A different type of preferential interaction must have
been occurring in solutions containing TBAþ ions, because
the increased mobility ratios indicate that the A-tract oligo-
mers were migrating faster than the reference. Any effect of
TBAþ size on the proximity of the counterion cloud to the
DNA helix would have been the same for both A-tract and
reference oligomers. Similarly, any electrostatic effects
due to the reduced surface charge density of TBAþ ions
TABLE 3 Effect of A-tract phasing on the mobility differences

observed in TBAD and LiD

TBAþ Liþ

A-tract Dm(in) Dm(out) DDm �Dm(in) �Dm(out) DDm

A5¼T5(2) 0.0151 0.0154 0.0003 0. 0124 0.0107 0.0017

A5(2) 0.0183 0.0220 0.0037 0.0109 0.0098 0.0011

A3T3(4) 0.0236 0.0262 0.0028 0.0088 0.0078 0.0010

A4T4(0) 0.0402 0.0401 0.0001 0.0138 0.0114 0.0024

Mean 0.0017 0.0016

SD 0.0015 0.0006

The mobility differences, in m.u., observed for each phasing pair, Dm(in)

and Dm(out), and the absolute value of the difference in the mobility differ-

ences, DDm¼ jDmðinÞ � DmðoutÞj, are indicated. For brevity, the oligomers

are identified only by their A-tracts and the number of flanking A$T base-

pairs; the phasing is given in the column headings.
would have been the same for both A-tract and reference
oligomers. However, if the narrow A-tract minor groove
of the B* conformation prevented the localization of some
of the TBAþ ions in or near that groove, whereas the
TBAþ ions could localize in the normal manner in or near
the grooves of the reference (20–23), the effective negative
charge of the A-tract oligomers would have been greater
than the effective negative charge of the reference, leading
to the observed increase in the mobility ratios and mobility
differences.

Alternatively, it is possible that TBAþ ions preferentially
interact with isolated A$T basepairs in DNA, similar to the
preferential interaction of tetramethylammonium ions with
A$T basepairs (58,59). In this case, the reference oligomer
contained 12 isolated A$T basepairs, whereas oligomer
A4T1in(6), for example, contained 6 flanking A$T base-
pairs. The preferential interaction of TBAþ ions with the
12 A$T basepairs in the reference oligomer would have
decreased the effective charge of the reference oligomer
more than the preferential interaction of TBAþ ions with
the 6 flanking A$T basepairs in oligomer A4T1in(6), ex-
plaining the faster mobility of oligomer A4T1in(6) in
TBAþ. This topic will be discussed further below.
The mobility differences depend on A-tract length

Figs. 1 and 2 indicate that monovalent cations can either in-
crease or decrease the mobility of an A-tract oligomer in the
B* conformation, depending on the size and hydrophobicity
of the cation, as well as the temperature and ionic strength of
the solution. Fig. 3 summarizes the dependence of the
FIGURE 3 Dependence of the average mobility differences observed per

A-tract, in m.u., on A-tract length. The BGEs contained 300 mM TBAþ

(solid symbols); or 300 mM Liþ (open symbols). The error bars represent

the standard deviation of the mobility differences from the average; the

standard deviations of the individual mobility differences were smaller

than the sizes of the symbols. The straight line through the TBAþ data

was drawn by linear regression (r2 ¼ 0.985); the Liþ data were fitted to a

three-parameter exponential decay (r2 ¼ 0.839).

Biophysical Journal 108(9) 2291–2299



FIGURE 4 Mobility differences, in m.u., observed for oligomers

A4T1in(0) to A4T1in(11) as a function of the number of flanking A$T base-

pairs, in BGEs containing: (�), 300 mM TBAþ; or (B), 300 mM Liþ.
Error bars corresponding to the reproducibility of the measurements are

smaller than the sizes of the symbols.
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average mobility differences observed per A-tract on A-tract
length. Mobility differences are used here instead of
mobility ratios because the viscosities of BGEs containing
300 mM of a given cation are constant at constant tempera-
ture. The oligomers contained one, two, or three A-tracts of
the indicated length, variable numbers of flanking A$T
basepairs, and either 10 or 14 flanking G$C basepairs (see
Table 2). The average mobility differences observed per
A-tract in TBAþ (solid circles) and in Liþ (open circles)
are plotted as a function of the number of A$T basepairs
in each A-tract. The error bars correspond to the standard
deviation of the mobility differences from the average,
due to variations in the A-tract sequences and the number
of flanking A$T basepairs. The mobility differences ob-
served in TBAþ and Liþwere equal to zero for A-tracts con-
taining three basepairs, consistent with the observation that
an A-tract must contain at least four contiguous An or AnTm

basepairs to exhibit the narrow minor groove characteristic
of the B* conformation (3–5).

For A-tracts containing four or more basepairs, the
average mobility differences observed in TBAþ increased
linearly with increasing A-tract length, most likely because
the number of TBAþ ions excluded from the vicinity of the
A-tract minor groove increased linearly with increasing
A-tract length. In Liþ, the average mobility differences
increased in absolute value with increasing A-tract length,
but leveled off at an approximately constant plateau value
for A-tracts containing six or more A$T basepairs. The re-
sults are consistent with gel electrophoresis experiments
showing that the anomalous mobilities of A-tract oligomers
reach a maximum for A-tracts containing six basepairs (9).

