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ABSTRACT Two sequentially Markov coalescent models (SMC and SMC9) are available as tractable approximations to the ancestral
recombination graph (ARG). We present a Markov process describing coalescence at two fixed points along a pair of sequences
evolving under the SMC9. Using our Markov process, we derive a number of new quantities related to the pairwise SMC9, thereby
analytically quantifying for the first time the similarity between the SMC9 and the ARG. We use our process to show that the joint
distribution of pairwise coalescence times at recombination sites under the SMC9 is the same as it is marginally under the ARG, which
demonstrates that the SMC9 is, in a particular well-defined, intuitive sense, the most appropriate first-order sequentially Markov
approximation to the ARG. Finally, we use these results to show that population size estimates under the pairwise SMC are asymp-
totically biased, while under the pairwise SMC9 they are approximately asymptotically unbiased.
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OF the many models of genetic variation in the field of
population genetics, few have as much relevance in the

era of genomics as the ancestral recombination graph (ARG).
The ancestral recombination graphmodels patterns of ancestry
and genetic variation within sequences experiencing recombi-
nation under neutral conditions (Hudson 1991; Griffiths and
Marjoram 1997). Under the formulation of Griffiths and
Marjoram (1997), lineages recombine apart and coalesce
together back in time to produce a graph structure describing
the ancestral genealogy at each point along a continuous chro-
mosome. While only a few simple rules govern the process,
many aspects of the model are analytically intractable.

Wiuf and Hein (1999) provided a formulation of the ARG
that proceeds across the chromosome (rather than back in
time), producing the genealogy at each point sequentially.
As with the back-in-time formulation of the ARG, at each
point along the chromosome there is a local genealogy de-
scribing the ancestry of the sample at that point, and changes

in the genealogy occur at recombination sites. In this sequen-
tial formulation of the ARG, a new lineage is produced wher-
ever an ancestral recombination event is encountered along
the chromosome. To produce a new genealogy at the recombi-
nation site, the new lineage is coalesced to the ARG represent-
ing the ancestry of all previous points along the chromosome.
This dependence on all previous points makes the process non-
Markovian along the chromosome and (together with a large
state space) makes calculations often intractable.

Approximations to the ARG have been suggested with the
goal of modeling coalescence with recombination in a way
that is analytically tractable. McVean and Cardin (2005)
introduced the sequentially Markov coalescent (SMC). The orig-
inal formulation of the SMC was sequential, generating gene-
alogies along the chromosome such that each new genealogy
depends only on the previous genealogy. Like the ARG, the
SMC has both a back-in-time formulation and a sequential
formulation. The back-in-time formulation of the SMC is equiv-
alent to that of the ARG except that coalescence is allowed
only between lineages containing overlapping ancestral mate-
rial. As a consequence, in the sequential formulation of the
pairwise (n ¼ 2 chromosomes) SMC, each recombination
event produces a new pairwise coalescence time.

Marjoram and Wall (2006) introduced a slight modifica-
tion to the SMC, termed the SMC9, which retains the Markov
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behavior along the chromosome but models additional co-
alescence events that make it a closer approximation to the
ARG. Specifically, in the back-in-time formulation of the
SMC9, coalescence is allowed between lineages containing
either overlapping or adjacent ancestral material. In the se-
quential formulation of the pairwise SMC9, this means that
not every recombination event necessarily produces a new
pairwise coalescence time, since two lineages created by
a recombination event can coalesce back together. Figure 1
shows the transitions that are permitted under the back-
in-time and sequential formulations of the pairwise ARG,
SMC, and SMC9. The sequentially Markov coalescent mod-
els have been used in many recently introduced population-
genetic, model-based inference procedures, including the
pairwise SMC (PSMC) model (Li and Durbin 2011), the
multiple SMC (MSMC) model (Schiffels and Durbin
2014), diCal (Sheehan et al. 2013), coalHMM (Hobolth
et al. 2007; Dutheil et al. 2009), and ARGWeaver (Rasmussen
et al. 2014), and in a study of past human demography
based on tracts of identity by state (Harris and Nielsen
2013).

