
HIGHLIGHTED ARTICLE
GENETICS | INVESTIGATION

Soft Shoulders Ahead: Spurious Signatures of Soft
and Partial Selective Sweeps Result from Linked

Hard Sweeps
Daniel R. Schrider,*,1 Fábio K. Mendes,† Matthew W. Hahn,†,‡ and Andrew D. Kern*,§

*Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, †Department of Biology and ‡School of Informatics and
Computing, Indiana University, Bloomington, Indiana 47405, and §Human Genetics Institute of New Jersey, Piscataway, New Jersey 08854

ABSTRACT Characterizing the nature of the adaptive process at the genetic level is a central goal for population genetics. In particular, we
know little about the sources of adaptive substitution or about the number of adaptive variants currently segregating in nature. Historically,
population geneticists have focused attention on the hard-sweep model of adaptation in which a de novo beneficial mutation arises and
rapidly fixes in a population. Recently more attention has been given to soft-sweep models, in which alleles that were previously neutral, or
nearly so, drift until such a time as the environment shifts and their selection coefficient changes to become beneficial. It remains an active
and difficult problem, however, to tease apart the telltale signatures of hard vs. soft sweeps in genomic polymorphism data. Through
extensive simulations of hard- and soft-sweep models, here we show that indeed the two might not be separable through the use of simple
summary statistics. In particular, it seems that recombination in regions linked to, but distant from, sites of hard sweeps can create patterns of
polymorphism that closely mirror what is expected to be found near soft sweeps. We find that a very similar situation arises when using
haplotype-based statistics that are aimed at detecting partial or ongoing selective sweeps, such that it is difficult to distinguish the shoulder of
a hard sweep from the center of a partial sweep. While knowing the location of the selected site mitigates this problem slightly, we show that
stochasticity in signatures of natural selection will frequently cause the signal to reach its zenith far from this site and that this effect is more
severe for soft sweeps; thus inferences of the target as well as the mode of positive selection may be inaccurate. In addition, both the time
since a sweep ends and biologically realistic levels of allelic gene conversion lead to errors in the classification and identification of selective
sweeps. This general problem of “soft shoulders” underscores the difficulty in differentiating soft and partial sweeps from hard-sweep
scenarios in molecular population genomics data. The soft-shoulder effect also implies that the more common hard sweeps have been in
recent evolutionary history, the more prevalent spurious signatures of soft or partial sweeps may appear in some genome-wide scans.
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THERE is a growing body of evidence that positive direc-
tional selection has a pervasive impact on genetic varia-

tion within and between species (reviewed in Hahn 2008;
Sella et al. 2009; Cutter and Payseur 2013). In stark contrast
to predictions from Kimura’s neutral theory of molecular
evolution (Kimura 1968), there is strong evidence that in
at least some taxa a large fraction of nucleotide differences
between species have been fixed by positive selection (Fay

et al. 2001, 2002; Smith and Eyre-Walker 2002; Begun et al.
2007; Boyko et al. 2008; Langley et al. 2012). A great deal of
emphasis has therefore been placed on identifying the pop-
ulation genetic signatures of adaptation, in hopes of revealing
the genetic basis of recent phenotypic innovations. Typically
this is done by investigating genetic variation at a locus of
interest using one or more summary statistics capturing in-
formation about allele frequencies (Tajima 1989; Fu and Li
1993; Fay and Wu 2000; Kim and Stephan 2002; Achaz
2009), linkage disequilibrium (Kelly 1997; Kim and Nielsen
2004), or haplotypic diversity (Hudson et al. 1994; Sabeti
et al. 2002; Voight et al. 2006) and asking whether the values
of these statistics differ from the expectation under neutrality.
More recently, these efforts have taken the form of genome-
wide population genetic scans (e.g., Sabeti et al. 2002; Nielsen
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et al. 2005; Voight et al. 2006; Pickrell et al. 2009). These
scans have identified many loci that appear to have experi-
enced recent positive selection.

While adaptation is an important evolutionary force, the
precise mode by which beneficial mutations become fixed in
populations remains unclear. According to the classic model
of a “selective sweep,” a novel beneficial mutation occurs
once, quickly rising in frequency until it becomes fixed. Im-
mediately following the fixation, the vicinity around the
selected site contains no polymorphism except that intro-
duced by recombination or mutation during the sweep
(Maynard Smith and Haigh 1974). This is because in the
sweep region all sampled individuals will have coalesced
extremely recently, and in the absence of recombination
the most recent common ancestor (MRCA) will be no older
than the time at which the selected mutation occurred. As
genetic (recombination) distance to the selected site increases,
so does the expected size of the coalescent tree, and thus poly-
morphism can approach background genomic levels (Kaplan
et al. 1989). Perhaps due to its relative simplicity in comparison
to other models of selection, this model has received a great
deal of theoretical attention; the expected impact of a selective
sweep on patterns of genetic variation at linked sites has thus
been well characterized (e.g., Maynard Smith and Haigh 1974;
Kaplan et al. 1989; Stephan et al. 1992; Barton 1998; Durrett
and Schweinsberg 2004; Mcvean 2007; Messer and Neher
2012).

In contrast to the “hard-sweep” model described above,
an alternative model concerns adaptation via a mutation
that is initially fitness neutral (or nearly so) and thus evolves
by drift until, perhaps due to an environmental shift, it
becomes beneficial and sweeps to fixation (Gillespie 1991;
Orr and Betancourt 2001). Importantly, the frequency at
which the sweep begins may be substantially greater than
1/2N (where N is the population size), the starting fre-
quency of a hard sweep, and as a consequence the beneficial
mutation may be linked to numerous backgrounds. Thus,
although the effect of this type of adaptation on linked var-
iation is not as well described as Maynard Smith and Haigh’s
model (Maynard Smith and Haigh 1974), it is expected to
produce a less severe reduction in diversity (Innan and Kim
2004; Przeworski et al. 2005)—hence the term “soft sweeps”
for this model (Hermisson and Pennings 2005). Because mul-
tiple distinct haplotypes may be sweeping rather than just one,
there will be an excess of intermediate alleles relative to the
expectation under the hard-sweep model (Przeworski et al.
2005; Barrett and Schluter 2008) and sometimes relative to
the expectation under neutrality (Teshima et al. 2006).

Although the soft-sweep model has only recently been
considered through the lens of population genetics, it is
a compelling alternative to the hard-sweep model because it
eliminates the need for a population to wait for an adaptive
mutation to occur after an environmental shift: if any
segregating polymorphisms have acquired a positive selection
coefficient because of the environmental shift, natural selec-
tion will act immediately on this standing variation (Gillespie

1991; Barrett and Schluter 2008). Indeed, artificial selection
on quantitative traits often results in an immediate pheno-
typic response, and the strength of this response is correlated
with the amount of standing variation in the trait of interest
(Falconer and Mackay 1996). Thus, if a population’s selective
environment changes frequently enough, soft sweeps may be
the primary mode of adaptation. Furthermore, because at the
onset of a soft sweep the adaptive allele may be at frequency
..1/2N (Innan and Kim 2004), the probability of fixation
once the sweep begins is higher (Kimura 1957), although of
course such an allele would have already had to have drifted
to this frequency. In support of the soft sweep model, recent
population genetic studies have identified candidate adaptive
events that appear to have been driven by selection on stand-
ing variation (e.g., Hamblin and Di Rienzo 2000; Scheinfeldt
et al. 2009; Jones et al. 2012; Peter et al. 2012). An alterna-
tive phenomenon resulting in a somewhat similar type of soft
sweep is that of recurrent mutation to the adaptive allele,
each of which could occur on distinct haplotypes during the
sweep. This scenario is plausible when the population muta-
tion rate to the adaptive allele is high enough (Pennings and
Hermisson 2006a).