The results in Fig. 3 suggest that A-tract length is the pri-
mary determinant of the mobility differences, modulated by
A-tract sequence (An or AnTm) and the number of flanking
A$T basepairs. The flanking G$C basepairs contributed
relatively little to the observed mobility differences, because
the mobility differences were essentially independent of
whether the oligomer contained 10 or 14 flanking G$C
basepairs.
The mobility differences observed for a given
A-tract are modulated by the number of A$T
basepairs in the flanking sequences

The contribution of the flanking A$T basepairs to the
observed mobility differences was investigated by keeping
the A-tract sequence constant and varying the number of
flanking A$T basepairs, using the oligomers given in Table 1.
The mobility differences observed for oligomers A4T1in(0)
to A4T1in(11) are plotted in Fig. 4 as a function of the num-
ber of flanking A$T basepairs. In 300 mM TBAþ (solid cir-
cles), the mobility differences decreased gradually with the
increasing number of flanking A$T basepairs, as though the
effective length of the A-tract was gradually decreasing (see
Fig. 3). It is well known that the terminal A$T basepairs in
Biophysical Journal 108(9) 2291–2299
an A-tract are bridging residues with conformations that
are intermediate between B* and B-DNA (8,12). The life-
times of the terminal A$T basepairs in DNA A-tracts are in-
termediate between the lifetimes of the interior A$T
basepairs and the lifetimes of isolated A$T basepairs that
are not part of an A-tract (60–62). The chemical reactivities
of the terminal basepairs in DNA A-tracts are also greater
than the reactivities of the interior A$T basepairs (63). These
results, together with Fig. 4, suggest that the terminal resi-
dues in DNA A-tracts may be somewhat flexible in TBAþ

and/or may have a conformation intermediate between B*
and B-form DNA. As a result, the TBAþ ions are not
excluded from interacting with the terminal phosphate resi-
dues in the A-tracts, decreasing the effective length of the
A-tract and decreasing the mobility differences between
the A-tract and reference oligomers.

Alternatively, or in addition, TBAþ ions may interact
preferentially with isolated A$T basepairs in the reference
oligomer and in the A-tract flanking sequences, as discussed
previously. Because the reference oligomer contained 12
isolated A$T basepairs, whereas the A-tract oligomers con-
tained up to 11 flanking A$T basepairs (Table 1), the
mobility differences would be expected to decrease approx-
imately linearly to zero with the increasing number of flank-
ing A$T basepairs, as observed. Further studies are needed
to distinguish between these two possibilities.

In 300 mM Liþ (open circles in Fig. 4), the mobility dif-
ferences were negative in sign and constant in amplitude for
oligomers containing 0 to 7 flanking A$T basepairs, most
likely because the localization of Liþ ions in the A-tract
minor groove (46) stabilized the B* conformation even
when the flanking sequences contained a significant number
of A$T basepairs. Surprisingly, the mobility differences
observed in Liþ decreased to zero for oligomers containing
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9 or more flanking A$T basepairs, suggesting that Liþ

ions cannot stabilize the B* conformation when the flanking
sequences contain more A$T basepairs (9, in this case) than
G$C basepairs (7). Under such conditions, the B* 4 B
conformational equilibrium shifts to B-DNA and the mobil-
ities of the A-tract and random oligomers become equal.

The results in Fig. 4 indicate not only that Liþ and TBAþ

ions interact differently with DNA A-tracts, but that signif-
icant numbers of A$T basepairs in the flanking sequences
can alter these interactions. Previous studies have not de-
tected the effect of flanking A$T basepairs on the B* confor-
mation because the A-tracts were always flanked by G$C
basepairs (1–6,9,12,26–31). The studies presented here
have shown that cation interactions with DNA A-tracts
depend primarily on A-tract length (Fig. 3), modulated by
the number of A$T basepairs in the flanking sequences
(Fig. 4). Hence, DNA A-tracts may not exhibit the B*
conformation and may not interact preferentially with
monovalent cations when the flanking sequences contain a
significant number of A$T basepairs.
CONCLUSIONS

The results in this study indicate that preferential interac-
tions of monovalent cations with DNA A- tracts depend
on the identity of the cation, the length and sequence of
the A-tract, and the relative proportions of A$T and G$C
basepairs in the flanking sequences. Hence, DNA A-tracts
embedded in AT-rich sequences may not have a narrow
minor groove and may not preferentially interact with
monovalent cations in the surrounding medium. Such
sequence-dependent variations in minor groove width are
likely to contribute to indirect readout mechanisms (5,64–
68) and nucleosome positioning (69).

DNA A-tracts appear to exist in a conformational equi-
librium between B* and B-DNA. The B* conformation is
stabilized in solutions containing physiological concentra-
tions of monovalent cations, but is destabilized by the
physiological temperature of 37�C. The B* 4 B confor-
mational equilibrium is also affected by A-tract length,
the relative number of flanking A$T and G$C basepairs,
and preferential interactions of the A-tract oligomers with
various types of cations in the solution. Small hydrophilic
cations such as Liþ stabilize the B* conformation by pref-
erential localization in the A-tract minor groove. Large hy-
drophobic cations such as TBAþ appear to destabilize the
B* conformation, possibly by exclusion from the vicinity
of the A-tract minor groove or by preferential interactions
with isolated A$T basepairs in the flanking sequences, pull-
ing the B* 4 B equilibrium toward B-DNA. Although
TBAþ ions do not exist in the cell, other large hydrophobic
cations such as histones and polyamines are present and
may interact with DNA A-tracts in a similar manner. A
detailed study of the competing interactions of hydrophobic
and hydrophilic monovalent cations with DNA A-tracts
embedded in a variety of flanking sequences will be pre-
sented separately.
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