The SMC9 was shown by simulation to produce meas-
urements of linkage disequilibrium more similar to the
ARG than those produced by the SMC (Marjoram and Wall
2006) and was hence used as the preferred model by some
recent studies (Harris and Nielsen 2013; Schiffels and
Durbin 2014; Zheng et al. 2014). Additionally, a number
of recent studies have explored the theoretical properties
of the SMC9 (Eriksson et al. 2009; Harris and Nielsen
2013; Carmi et al. 2014; Schiffels and Durbin 2014; Zheng
et al. 2014). However, few direct comparisons between
the SMC9 and the ARG have been made, and a number
of open questions remain. Here, we show how the joint
distribution of pairwise coalescence times at two fixed
points along a chromosome evolving under the SMC9
can be described by a continuous-time Markov chain.
Through analysis of this Markov chain, we calculate many
statistical properties of the pairwise SMC9 and compare
them to those of the ARG and the SMC. Specifically, for
each model of coalescence with recombination, we com-
pare the following: the joint density fT1;T2ðt1; t2Þ (Joint
probability density functions), the conditional density
fT2jT1ðt2jt1Þ (Conditional distribution of coalescence times),
and the covariance between T1 and T2, which we show to
be equal to the probability that T1 and T2 are the same
(Covariance of coalescence times). These quantities are
readily related to measures of linkage disequilibrium in
real sequence data.

Using our two-locus Markov process for the two-locus,
pairwise SMC9, we also show that the joint distribution of
coalescence times immediately to the left and right of a re-
combination event is the same under the SMC9 and ARG.
This allows us to calculate the asymptotic bias of the pair-
wise SMC- and SMC9-based population-size estimators,
which we confirm by simulation. We show that the SMC9
estimator is approximately asymptotically unbiased.

Results

Two-locus Markov chain model for the SMC and SMC9

Here, we present back-in-time Markov processes for the two-
locus SMC and SMC9. Previous work has developed analo-
gous two-locus, back-in-time Markov processes for the ARG.
Kaplan and Hudson (1985) first described how the process
of generating coalescence times at two linked loci modeled
by the ARG can be represented as a continuous-time Markov
chain, with coalescence and recombination events causing
transitions between states. Simonsen and Churchill (1997)
explored this process further for the case where the sample
size is n ¼ 2 and derived for the ARG many of the quantities
we compare against the SMC9 in this article. Subsequent work
has extended this approach to study two-locus coalescence dis-
tributions in the presence of population structure (Eriksson and
Mehlig 2004) and recurrent bottlenecks (Schaper et al. 2012)
and to study species-tree concordance at linked loci (Slatkin and
Pollack 2006) and coalescence histories at one locus conditional
on the history at a nearby locus (Hobolth and Jensen 2014).

We begin by presenting the simpler SMC model, which
provides context for the more complex SMC9 model. If time is
scaled such that the rate of coalescence is 1 and the total rate
of recombination between the two linked loci is r=2; then the
two-locus ancestral process under the SMC is the process
depicted in Figure 2. The process starts in state R0 with
two lineages, each containing linked copies of the two loci.
From R0; the process transitions with rate r to state R1; in
which one of the two chromosomes has experienced a recom-
bination event, or with rate 1 to state CB; an absorbing state
in which both loci have coalesced. Under the SMC, lineages
can coalesce only if they contain overlapping ancestral mate-
rial, so after entering R1; the process cannot return to the
fully linked state R0; and each locus coalesces independently
with rate 1 from that time onward. Thus, under the SMC, the
joint distribution of coalescence times at two loci is that of

ðT1;T2Þ � ðX0 þ RXL;X0 þ RXRÞ; (1)

where X0 � Expð1þ rÞ is the amount of time to leave R0;

R � Bernoulliðr=ð1þ rÞÞ indicates whether the first event
is a recombination event, and XL � XR � Expð1Þ are the expo-
nential waiting times until coalescence after the first recombi-
nation event. All of these random variables are independent in
the SMCmodel, so it is straightforward to calculate many of the
quantities we compare in this article, using this representation.