A third scenario of positive selection that has garnered
a great deal of attention over the past 2 decades is that of
“partial” or “incomplete” sweeps, where a sweeping allele
has not reached fixation (Hudson et al. 1994; Voight et al.
2006; Pritchard et al. 2010). Under this model, a new mu-
tation is initially beneficial and rapidly increases in fre-
quency, but does not reach fixation, perhaps because the
sweep is still ongoing at the time the population is sampled.
Searching for signals of partial sweeps may thus reveal
adaptive evolution in action. For this reason the signal of
partial sweeps has been the focus of a popular class of haplo-
type-based tests for selection (Hudson et al. 1994; Sabeti et al.
2002; Voight et al. 2006; Sabeti et al. 2007); these methods
have identified numerous candidate loci, apparently support-
ing the partial sweep model. On the other hand, because the
sojourn of an adaptive mutation is expected to be brief (Fisher
1937; Maynard Smith and Haigh 1974), selective sweeps
must be commonplace if we are to frequently catch them in
the act. Alternatively, partial sweeps may be observed under
a scenario that is essentially the opposite of the soft sweep
scenario: an initially beneficial allele rapidly increases in fre-
quency until an environmental shift eliminates its selective
advantage and the allele begins to drift, or a frequency de-
pendence on fitness renders the beneficial allele less so as it
increases in frequency (Gillespie 1991).

While the relative prominence of each of these modes of
adaptive evolution is unknown, for some parameter combina-
tions the three models may have distinct effects on patterns of
genetic variation. Thus it is appealing to design population
genetic tests to distinguish among models and to reveal the
extent to which each has been responsible for recent adapta-
tion. In this article we examine population genetic summary
statistics that can be used to identify partial or soft sweeps and
show that their effectiveness may be compromised in regions
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linked to recent hard sweeps. Indeed, it appears that the
pattern of variation at a site linked to a hard sweep,
depending on genetic distance and the strength of selection,
can be agonizingly similar to that of a partial or soft sweep—
a phenomenon we call the “soft-shoulder effect.” The soft-
shoulder effect implies, somewhat counterintuitively, that
the more common hard sweeps have been in recent evolu-
tionary history, the more prevalent spurious signatures of soft
or partial sweeps may appear in genome-wide scans.

Materials and Methods

Statistics used to detect selection

We used three classes of population genetic summary statistics
to differentiate among regions evolving neutrally, regions
recently experiencing hard selective sweeps, and regions
recently experiencing soft sweeps. These statistics include:
(1) those capturing the number of and frequency of derived
alleles [nucleotide diversity or p, Nei and Li 1979; Tajima
1983; the number of polymorphisms (S); Tajima’s D, Tajima
1989; and Fay and Wu’s buH and H statistics, Fay and Wu
2000]; (2) those measuring the number and frequency of
distinct haplotypes [the number of distinct haplotypes
(Hudson et al. 1994) and haplotype homozygosity—the
fraction of pairs of haplotypes that are identical (Depaulis
and Veuille 1998)]; (3) those containing linkage disequi-
librium (LD) information (Kelly’s ZnS, Kelly 1997, and Kim
and Nielsen’s v statistic, Kim and Nielsen 2004, fixing the
focal site to the center of the window being examined). We
used support vector machines (SVMs) leveraging these sta-
tistics to distinguish among evolutionary models as de-
scribed below.

We also used the iHS (integrated haplotype score) statistic
(Voight et al. 2006) to search for signatures of partial sweeps.
iHS builds on the extended haplotype homozygosity (EHH)
statistic, which is simply the fraction of all pairs of chromo-
somes sharing the same allele at a focal segregating site that
is identical within some range of positions (Sabeti et al.
2002). Briefly, iHS is based on integrated EHH, or iHH, which
is calculated by taking the sum of all EHH values computed
for a given allele at a given site within increasingly larger
regions surrounding the focal polymorphism and terminating
the summation when EHH drops to 0.05 (Voight et al. 2006).
Unstandardized iHS is then defined as

iHS ¼ ln
�
iHHA

iHHD

�
; (1)

where iHHA is the iHH score for the ancestral allele at the
focal polymorphism and iHHD is the iHH score for the de-
rived allele. Given that iHHD will be elevated for younger
(typically lower frequency) alleles, Voight et al. (2006) rec-
ommend standardizing each iHS score according to the
mean and standard deviation of iHS scores of polymor-
phisms having a similar derived allele frequency to that of
the focal polymorphism.

Coalescent simulations

To obtain the expected distribution of all statistics immediately
following a hard sweep, immediately following a soft sweep,
and under neutrality, we performed coalescent simulations for
each of these scenarios. For these simulations, we set u = 4Nm
(where m is the rate of mutation to neutral alleles) to 0.01 per
base pair, and sampled 50 individuals. For soft sweeps from
standing variation, we drew the initial selected frequency of
the sweeping allele uniformly from the range U(0.05, 0.2). For
soft sweeps from recurrent mutation, the rate of mutation to
the adaptive allele (4NmA, where mA is the per-base-pair adap-
tive mutation rate) was selected from U(1, 2.5). For hard and
soft sweeps the selection coefficient a = 2Ns was set to 1000,
2000, or 5000. Unless stated otherwise, 1000 replicate simu-
lations were performed for each evolutionary scenario. We also
simulated hard sweeps within 10-kb chromosomes with gene
conversion rates 4Ng ranging from 0 to 500 in increments of
50 (with a = 1000 and r = 100), as well as sweeps complet-
ing at various times in the past (number of generations post-
sweep: 0.0006253 2N, 0.001253 2N, 0.00253 2N, 0.0053
2N, 0.013 2N, 0.02 3 2N, 0.04 3 2N, 0.08 3 2N, 0.16 3 2N,
0.32 3 2N, 0.64 3 2N, and 1.28 3 2N). To examine spatial
patterns of variation around selective sweeps, we simulated
sets of 210-kb chromosomes experiencing recent hard sweeps
in the center (with a = 1000, r = 2100, and u = 2100) and
with 4Ng of 0 and 2100, respectively, as well as sets of these
large chromosomes occurring at the same range of ages post-
sweep as listed above. Similarly, we also simulated a set of
210-kb chromosomes with a soft sweep occurring in the center
(again with the initial selected frequency ranging from 0.05 to
0.2). Note that these larger simulations, which were subdi-
vided into 21 adjacent 10-kb windows in downstream analyses,
have the same per-base-pair crossover and mutation rates as
the smaller simulated chromosomes.

All simulations were performed using our in-house co-
alescent simulation software, discoal. Source code in C and
compilation instructions for discoal are available for download
from GitHub (http://github.com/kern-lab/discoal). Supporting
Information, Table S1 describes each set of coalescent simula-
tions we performed for this study.

Testing sites linked to hard sweeps for spurious
evidence of soft sweeps

We examined regions flanking simulated hard sweeps for
patterns of variation expected under a soft sweep as follows.
First, we simulated 1000 chromosomes each 100 kb in
length, with a hard sweep occurring at position 5000 along
the chromosome (i.e., toward the far left end) and reaching
fixation immediately prior to sampling (simulation sets 9–11
from Table S1). We subdivided the chromosome into 10 ad-
jacent windows each 10 kb in length and calculated values of
the population genetic summary statistics listed above. We
then classified each window for each simulation as evolving
neutrally, recently experiencing a soft sweep, or recently ex-
periencing a hard sweep according to the values of various
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summary statistics as described below. Importantly, the only
window directly experiencing any selection was the first win-
dow of the chromosome, which experienced a hard sweep at
its center. The extent to which linked neutral windows were
misclassified as selected therefore reveals how linkage to
a hard sweep creates patterns of genetic variation that are
misleadingly consistent with hard or soft sweeps. We repeated
this process, which is outlined in Figure S1, for three different
values of a: 1000, 2000, and 5000. For these simulations the
locus-wide value of r was set to equal a.

Classifying simulated regions as hard sweeps, soft
sweeps, or neutral

We developed a classifier to label each window within each
of our larger simulations as a hard sweep, a soft sweep from
standing variation, or neutral. We trained this classifier by
simulating 1000 chromosomes 10 kb in length (total r =
100) either experiencing a hard sweep at its center, experi-
encing a soft sweep from standing variation at its center,
experiencing a soft sweep from recurrent mutation at its
center, or evolving neutrally as described above (simulation
sets 1–8 from Table S1). For these training simulations the
selection coefficient and per-base-pair recombination rate
was identical to that used for the corresponding set of larger
simulations to which the classifier was to be applied.