The defining rule of the SMC9 model of coalescence with
recombination is that only ancestral lineages containing over-
lapping or contiguous ancestral material can coalesce (Marjoram
and Wall 2006). The back-in-time process of coalescence at two
fixed loci under this model is the continuous-time Markov chain
shown in Figure 3. Under the SMC9, it is necessary to model the
number of recombination events that have occurred between
the two loci at each point in time. To see that this is the case,
consider the state R2 in Figure 3. In this state, two recombina-
tion events have occurred between the focal loci, and neither
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focal locus has coalesced. Because lineages can coalesce only to
lineages containing overlapping or adjacent ancestral material,
two particular coalescence events would need to occur before
the process returns to state R0; regardless of the placement of
the recombination events on the two chromosomes.

The SMC9 two-locus Markov process also features an ad-
ditional state I, which is entered when some portion of the
chromosome between the focal loci coalesces before either
of the focal loci. Upon entering I it becomes impossible for
the process to reenter the initial, fully linked state (R0), so
the remaining times until coalescence at the focal loci be-
come independent exponential random variables with mean
1. If Ri is the state in which neither focal locus has coalesced
and i recombination events have occurred between the focal
loci, the transition rate into I is i2 1: This is due to the fact
that each recombination event after the first produces an
additional pair of lineages that can coalesce to take the pro-
cess to I: For each state Ri; i$ 1; the number of lineages that
can coalesce to take the process to Ri21 is i, and the rate of
transitioning to Riþ1 through recombination is r. Transitions
to CL and CR occur at rate 1 whenever the process is in state
Ri; i$ 1: Following Eriksson and Mehlig (2004), we disre-
gard any information about linkage between the two loci
after one locus has coalesced, since the rate of coalescence
at the uncoalesced locus is 1 regardless of the state of link-
age with the coalesced locus.

For comparison, an analogous two-locus continuous-time
Markov chain for the ARG is presented in Supporting
Information, Figure S1. An equivalent process was studied
by Simonsen and Churchill (1997) and others. In this model,
state R1 is reached when the first event is a recombination
event, and state R2 is reached only after a subsequent re-
combination event occurs on the ancestral lineage that did
not experience the first recombination event, making all an-
cestral copies of the two loci unlinked.

Joint probability density functions

Considering the SMC9 model above, let R0ðtÞ represent the
probability that the two-locus ancestral coalescent process is
in state R0 at time t, and let RþðtÞ represent the probability
that the process is in any state Ri; i$ 1; or state I; at time t.
The joint density of coalescence times at the two focal loci is
then

fT1;T2ðt1; t2Þ ¼
8<:R0ðt1Þ t1 ¼ t2

Rþðt1Þe2ðt22t1Þ t1 , t2
Rþðt2Þe2ðt12t2Þ t1 . t2;

(2)

since R0ðtÞ is the rate of entering state CB at time t, and
RþðtÞ is the rate of entering either CL or CR at time t. The
joint density for the ARG and SMC is analogously defined,
with RþðtÞ representing R1 and R2 under the ARG and R1

Figure 1 Transitions permitted under the pairwise ARG, SMC9, and SMC models. Under “sequential transitions,” a transition occurs left to right across
the chromosome at the rightmost recombination event (marked with a red line). The ith coalescence time is labeled ti : Under “back-in-time transitions,”
the arrow indicates a coalescence event that occurs between two aligned ancestral chromosomes, each carrying a combination of ancestral (solid black
lines) and nonancestral material (dashed gray lines). Ancestral material is defined as a portion of a chromosome that is ancestral to the sample.
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under the SMC. For the ARG and the SMC, the number of
states is finite and R0ðtÞ and RþðtÞ can be solved using
matrix exponentiation. For the SMC9, there is an infinite
number of states, representing the possibility of an infinite
number of recombination events occurring between the
two focal loci. In the Appendix, we derive closed-form
expressions for R0ðtÞ; RþðtÞ; and fT1;T2ðt1; t2Þ: The main idea
in these derivations is to recognize the structure of the
SMC9 in Figure 3 as a birth–death process with killing. In
this formulation the states are Ri; fi$ 0g; a birth corre-
sponds to a recombination event (and the birth rate is
constant), a death corresponds to a coalescence event
(and the death rate is linear), and killing corresponds to
leaving the Ri states.

Figure 4 compares the joint coalescence time distribu-
tions under the SMC and SMC9, displaying the differences
of these joint distributions with the joint distribution of the
ARG. The SMC9 provides a much better fit to the ARG for the
range of recombination rates compared. Both the SMC and
the SMC9 underestimate the density of outcomes where
T1 ¼ T2; but this underestimation is substantially less under
the SMC9.

To summarize the difference between the joint distribu-
tions more succinctly, we calculated the total variation
distance between the SMC and the ARG and between the
SMC9 and the ARG across a range of recombination rates.
The total variation distance between the SMC and the ARG
is defined as

TVðSMC;ARGÞ ¼ 1
2

Z N

0

Z N

0

���� fSMCðt1; t2Þ2 fARGðt1; t2Þ
����dt2dt1; (3)

where f SMCðt1; t2Þ and fARGðt1; t2Þ are the joint densities
fT1;T2ðt1; t2Þ defined under the SMC and ARG, respectively.
The total variation distance between the SMC9 and the ARG
is similarly defined. Figure 5 shows the total variation distance
from the ARG for the SMC and SMC9 over a range of re-

combination rates. Total variation distances were calcu-
lated numerically. For both the SMC and SMC9, the total
variation distance was maximized at some intermediate
recombination rate, �r ¼ 1:1 for the SMC and r ¼ 3:2
for the SMC9.

Conditional distribution of coalescence times

In this section we consider the distribution of coalescence
times at one locus given the coalescence time at the other.
The conditional density of T2 given T1; fT2jT1ðt2jt1Þ; can be
calculated by dividing the joint density by the marginal dis-
tribution of coalescence times at the left locus:

fT2jT1
ðt2jt1Þ ¼ fT1;T2ðt1; t2Þ

e2t1
: (4)

Hobolth and Jensen (2014) introduced a framework
for modeling the distribution of T2 given T1; using a time-
inhomogeneous continuous-time Markov chain. [Note that
the model called SMC9 in Hobolth and Jensen (2014) is an
SMC9-like model of two loci that is not based on the continuous-
chromosome SMC9. It is different from the SMC9 model we
consider here.] This framework can be extended to the SMC9,
producing the continuous-time Markov chain shown in Figure
S2. Figure 6 compares the conditional density fT2jT1ðt2jt1Þ of
coalescence times t2 at the right locus conditioned upon the

Figure 2 Schematic of the SMC back-in-time Markov process for two
loci. The process starts in state R0, and transitions to other states occur
with the rates indicated by arrows between states.

Figure 3 Schematic of the SMC9 back-in-time Markov process for two
loci. Dashed arrows show transition rates that apply for all Ri. State I is the
state in which some portion of the chromosome between the two focal
loci has coalesced but neither focal locus has coalesced. The red lines in
states R2 and R3 show the coalescence events that take the process to
state I:
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coalescence times t1 at the left locus for different values of t1
and r.

We note that recently it was proposed that the mutation
rate could be estimated by simulation-based calibration of
the increase in mean heterozygosity when moving away
from a site of known, low heterozygosity (Lipson et al.
2015). Our expressions for the conditional distribution of
coalescence times could provide theoretical expectations
for such a statistic.