Next, we calculated values of various population genetic
summary statistics (listed above) for each of these 10-kb
simulated windows. We then trained a SVM to classify each
of these windows as a hard sweep, a soft sweep, or as
evolving neutrally. Briefly, SVMs work by discovering a hy-
perplane that optimally separates two sets of multidimen-
sional data known to belong to two different classes
(training data). Additional data whose classes are unknown
are then classified according to the side of the hyperplane on
which they lie (Vapnik and Lerner 1963). SVMs can be ex-
tended to allow for three or more classes (e.g., Knerr et al.
1990; Platt et al. 2000) and to utilize nonlinear decision sur-
faces by mapping data to higher-dimensional space using ker-
nel functions (Aizerman et al. 1964; Boser et al. 1992; Cortes
and Vapnik 1995). We constructed a training set from 1000
simulated 10-kb windows containing a hard sweep, 1000 soft
sweeps, and 1000 neutrally evolving regions (simulations de-
scribed above). We then trained a multiclass SVM using Knerr
et al.’s method (Knerr et al. 1990) of extending binary classi-
fication to three or more classes; for this SVMwe used a radial
basis kernel function. Briefly, we performed a coarse grid
search to obtain optimal values of the SVM’s cost hyperpara-
meter and the radial basis function’s g-hyperparameter, per-
forming 10-fold cross-validation for each hyperparameter
combination. The set of values tested for each of these hyper-
parameters was [1024, 1023, 1022, 1021, 10�, 101, 102, 103,
104]. The combination of these hyperparameters yielding the
highest cross-validation accuracy was then used to classify
each 10-kb window from the 100-kb simulated chromosomes,
as well as simulated 10-kb chromosomes experiencing hard
sweeps of varying ages and with varying gene conversion

rates. All training and classification was performed via the
scikit-learn python library (http://scikit-learn.org).

Testing sites linked to hard sweeps for spurious
evidence of partial sweeps

We performed 5000 coalescent simulations of 50-kb regions
with a hard sweep occurring in the center of the chromo-
some (i.e., position 25,000) with a = r = 1000, 5000 such
simulations with a = r = 2000, and 5000 simulations of
neutral evolution (simulation sets 12–15 from Table S1).
We then calculated iHS scores for each polymorphism in
each simulation using iHS_calc and standardized them
based on allele frequency using WHAMM.pl (both available
at http://coruscant.itmat.upenn.edu/whamm/index.html).
Standardization was performed according to the mean and
variance of iHS scores within 20 equally sized allele-frequency
bins from the neutral simulations—this step is important for
ensuring that iHS scores do not correlate with allele frequency
under neutrality. We then calculated the average absolute
value of standardized iHS scores in each 1-kb window along
the 50-kb region across all simulations with the same selection
coefficient. We also calculated one-sided P-values for each
polymorphism’s iHS score by comparing it to those of neutral
polymorphisms of similar allele frequency (i.e., found in the
same of the 20 allele-frequency bins): for a score above the
neutral median, the P-value was the fraction of neutral poly-
morphisms in the frequency bin with a greater or equal iHS-
score, while for below-median scores the P-value was the
fraction of lesser or equal neutral iHS scores. Because these
P-value calculations take allele frequency into account, they
were performed using unstandardized iHS scores.

Results

Hard sweeps produce signatures of soft sweeps at
linked loci

The well-known signature of a soft sweep is that near the
selected site, multiple haplotypes carrying the beneficial allele
increase in frequency. A fixation caused by a hard sweep will
leave only a single haplotype carrying the beneficial allele in
the immediate vicinity of the selected site (modulo mutations
that occur during the sweep; Messer and Neher 2012). Con-
sider, however, a neutral locus linked to a beneficial allele at
some intermediate genetic distance. During a hard sweep, re-
combination between the selected and neutral loci will lead to
multiple haplotypes linked to the beneficial allele during its
sojourn through the population. Thus, in linked regions far
enough away from the target of selection, there will be several
haplotypes at elevated frequencies after a hard sweep (Begun
and Aquadro 1994; Hudson et al. 1994), similar to the expec-
tation for the selected locus after a soft sweep. We therefore
reasoned that scans for soft sweeps might produce false pos-
itives in the “shoulders” of a hard sweep.

To test this hypothesis we used coalescent simulations to
generate population samples from 100-kb chromosomes
experiencing a hard sweep at one end of the chromosome,
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partitioning these chromosomes into adjacent 10-kb win-
dows for analysis (simulation sets 9–11 from Table S1). The
distances between the centers of these windows and the
selective sweep range from 0.1 to 0.9 units of r/a, where
r is the population recombination rate 4NrL between sites L
bp apart with per-base-pair crossover rate r, and a is the
selection coefficient 2Ns, which we set to 1000. Assuming
a population size of N= 13 104, these distances correspond
to 0.25–2.25 cM (roughly 0.25–2.25 Mb in the human ge-
nome; Kong et al. 2002), while with N = 1 3 106 they
correspond to 0.0025–0.025 cM (�1.25–12.5 kb in Drosoph-
ila; Comeron et al. 2012); these distances will be greater for
larger values of a. We then compared the patterns of vari-
ation within each of these windows to those from simulated
10 kb chromosomes evolving neutrally, experiencing a hard
sweep, or experiencing a soft sweep.

As shown in Figure 1A, nucleotide diversity (p) is ex-
tremely depleted in the window containing the just-completed
hard sweep, as expected under the hard-sweep model. As we
examine windows further and further away from the sweep, p
increases from its trough, gradually recovering toward the
neutral expectation. In several of these windows we observe
median values of p that appear more consistent with soft
sweeps than either hard sweeps or neutrality. Similarly, in
windows flanking the hard sweep, the number of distinct
haplotypes (K; Figure 1B) and ZnS (which measures linkage
disequilibrium; Figure 1C) both often match the expectation
of soft sweeps more than hard sweeps or neutrality (addi-
tional statistics are shown in Figure S2). The shoulder effect
exhibited by v is less pronounced (Figure S2H), perhaps un-
surprisingly as this statistic is designed to capture the patterns
of linkage disequilibrium expected flanking either side of
a completed hard sweep (Kim and Nielsen 2004). However,
according to a wide range of summary statistics capturing
allele frequency, haplotype frequency, and linkage disequilib-
rium information, a large stretch within the shoulders of hard
sweeps will more closely resemble soft sweeps than either
hard sweeps or neutral evolution. We obtain qualitatively sim-
ilar results when considering soft selective sweeps from re-
current mutation (Figure S2).

To further demonstrate this effect, we asked what fraction
of genomic windows flanking a hard sweep might be mistaken
for soft sweeps. We used SVM classifiers that examine the
values of several summary statistics to infer whether a 10-kb
window is more consistent with those obtained from simulated
hard sweeps, soft sweeps from standing variation, or from
neutral simulations (Materials and Methods). Because SVMs
have been shown to be powerful for detecting selection and
can handle multidimensional data (Pavlidis et al. 2010; Ronen
et al. 2013), they are ideally suited for assessing the extent
to which regions flanking hard sweeps resemble soft sweeps.
We trained and applied four such SVMs: (1) one using allele-
frequency information (p and S); (2) one using haplotype
frequency information (K and haplotype homozygosity); (3)
one using LD information (ZnS and v); and (4) one using all
summary statistics we examined (Materials and Methods).

These SVMs were for the most part extremely accurate on
test data (e.g., the SVM utilizing all statistics recovers the
correct class 98.8% of the time). Perhaps the only exception
is that the haplotype-based SVM struggles somewhat to dis-
tinguish soft sweeps from neutrality (Table S2). Unsurpris-
ingly, the window containing the simulated hard sweep was
nearly always classified correctly by all four SVMs (Figure 2
shows results for r = a = 1000). As one moves away from
the site of selection, a substantial fraction of linked windows
were also classified as having a hard sweep, especially when
using haplotype frequency information (Figure 2B), undoubt-
edly because at shorter genetic distances little or no recombi-
nation has occurred between the selected site and the neutral
locus being queried.

Strikingly, we observe that a large fraction of flanking
windows are incorrectly classified as soft sweeps by each SVM.
The relationship between this fraction and distance from the
hard sweep is nonmonotonic, initially increasing with dis-
tance, peaking at well over 50% for each classifier (at
a distance ranging from 0.2 to 0.5 3 r/a), and then decreas-
ing at further distances where patterns of genetic variation
begin to more closely match the neutral expectation. Overall,
for each SVM, .99% of simulated hard sweeps yield at least
one spurious soft sweep call in one of the nine downstream
windows. Thus, patterns of allele frequency, haplotype fre-
quency, and LD flanking hard sweeps will often closely match
those expected from soft sweeps. Indeed, combining all of
these pieces of information into one classifier does not allevi-
ate this problem (Figure 2D). Together these results suggest
that the coalescent histories of regions flanking hard sweeps
are very similar to those of soft sweeps.

This soft-shoulder effect can be understood through the
lens of recombination: if a neutral locus is far enough from
the selected site such that one or more recombination events
are likely to occur during the sojourn of the beneficial allele,
then two or more haplotypes will be linked to the beneficial
allele and thus caught up in the sweep. This will result in an
excess of intermediate frequency alleles, multiple high- or
intermediate-frequency haplotypes, and increased LD, just as
expected under a soft sweep (see Figure 1 and Figure S2). At
still greater genetic distances too many recombination events
are likely between the selected and neutral loci to yield any
detectable signal of selection. We observed a similar trend
for stronger values of a (Figure S3 and Figure S4) and also
when using SVMs trained to distinguish among soft sweeps
from recurrent mutation, hard sweeps, and neutral evolu-
tion (Figure S5).

Hard sweeps produce signatures of partial sweeps at
linked loci

An allele that rapidly rises from frequency 1/2N to intermediate
or high frequency will result in a long, nearly identical haplo-
type among that class of chromosomes, while chromosomes
containing the ancestral haplotype will exhibit much greater
diversity as they share a much older MRCA (e.g., Meiklejohn
et al. 2004; Saunders et al. 2005; Tishkoff et al. 2007). A class of
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Figure 1 Distributions of summary statistics in neutral, selected, and linked regions. (A) p-values from simulated smaller windows (genetic distance of r
= 100) experiencing hard sweeps, soft sweeps from standing variation, or neutral evolution are shown on the right. The remaining box plots on the left
show the values of p obtained in 10 adjacent windows from large simulations (total genetic distance of r = 1000) with a just-completed hard sweep in
the center of the leftmost window. The genetic distances of sites in each of these windows from the selective sweep are shown on the x-axis. (B) Values
of haplotype homozygosity are shown for the same simulations and windows as in A. (C) Values of ZnS for the same simulations and windows.
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Figure 2 Classification of regions flanking hard
sweeps reveals the soft-shoulder effect. (A) The
relationship between distance from a simulated
hard sweep and the fraction of simulated win-
dows classified as experiencing a hard sweep,
a soft sweep, or neutral is shown for an SVM
classifier that leverages values of p and the num-
ber of segregating sites. Each window accounts
for one-tenth of the simulated chromosome. The
values on the x-axis show the distance (in terms
of r/a) of the center of the tested window from
the simulated hard sweep—i.e., the selected
window is shown at position 0.0, and the win-
dow furthest from the sweep is shown at 0.9.
For these simulations total recombination dis-
tance (r) across the simulated chromosome
was set to 1000, as was a. (B) The same plot
as A is shown for an SVM using the number of
distinct haplotypes and haplotype homozygosity
to classify each window. (C) Classifications by an
SVM leveraging v and ZnS. (D) Classifications by
an SVM using our full set of summary statistics.
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statistics designed to uncover this phenomenon thus seeks to
identify polymorphisms where one allele is associated with far
less haplotypic diversity than the other allele (Hudson et al.
1994; Sabeti et al. 2002, 2007; Voight et al. 2006). We rea-
soned that, because hard sweeps bring linked alleles to inter-
mediate frequencies depending on the recombination distance
between the selected and linked sites (Gillespie 2000), the soft
shoulder effect might also confound statistics used to detect
partial sweeps.

To address this question we simulated 50-kb chromo-
somes either evolving neutrally or with a hard sweep
occurring in the center of the chromosome (simulation sets
12–15 in Table S1; Materials and Methods). For these simu-
lations we fixed r at 1000 and a at 1000; all other condi-
tions are similar to those used in the simulations to detect
signatures of soft sweeps, except that the selected site is now
in the center of all windows. We used the integrated haplo-
type score statistic, or iHS (Voight et al. 2006), to measure
long-range haplotype homozygosity at each segregating site.
For each SNP in each simulation we calculated the iHS value
and then calculated empirical P-values using the distribution
of iHS values from the neutral simulations, while controlling
for allele frequency (Materials and Methods). Rather than
taking its maximum value at the actual selected site, we
found that |iHS| initially increases with increasing distance
from the sweep in either direction, before peaking at a distance
of �0.15 r/a and then decreasing back toward the neutral
expectation with further distance from the sweep (Figure
3A). The lack of signal at the site of selection is expected, as
a fixed sweep does not leave the signature of selection detected
by iHS in the close vicinity of the selected site. Next, for each
simulated hard sweep we asked where along the chromosome
the most extreme iHS value was found; the distribution of these
locations is shown in Figure 3B. We found that the density of
extreme iHS scores closely mirrored the trend observed for
average |iHS|, increasing from a trough at the sweep to a peak
near 0.15 r/a, and then again decreasing with further distance.
The iHS scores found in these peaks are quite extreme: in
98.6% of simulations our empirical P-value estimate was zero
(i.e., the iHS score was more extreme than any score observed
in any of the neutral simulations). When doubling a, we obtain
a similar shoulder effect peaking near 0.15 r/a from the hard
sweep (Figure 3).

These findings strongly support our hypothesis that the
shoulders of a completed hard sweep will resemble a partial
sweep. Indeed, if we consider P-values ,8.47 3 1027 (the
most conservative threshold we can establish given our
number of simulated SNPs under neutrality) to be indicative
of a partial sweep, almost every completed hard sweep
(97.6%) produces a false partial sweep signal at least
0.2 r/a away from the true hard sweep—with a = 1000
and N = 10000, this corresponds to 0.2 cM, or roughly 200
kb in the human genome. Because iHS is intended to detect
partial sweeps (Voight et al. 2006), it is unsurprising that its
values are often not extremely high at the site of a hard
sweep (Figure 3, A and B, centers); however, the elevated

iHS observed flanking the hard sweeps could be misinter-
preted as evidence of partial sweeps. As with soft sweeps
above, this spurious signature of partial sweeps is the result
of intermediate levels of recombination between the neutral
and selected loci during a hard sweep. At genetic distances
where a small number of recombination events is expected,
a soft shoulder effect should prevail near the sites of hard
sweeps in such a way that it may be difficult to differentiate
true soft or partial sweeps from the shoulders of completed
hard sweeps without prior information as to the location of
hard sweeps themselves. If one instead examines very large
genomic windows for evidence of partial sweeps, a window
centered on a hard sweep may be mistaken for single partial
sweep. For example, for the average hard sweep with a =
1000, 48% of all SNPs in the simulated chromosome exhibit
significant iHS scores (in the upper or lower 2.5% tail of the
distribution from neutral simulations). Such a window would
likely be considered as a strong candidate for a partial sweep;
indeed such a fraction of significant iHS scores is qualitatively
similar to the top candidate partial sweeps highlighted in
Voight et al. (2006, Table 1).