Covariance of coalescence times

In the two-locus, back-in-time Markov processes for the
SMC, SMC9, and ARG, T1 and T2 are equal when the state CB

is entered through R0 rather than CL or CR: For the ARG,
Simonsen and Churchill (1997) showed that the probability
that T1 is equal to T2 is

PARGðT1 ¼ T2Þ ¼ r þ 18
r2 þ 13r þ 18

: (5)

Under the SMC (McVean and Cardin 2005),

PSMCðT1 ¼ T2Þ ¼ 1
1þ r

: (6)

Eriksson et al. (2009) used the sequential formulation of the
SMC9 to show that

PSMC9ðT1 ¼ T2Þ ¼
Z N

0
e2te2rlðtÞdt

¼ 2r=2e2r=4ð2rÞ2ð1=2Þ2ðr=4Þ

� 
�
G

�
2þ r

4

�
2G

�
2þ r

4
; 2

r

4

��
;

(7)

where lðtÞ ¼ ð12 e22t þ 2tÞ=4 is the exponential rate of en-
countering a change in coalescence time when the local co-
alescence time is t and Gða; bÞ ¼ RN

b xa21e2x dx is the
incomplete gamma function.

For the ARG and SMC, the covariance Cov½T1;T2� is equal
to PðT1 ¼ T2Þ: Eriksson et al. (2009) showed by simulation
that this is also true of the SMC9. Here we present a short
proof that this is the case for any two-locus model of co-
alescence where the marginal distribution of coalescence
times is exponential with rate 1.

The expectation E½T1T2� can be derived using the fact that
ða 2 bÞ2 ¼ a2 þ b2 2 2ab :

2E½T1T2� ¼ E
�
T2
1

�þ E
�
T2
2

�
2E

�ðT12T2Þ2
�

¼ 2þ 22E
�ðT12T2Þ2

��T1 6¼ T2
�
PðT1 6¼ T2Þ

¼ 42 2PðT1 6¼ T2Þ:
(8)

The final equality in (8) follows from the fact that jT1 2T2j
has an exponential distribution with rate 1 when T1 6¼ T2:
Therefore E½T1T2� ¼ 22 PðT1 6¼ T2Þ and

Cov½T1;T2� ¼ E½T1T2�2E½T1�E½T2�
¼ E½T1T2�2 1
¼ PðT1 ¼ T2Þ:

(9)

This result holds in other situations with exponential
coalescence times, for example in the context of the
population-divergence model considered by Eriksson et al.
(2009) (in which case the marginal distribution is exponential
plus a constant) and for the various covariances used by
McVean (2002) to calculate s2

d; the approximation to the
linkage disequilibrium measure r2:

Figure 4 Comparison of the difference in the joint density of coalescence times fT1 ;T2 ðt1; t2Þ between the SMC and ARG (top row) and SMC9 and ARG
(bottom row). Comparisons are made for three different recombination rates (r ¼ 0:1;1:0;5:0).
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It is interesting to consider Cov½T1;T2� ¼ PðT1 ¼ T2Þ
when r is small. For the ARG, consideration of (5) shows
that Cov½T1;T2� ¼ PARGðT1 ¼ T2Þ ¼ 12 2r=3þ Oðr2Þ: Like-
wise, for the SMC, (6) shows that Cov½T1;T2� ¼
PSMCðT1 ¼ T2Þ ¼ 12 r þ Oðr2Þ:

For the SMC9, the integral representation of
PSMC9ðT1 ¼ T2Þ in (7) allows for the calculation of this quan-
tity as a first-order expansion in r:

Cov½T1;T2� ¼
Z N

0
e2te2rlðtÞdt

¼ 12 r

Z N

0
e2tlðtÞdt þ O

	
r2



¼ 12
2r
3

þ O
	
r2


:

(10)

Thus, Cov½T1;T2� [or PðT1 ¼ T2Þ] is the same up to order r2

under the ARG and SMC9.