Stochasticity during and after the sweep exacerbates
the soft shoulder effect

We have demonstrated that the shoulders of hard sweeps often
present patterns of variation closely matching those generated
at the site of soft sweeps and partial sweeps. However, our
analyses thus far have made a number of simplifications: we
have considered significant windows only in isolation and
not in their genomic context, we have examined patterns of
variation only at the moment the sweep ends, and we have not
considered the effects of gene conversion. In the following we
consider relaxing each of these assumptions in turn and show
how patterns of genetic variation are affected.

Examining large genomic regions and misidentifying the
target of selection: Rather than considering smaller windows
independently of one another, scans for selective sweeps can
examine spatial patterns of diversity across large genomic
regions to identify the putative target of selection (e.g., Kim
and Stephan 2002; Nielsen et al. 2005). Such strategies may
be able to mitigate the soft-shoulder problem by discovering
that the signature of a soft sweep occurs in the shoulder of
a hard sweep. In other words, if a scan is able to identify the
true target of selection within a larger genomic window con-
taining a single recent hard sweep, then it should be correctly
classified (see Figure 2) and no spurious soft sweeps will be
called.

To assess the utility of such a strategy, we simulated large
chromosomal regions of 210 kb that we then subdivided into
21 windows, with a hard sweep occurring in the central
window (with a = 1000 and r = 2100, or r = 100 per
window as above; simulation set 16 in Table S1). We then
asked how often the strongest signal of selection was observed
in the central window. We found that for some statistics
this technique often misidentifies the target of selection. For
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example, K, haplotype homozygosity, and ZnS exhibit their
strongest signals in the incorrect window in 40.2, 46.9, and
49.0% of simulations, respectively. Thus, if these statistics are
used to identify selective sweeps, the inferred target of selec-
tion may often be located far from the true selected site, and
in turn the mode of selection may be misclassified. Fortu-
nately, some statistics fare much better: p, the number of
segregating sites (S), and v identify the wrong window only
4.3, 3.1, and 3.7% of the time, respectively. The distributions
of the strongest sweep signal for these and other statistics are
shown in Figure 4. It is important to note that applying this
type of approach to iHS does not mitigate any of the problems
with detecting partial sweeps. Because the shoulder of the
hard sweep has a larger value of iHS than the sweep itself,
the shoulder could be identified as a significant partial sweep
regardless of the size of the region examined.

For soft sweeps, where stochastic forces have a greater
impact on patterns of diversity, most statistics identify the
selected window much less reliably. For example, not only
do the error rate of K and haplotype homozygosity increase
to 73.2 and 72.1%, respectively, but even p (error rate of
45.2%) and v (50.4%) perform poorly (Figure 5; data from
simulation set 17 in Table S1). Compared to p, the number
of segregating sites has a somewhat more modest error rate
(19.3%). Interestingly, the error rate of ZnS is lower than
that for hard sweeps (16.4%), perhaps because hard sweeps
completely eliminate variation in the most immediate vicin-
ity of the selected site, thereby reducing the number of win-
dows with high LD (Kim and Nielsen 2004). We observe
a similar dispersal of the signal of soft sweeps arising from
recurrent mutation events (Figure S6; data from simulation
set 18 in Table S1). Interestingly, the v statistic performs
much more poorly for soft sweeps from recurrent mutations

than those from standing variation, recovering the wrong
window in nearly 90% of instances (Figure S6H).

Selecting the size of genomic regions to examine: Our
results above demonstrate that, at least in the case of hard
sweeps, it may be possible to detect the targets of selection
with reasonable precision by examining loci within their
larger genomic context, therefore also likely inferring the
correct mode of selection. However, a serious limitation of
this approach is its inability to uncover multiple sweeps fairly
close to one another (i.e., separated by a distance smaller
than a predefined threshold). Because the results in the pre-
vious section hold only when there is no more than one
sweep within each large region examined, it is natural to
ask how extensions allowing for more than one sweep might
perform.

To identify separate sweeps, we can segment the genome
into groups of consecutive windows more consistent with
neutrality or with either mode of positive selection. We
assessed the robustness of this approach by applying our SVM
classifier to each window within our large simulated hard
sweeps (a = 1000 and r = 2100; simulation set 16 from
Table S1) and asking how often in our simulations the signa-
ture of selection around the target site appeared to have
decayed back to the neutral expectation with increasing dis-
tance from the hard sweep, but then at some even greater
distance had risen enough to cause our classifier to once
again favor positive selection. Of the 979 of 1000 simulated
sweeps in which our SVM correctly classifies the target win-
dow as a hard sweep (using the full set of summary statistics),
68.1% had at least one window classified as a sweep, but
separated from the true hard sweep by at least one window
classified as neutral. Remarkably, every one of these spurious

Figure 3 Elevated iHS scores flanking hard sweeps. (A) Mean absolute-value standardized iHS is shown flanking a just-completed hard sweep, which
occurred in the center of the simulated region whose total genetic distance (r) was set to equal the selection coefficient (a). (B) The distribution of
locations of the most extreme iHS score (i.e., lowest P-value in each simulation with a hard sweep at the center.
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secondary sweeps was more consistent with a soft than hard
sweep according to our classifier.

While on average a selective sweep should result in a sharp
valley of diversity (or peak in linkage disequilibrium) near the
selected site with a monotonic recovery toward the neutral
expectation with increasing physical distance, patterns of

genetic variation in each linked window have a large
stochastic component (Kim and Stephan 2002). To demon-
strate this point we have generated plots showing the values
of various summary statistics in each sub-window from each
individual simulation from simulation sets 16–18, 21, and 22
(described in Table S1); the patterns expected on average

Figure 4 Signals of selection from various summary statistics in windows containing or flanking a hard sweep. For each summary statistic, we examined
each individual simulation and located the window exhibiting the most extreme value (in the direction suggestive of a hard sweep). This figure shows the
histogram of these locations for each statistic. The total genetic distance of each simulated chromosome (r) was 2100. The chromosome was subdivided
into 21 equally sized windows (r = 100) with a hard selective sweep occurring in the central window (a = 1000). (A) p, (B) number of segregating sites,
(C) Tajima’s D, (D) Fay and Wu’s H, (E) number of distinct haplotypes, (F) haplotype homozygosity, (G) Zns, and (H) v.
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poorly match those presented by many individual simu-
lations (plots available at https://github.com/kern-lab/
softshoulders). Both mutation and recombination events
occurring during and after the sweep contribute to noise,
and drift plays a greater role as distance from the selected

site increases. This stochasticity can often cause viola-
tions of the expectation of monotonicity, creating second-
ary signals of selection far away from the sweep. Because
only windows very tightly linked to the hard sweep will
more closely resemble hard sweeps than soft sweeps

Figure 5 Signals of selection from various summary statistics in windows containing or flanking a soft sweep. For each summary statistic, we examined
each individual simulation and located the window exhibiting the most extreme value (in the direction suggestive of a soft sweep). This figure shows the
histogram of these locations for each statistic. The total genetic distance of each simulated chromosome (r) was 2100. The chromosome was subdivided
into 21 equally sized windows (r = 100) with a soft selective sweep (with a = 1000; initial selected frequency ranging from 0.05 and 0.2) occurring in the
central window. (A) p, (B) number of segregating sites, (C) Tajima’s D, (D) Fay and Wu’s H, (E) number of distinct haplotypes, (F) haplotype homo-
zygosity, (G) Zns, and (H) v.
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(Figure 1), these secondary peaks are more likely to re-
semble soft sweeps.

Hard sweeps leave behind the signal of soft sweeps, even at
the selected site: Our results thus far have examined only
patterns of diversity at the exact moment that a sweep ends.
To examine the effects of sampling a population some time
after the sweep ends, we asked whether older hard sweeps
are often misclassified as soft sweeps from standing variation
at various times post-fixation. For these simulations we
focused only on the window containing the selected site.
While it may not be immediately obvious why the recovery
from a hard sweep would result in false signatures of soft
sweeps, note that the values of many of our statistics are at
their most extreme after a hard sweep and that their values
under a soft sweep typically lie between the extreme of the
hard sweep and the neutral expectation (Figure 1); of the
statistics we examine, Tajima’s D is the sole exception to this
rule. Thus, although much of the power to detect any type of
sweep is lost fairly soon after an advantageous allele has fixed
(Przeworski 2002), during the recovery phase the values of
many statistics may pass through the range normally pro-
duced by soft sweeps. For this reason, hard sweeps may pos-
sibly leave a “soft shadow.”

We began by examining relatively recently completed
sweeps—fixing 0.000625 3 2N generations ago (with a =
1000)—and then repeatedly doubled the time since fixation
in order to search for a fixation time where the sweep was
more often classified as soft than hard according to the same
test used above (simulation set 19 from Table S1; Materials
and Methods). Again, we performed this analysis using four
SVMs (allele-frequency information, haplotype frequency in-
formation, LD information, and all summary statistics). As
expected, we found that the misclassification rate increased
with time since fixation, with the fraction of simulations clas-
sified as soft dramatically overtaking that of hard sweeps be-
tween 0.01 and 0.02 3 2N generations ago when using
haplotype frequency information (Figure 6B). When using
LD information, this shift occurs between 0.02 and 0.04 3
2N generations ago (Figure 6C). The SVM using allele-fre-
quency information maintains accuracy for a much longer
period, with the fraction of spurious soft sweep calls overtak-
ing correct hard sweep calls after between 0.32 and 0.643 2N
generations (Figure 6A). The SVM incorporating all summary
statistics exhibits this shift faster than that using allele-
frequency information, but not as quickly as those using sta-
tistics measuring haplotype frequencies and LD (Figure 6D).
Eventually these classifiers cannot detect the sweep at all,
classifying the majority of simulated sweeps as neutral rather
than hard or soft. Again, this occurs soonest when using hap-
lotype frequency information. This is perhaps because a single
mutation or recombination event can create a new distinct
haplotype while hardly affecting summaries of allele fre-
quency across the entire window, although it is important to
note that in regions with lower mutation and/or recombina-
tion rates this decline may be far less steep. The classifier using

LD information also loses power to detect sweeps well before
that using allele-frequency information, which has power to
detect .90% of sweeps with a = 1000 even after 0.64 3 2N
generations, although it misclassifies nearly all of these as soft.
Note that the classifier using haplotype information continues
to classify a small but consistent minority (�15%) of simula-
tions as soft sweeps as time since the sweep increases to 1.28
3 2N; this is an artifact of the relative lack of power this SVM
has to distinguish soft sweeps from neutrality (i.e., even truly
neutral windows are classified as soft at this rate; Table S2).
We observe a similar decay in the ability to properly classify
hard sweeps of increasing ages when the soft sweep model we
consider is that of recurrent mutation rather than selection on
standing variation (Figure S7).

Because neutral evolution following a selective sweep
should introduce noise into spatial patterns of variation, we
also asked whether increasing the time since the completion
of the selective sweep affected the location of the strongest
signal of selection. We again simulated sweeps occurring in the
center of a larger chromosome (r = 2100) with varying fixa-
tion times and with a = 1000 and subdivided these chromo-
somes into 21 windows (simulation set 21 in Table S1).
Perhaps unsurprisingly, we found that the passage of time since
the completion of the sweep obscured the location of the target
of selection. For example, while the highest value of haplotype
homozygosity occurred in the incorrect window 44.9% of the
time for a sweep occurring 0.000625 3 2N generations ago,
this fraction increases to 51.0% after 0.01 3 2N generations,
and to 91.4% after 0.08 3 2N generations. v fares better, with
only 3% of sweeps incorrectly located after 0.000625 3 2N
generations, an error rate of 49.6% after 0.08 3 2N genera-
tions, and 95.6% after 0.32 3 2N generations. p performs far
better than both of these statistics, with an error rate of 4.2%
after 0.000625 3 2N generations, which increases to 38.1%
after 0.64 3 2N generations—lower than the error rates
exhibited by haplotype homozygosity and v after much shorter
periods (0.01 and 0.08 3 2N generations, respectively). While
this error rate increases to a considerable 72.4% after 1.28 3
2N generations, this is substantially lower than the error rates
of haplotype homozygosity after 0.08 and 0.32 3 2N genera-
tions, respectively. Thus it appears that haplotype frequency-
based signatures of selection decay more rapidly following the
completion of a selective sweep than LD-based signatures,
which in turn decay far more rapidly than nucleotide diversity
(for examples, see plots of individual simulations available at
https://github.com/kern-lab/softshoulders).

The effect of gene conversion: Allelic gene conversion can
result in lineages escaping a selective sweep by acquiring the
adaptive mutation after the sweep has begun, similar to
a recurrent adaptive mutation (Begun and Aquadro 1994;
Hamblin and Di Rienzo 2000; Hamblin et al. 2002). We there-
fore simulated hard selective sweeps with various rates of
gene conversion using a mean tract length of 518 bp (simu-
lation set 20 from Table S1), as estimated in Drosophila
(Comeron et al. 2012), and asked how often these simulations
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Figure 6 The relationship between age of the
sweep andmisclassification rate. (A) Allele-frequency
information: the fraction of simulated windows con-
taining a hard sweep (a = 1000) classified as hard,
soft, or neutral by an SVM leveraging allele-
frequency information is shown according to the
time in the past at which the sweep completed (in
units of 2N generations). The most recent sweep
examined in this plot completed 0.000625 3 2N
generations ago, and we examined older sweeps
by continually doubling the time since fixation,
stopping at a sweep time of 1.28 3 2N genera-
tions in the past. (B) Same as A, but using a classifier
leveraging haplotype information. (C) Results from
an SVM leveraging LD information. (D) An SVM
leveraging our full set of summary statistics.
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would be misclassified as soft by our classifiers. We found that
as the total gene conversion rate for our 10-kb locus increased
from 4Ng = 0 to 4Ng = 500, where g is the gene conversion
tract initiation rate per base pair, the fraction of simulated win-
dows misclassified as soft increases at first, suggesting that the
greater amounts of variation introduced to the class of sweeping
chromosomes causes them to resemble soft sweeps; indeed at
4Ng = 250 the majority of simulated hard sweeps are misclas-
sified as soft by each classifier (Figure 7A-D). Even greater rates
of gene conversion begin to erode the sweep signal further so
that most simulations are misclassified as neutral. This problem
is especially troublesome when using haplotypic information: at
4Ng = 500, our haplotype-frequency-based SVM classifies only
17.2% of simulations as sweeps (nearly all of which are mis-
classified as soft), whereas the allele-frequency-based SVM
recovers 85.0% of sweeps in this case (although again nearly
all are misclassified as soft). This is likely because a single gene
conversion event can create a new haplotype, but has a very
small impact on nucleotide variation. Note that when 4Ng =
500, our ratio of gene conversion to crossover rates is similar to
that observed in Drosophila (5 conversion events for every cross-
over vs. �4.9 from Comeron et al. 2012). Thus, even when
examining the true target of selection, gene conversion can
cause hard sweeps to frequently be misclassified as soft or to
be missed altogether (Jones andWakeley 2008). However, if the
true gene conversion rate at the target of selection is known,
then it is possible to accurately distinguish hard sweeps from soft
sweeps and neutrality (Figure 7E) in the context of our SVM.
Again, we obtain similar results when using recurrent adaptive
mutation as our SVM’s model of soft sweeps (Figure S8).

When examining the larger genomic neighborhood of
a selective sweep, gene conversion also may obscure the
location of the target of selection. We performed large
simulations (r = 2100, subdivided into 21 windows) with
a hard sweep occurring in the middle of the central window,
and a gene conversion rate (4Ng) of either 0 or 2100 (simu-
lation set 22 in Table S1). When 4Ng = 0 the most extreme
value of p is found in the central window all but 4.2% of the
time, but when 4Ng = 2100 this error rate increases to 86.4%.
At this gene conversion rate, haplotype homozygosity performs
similarly (85.7%; up from 47.5% when 4Ng = 0), as does v
(90.5%; up from 3.4% when 4Ng = 0). Thus, accurately lo-
cating selective sweeps in the presence of gene conversion may
be particularly difficult, especially given that in these simula-
tions the ratio of gene conversion to crossover rates was 1:1,
probably far lower than the true ratio in many species. Again,
this insight can be gleaned by examining the patterns of vari-
ation flanking individual simulated hard selective sweeps ex-
periencing allelic gene conversion events (available online at
https://github.com/kern-lab/softshoulders).

Discussion

The question of whether adaptation more commonly pro-
ceeds from a single, new advantageous mutation (hard
sweeps) or from either standing variation or multiple new

mutations (soft sweeps) has recently attracted much atten-
tion in the field of molecular population genetics. We have
shown that the shoulders of completed hard selective sweeps
produce a pattern of diversity that is difficult to distinguish
from that generated by completed soft sweeps or by partial
sweeps, a pattern that we call the soft-shoulder effect. The soft-
shoulder effect results from recombination events between the
site of a hard sweep and a neutral locus during the sojourn of
the beneficial mutation; this recombination creates multiple
sweeping flanking haplotypes, strong linkage disequilibrium,
and an excess of intermediate-frequency alleles, just as would
be observed at the site of a soft sweep. Our results show that
this phenomenon confounds efforts to differentiate neutral loci
flanking hard sweeps from selection on standing variation or
from sweeping advantageous mutations that have not yet
fixed. We also find evidence that the soft shoulders of hard
sweeps would likely be mistaken for selection on recurrent de
novomutations occurring during the sweep phase. This should
not be surprising, as this alternative form of soft sweep creates
patterns of variation that are in many ways qualitatively similar
to the effect of sweeps acting on standing variation (Pennings
and Hermisson 2006 a,b).

Our results imply that the soft shoulder effect may be
problematic for genome-wide scans for selection where the
selected sites are not known a priori—even if hard sweeps
were the sole mode of adaptation, such scans might identify
a large number of putative soft sweeps. Perhaps more worry-
ingly, these spurious soft sweeps may be identified far from the
true target of selection, potentially resulting in considerable
wasted effort characterizing loci that are in fact evolving neu-
trally. Thus, efforts to uncover the sites and modes of positive
selection across the genome should be interpreted with care
if they are unable to confidently discriminate true targets
of selection from linked sites (cf. Begun and Aquadro 1994;
Hudson et al. 1994). Such efforts must also be able to distin-
guish between recent soft sweeps and older hard sweeps, as
we have shown that such older events may often be misclas-
sified as soft sweeps by methods that consider only recently
completed sweeps (as our SVM did).

Just as with soft sweeps, we have shown that partial
sweeps are difficult to distinguish from the shoulders of
completed hard sweeps. Statistical tests for evidence of
partial sweeps have been applied to genome-wide variation
data in humans to detect candidate adaptive mutations
currently sweeping through human populations (e.g., Sabeti
et al. 2002; Redon et al. 2006; Voight et al. 2006; Conrad et al.
2010; Ferrer-Admetlla et al. 2014). Again, because such
genome-wide scans have no prior knowledge of which sites
may have been selected, regions linked to, but some genetic
distance away from, completed hard sweeps could be misclas-
sified as partial sweeps due to the soft shoulder effect. Thus,
although these scans have power to detect partial sweeps,
they may often misidentify both the target locus and the
mode of selection if hard sweeps are common. Tests that
attempt to recover the positively selected polymorphism or
a small window containing several candidate polymorphisms
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(e.g., Grossman et al. 2010) may be misled in this case, as the
true target of selection will have already reached fixation.
Instead, the test may incorrectly single out hitchhiking alleles
that escaped the sweep via a recombination event; these muta-
tions are most likely fitness neutral or nearly so and may be
located far from the positively selected locus. For example, for
moderately strong selection, the soft shoulder could appear
kilobases away from the selected site in Drosophila, and mul-
tiple megabases away in humans, and for stronger selection
coefficients these distances could be greater. Therefore, caution
should be taken in attempting to identify the sites directly un-
der selection, or even the Gene Ontology categories of genes
associated with apparent partial sweeps—these may be noth-
ing more than innocent bystanders (cf. Pavlidis et al. 2012).

It is worth noting that many signals of selection used in
molecular population genetics are focused on the regions
flanking selected sites. Indeed, modern-day studies of the
effect of hitchhiking on variation have often explicitly focused
on linked neutral loci (e.g., Kaplan et al. 1989; Przeworski
2002), and several commonly used tests for selection—e.g.,
Fay and Wu’s H (Fay andWu 2000)—are often significant only
in flanking regions (i.e., in the “shoulders”; Figure 4D). How-
ever, the development of many methods for detecting selection
has been accompanied by a focus on the region directly sur-
rounding the selected site itself, rather than the flanking
regions (for exceptions, see the next paragraph). Despite the
fact that previous studies have found the same patterns as
shown here for the shoulders of completed sweeps (e.g., Figure
6 in Pennings and Hermisson 2006b), these studies have gen-
erally not discussed the implications of these results. For in-
stance, Peter et al. (2012) sought to classify previously
identified sweeps as hard or soft (from standing variation); they
observed that misidentifying the target of selection increases
the fraction of sweeps falsely classified as soft, but did not
discuss the implications of this for genome-wide scans of selec-
tion. The results presented here suggest that this misidentifica-
tion is itself a problem when conducting whole-genome studies.

Although the problem of distinguishing soft or partial
sweeps from the shoulders of hard sweeps is difficult, it may
not be intractable. Hard sweeps leave an expected spatial
pattern of variation around the target of selection, with a large
region of low diversity flanked by regions with skewed allele
frequencies and high linkage disequilibrium within each
shoulder but not across the selected site (Stephan et al.
2006). These patterns are in fact the basis of tests for selection
that use the spatial arrangement of allele-frequency skews
(e.g., Kim and Stephan 2002; Nielsen et al. 2005) and LD
(Kim and Nielsen 2004; Pavlidis et al. 2010). Based on the
results laid out above, we expect that these methods used to
detect completed hard sweeps should find regions directly

Figure 7 The relationship between gene conversion rate and sweep mis-
classification rate. (A) Allele-frequency information: the relationship be-
tween the locus-wide gene-conversion rate and the fraction of simulated
windows containing a hard sweep (a = 1000) classified as hard, soft, or
neutral. (B) Same as A, but using a classifier leveraging haplotype infor-

mation. (C) Results from an SVM leveraging LD information. (D) An SVM
leveraging our full set of summary statistics. (E) An SVM leveraging our
full set of summary statistics and trained from simulated regions
experiencing the correct gene conversion rate.
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abutting the loci discovered by methods employed to detect
soft or partial sweeps. Indeed, there is a significant overlap
between loci identified as sweeps in the human genome using
iHS (Voight et al. 2006) and the composite likelihood-ratio
test of Nielsen et al. (2005) that is intended to detect completed
sweeps (Williamson et al. 2007). The extent of the overlap
between significant loci may be determined by a number of
factors, including the statistical power of each test and the
frequency of recurrent hitchhiking events, which may cause
much of the genome to resemble a shoulder. Nevertheless,
a simple heuristic could prove effective: whenever a putative
soft or partial sweep is found, one can attempt to rule out the
possibility that it is simply the shoulder of another event by
searching for evidence of a nearby hard sweep. Here we tested
a similar strategy of examining only the strongest signature of a
sweep within a large genomic window, effectively imposing
a distance cutoff such that any signature of positive selection
found within a prespecified distance of another putative sweep
with stronger support would be ignored. For soft sweeps, we
found that this approach could dramatically reduce the false-
positive rate; however, one could miss many true sweeps, es-
pecially when positive selection repeatedly acts on the same
locus or cluster of neighboring loci or if the region examined
is large. These are important limitations when examining pop-
ulations where recent positive selection is thought to be wide-
spread (e.g., Drosophila: Begun et al. 2007; Langley et al. 2012).

We also employed a more sensitive approach of requiring
at least one putatively neutral window to separate distinct
putative sweeps, but found that this approach was not
robust to soft shoulders. The failure of our latter approach
seems to be driven by stochasticity in the signal of selection
surrounding a sweep: while on average this signal dissipates
monotonically with increasing distance from the target of
selection, many individual windows do not closely resemble
this average case and instead exhibit secondary signal peaks
due to noise and indeed often present the strongest peak
outside of the selected window (see Figure 4, Figure 5, and
plots of individual simulations available: https://github.com/
kern-lab/softshoulders). Thus, noise in the signal of selection
may result in not only false-positive soft sweep calls, but also
in the mislocalization of true sweeps—especially when using
haplotypic information. This may be especially troublesome
near soft sweeps, where the location of the peak signal of
selection is particularly unpredictable.

When examining the spatial distribution of various
summary statistics in our large-scale simulations containing
selective sweeps, we observed that some statistics (e.g., p,
v) more reliably identify the target of selection than others.
This suggests that it may be possible to devise a method,
perhaps one combining multiple allele-frequency-, haplo-
type-, and LD-based statistics, that more accurately identi-
fies sweep locations (although gene conversion and the
passage of time since the sweep may complicate this; see
below). This would in turn allow for the characterization of
targets of recent positive selection and inferences about the
phenotypic changes they underlie, as well as more accurate

inferences of the type of positive selection responsible for
these sweeps.

Alternatively, it may prove difficult to disentangle the
different modes of adaptive evolution from one another, even
if one can correctly identify the target of selection. This more
pessimistic view is supported by multiple considerations. First,
the distinction between hard and soft sweeps may not be so
distinct (Jensen 2014). While new mutations always begin at
frequency 1/2N, soft sweeps from standing variation may be
selecting on variants from frequency 2/2N to (2N 2 1)/2N.
For selection that acts on polymorphisms at low frequencies,
the patterns of variation at both the selected site and in the
flanking regions may be indistinguishable from a true hard
sweep. Second, as shown here, the shadow of a hard sweep
may leave the apparent signature of a soft sweep even at the
site of selection. In addition, allelic gene conversion at the
selected site during the sweep can place the advantageous
allele onto new backgrounds. This pattern is exactly the same
as that expected by soft sweeps via recurrent adaptive evolu-
tion (Begun and Aquadro 1994; Hamblin and Di Rienzo 2000;
Hamblin et al. 2002). Although this may not seem to be a likely
event, gene conversion occurs at a high rate (Comeron et al.
2012), and even with short conversion tract lengths it will
affect a large proportion of all sweeps (Figure 7; also see Jones
and Wakeley 2008).

In a scenario involving realistic rates of gene conversion,
even with prior knowledge of the selected site—and even sam-
pling the data at the time of fixation—it becomes very difficult
to disentangle soft from hard sweeps, or distinguish either from
neutrality. That gene conversion may cause hard sweeps to go
undetected underscores the need for tests for selection that are
more sensitive than those designed with completed hard
sweeps in mind: tests designed to uncover soft sweeps may
be well suited for detecting hard sweeps undergoing gene
conversion, for example. Moreover, our results suggest that if
gene-conversion rate estimates across the genome are available,
selection scans may be able to leverage this information to
construct a more accurate expectation of the impact of selection
on linked polymorphism, and thus more accurately detect
sweeps and classify the mode of selection (Figure 7E). Unfor-
tunately, gene conversion also obscures the spatial signal of
a selective sweep, making it more difficult to accurately locate
the target of selection. This effect may be just as severe on
allele-frequency information as on haplotype frequencies. The
passage of time following fixation also obscures the sweep lo-
cation, although nucleotide diversity is more robust to this prob-
lem. Thus it appears that gene conversion could be the biggest
obstacle to accurate sweep detection and classification.

Despite the pessimism engendered by these results, it
should be remembered that scans for selection have success-
fully identified the targets of adaptive evolution in multiple
cases (e.g., Rockman et al. 2004; Schlenke and Begun 2004;
Tishkoff et al. 2007; Yi et al. 2010). While such examples may
represent the patterns produced only by the strongest selec-
tion coefficients, and may be skewed toward only certain
modes of selection, they represent the promise of population
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genetic methods for identifying targets of natural selection.
The continued deployment of an array of approaches designed
to detect different signals produced by selection remains one of
the best ways to identify the genes underlying adaptive phe-
notypes (cf. Li et al. 2008).

Whatever the approach taken, future searches for recent
adaptive events must be robust to altered patterns of nucleotide
and haplotype diversity and LD observed near classic hitchhik-
ing events, including those experiencing gene conversion,
especially when these searches are conducted on a genome-
wide scale. Otherwise, such efforts may fail to deliver their
promise of identifying either the genomic loci undergoing
recent adaptation or the types of positive selection they have
experienced.
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Figure S1   Strategy for classifying genomic windows as hard sweeps, soft sweeps, or evolving neutrally. Diagram of evolutionary scenarios of 

simulated 10 kb chromosomes used to train the classifier, and 100 kb chromosomes which are segmented into 10 kb windows (the first of which 

contains a hard sweep) to which the classifier was applied. Example genealogies of each evolutionary scenario are shown, as well as the time at 

which mutations that result in a sweep (hard or soft) occur. Mutations that begin sweeping to fixation immediately upon occurrence are denoted 

by a red explosion, while mutations that are initially fitness-neutral but later sweep to fixation are denoted by a green explosion. 
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Figure S2   Distributions of additional summary statistics in neutral, selected, and linked regions. 
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Figure S3   Classification of regions flanking hard sweeps with α=2000. This is the same plot as Figure 1 but with both α and ρ set to 2000. 
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Figure S4   Classification of regions flanking hard sweeps with α=5000. This is the same plot as Figure 1 but with both α and ρ set to 5000. 
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Figure S5   Classification of regions flanking hard sweeps with α=1000, but considering recurrent mutation. This is the same plot as Figure 1 but 

the model of soft sweeps considered is one where the adaptive mutation can reoccur on multiple genetic backgrounds during the sweep. 
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Figure S6   Signals of selection from various summary statistics in windows containing or flanking a soft sweep from recurrent mutation. For each 

summary statistic, we examined each individual simulation and located the window exhibiting the most extreme value (in the direction suggestive of 

a soft sweep). This figure shows the histogram of these locations for each statistic. The total genetic distance of each simulated chromosome (ρ) was 

2100. The chromosome was subdivided into 21 equally sized windows (ρ=100) with a soft selective sweep (with α=1000; mutation rate to the adaptive 

allele ranging from 1 to 2.5) occurring in the central window. 
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Figure S7   The relationship between age of the sweep and misclassification rate when modeling soft sweeps from recurrent adaptive mutation. 

(A) The fraction of simulated windows containing a hard sweep (α=1000) classified as hard, soft (from recurrent mutation), or neutral by an SVM 

leveraging allele frequency information is shown according to the time in the past at which the sweep completed (in units of 2N generations). The 

most recent sweep examined in this plot completed 0.000625×2N generations ago, and we examined older sweeps by continually doubling the 

time since fixation, stopping at a sweep time of 1.28×2N generations in the past. (B) Same as panel A, but using a classifier leveraging haplotype 

information. (C) Results from an SVM leveraging LD information. (D) An SVM leveraging our full set of summary statistics (Methods). 
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Figure S8   The relationship between gene conversion rate and sweep misclassification rate when modeling soft sweeps from recurrent adaptive 

mutation. (A) The relationship between the locus-wide gene-conversion rate and the fraction of simulated windows containing a hard sweep 

(α=1000) classified as hard, soft (from recurrent mutation), or neutral. (B) Same as panel A, but using a classifier leveraging haplotype information. 

(C) Results from an SVM leveraging LD information. (D) An SVM leveraging our full set of summary statistics (Methods). (E) An SVM leveraging our 

full set of summary statistics and trained from simulated regions experiencing the correct gene conversion rate. 
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Tables S1-S2 

Available for download as Excel files at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.174912/-/DC1 

 

Table S1. Summary of simulation datasets used in this study. 

Table S2. Classification accuracy of each SVM as assessed on an independent test set. 

 