Coalescence times at recombination sites

In this section, we show that the joint distribution of
coalescence times on either side of a recombination event is
the same under the SMC9 and marginally under the ARG, and
we derive this distribution. Consider the continuous-time
Markov chains representing the two-locus SMC9 and ARG
models (Figure 3 and Figure S1, respectively) in the limit of
r/0 and conditioning on the first event being a recombina-
tion event. These processes represent the joint distribution of
coalescence times on either side of a recombination event
under the ARG and SMC9. In both of these processes, the
waiting time until the first event, conditional on that event
being a recombination event, has an exponential distribution
with rate 1þ r; which converges to 1 as r/0: After that first

recombination event, the rate of all additional recombination
events converges to zero in the r/0 limit, so all of the
remaining events must be coalescence events, each of which
occurs with rate 1. Under the ARG and the SMC9, the coales-
cence events that are possible from state R1 are the same.
Thus, the joint distribution of coalescence times at recombi-
nation sites is the same under the SMC9 and the ARG.

Figure 7A shows the two-locus continuous-time Markov
chain representing this conditional process. This Markov
chain starts in a special initial state R*

0; out of which the first
event is always a recombination event, which happens with
rate 1, as described above. In previous sections, we used T1

and T2 to represent the coalescence times at two loci some
fixed distance apart. To avoid confusion, in this section we
use S and T to represent the coalescence times on the left and
right sides of a recombination event, respectively.

Recombination events are visible in sequence data only if
they change the local coalescence time. Thus, it is of special
interest to condition on S 6¼ T in the above model to derive
the joint distribution of coalescence times on either side of
a change in coalescence times under the ARG and SMC9.
Conditioning on S 6¼ T; the transition out of R1 must be into
either CL or CR: These transitions occur with conditional rate
3=2; since the total rate of leaving R1 is 3 in the uncondi-
tional model, and two of the ways of leaving R1 result in the
coalescence times being different.

The continuous-time Markov chain representing coales-
cence times on either side of a change in coalescence times
(i.e., at recombination sites where S 6¼ T) is shown in Figure
7B. Under this model, the joint distribution of S and T is
that of

ðS;TÞ � ðX1 þ X2 þ RX3;   X1 þ X2 þ ð12RÞ X3Þ; (11)

where X1 � Expð1Þ; X2 � Expð3Þ; R � Bernoullið1=2Þ; X3 �
Expð1Þ; and the random variables are independently distributed.

Under the SMC, the continuous-time Markov chain repre-
senting the joint distribution of coalescence times at recombi-
nation sites is equivalent to the model in Figure 7B with the
transition rates from R1 to CL and CR equal to 1 instead of 3=2:
Under this model for the SMC, the joint distribution of coales-
cence times on either side of a recombination event is that of

ðS;TÞ � ðX1 þ X2;X1 þ X3Þ; (12)

where X1; X2; and X3 are mutually independent exponential
random variables with rate 1.

In File S1, we use these Markov processes to derive the joint,
marginal, and conditional distributions of coalescence times at
recombination sites under the ARG, SMC9, and SMC. These
calculations confirm previous derivations of Carmi et al.
(2014) for the SMC9 and Li and Durbin (2011) for the SMC.

SMC9 as the canonical first-order Markov approximation
to ARG

Under the sequential formulation of the continuous-chromosome
ARG, SMC, and SMC9 models, the infinitesimal probability of

Figure 5 Total variation distance between the SMC and ARG (solid line)
and the SMC9 and ARG (dashed line) as a function of recombination rate.
Total variation distances were calculated numerically.
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a recombination event occurring in the interval ðx; x þ dxÞ given
the coalescence time s at x is s dx: This fact, together with the
fact that the joint distribution of coalescence times at recombi-
nation sites is the same under the ARG and SMC9 (whether or
not the coalescence time changes), implies that the conditional
distribution of coalescence times at point x þ dx given the co-
alescence time at point x is the same under the SMC9 and ARG.

This demonstrates that the pairwise SMC9 is the canoni-
cal first-order Markov approximation for the pairwise ARG.
Given an infinite-order Markov chain fXi;  i ¼ 0; 1; 2; . . . g;
where the distribution of each Xj depends on all previous Xi;
i, j; the canonical k-order Markov approximation to fXig is
the Markov chain fX ½k�

i g satisfying

P
�
X ½k�
n

��� X ½k�
n21 ¼ xn21; . . . ;X

½k�
n2k ¼ xn2k

�
¼ PðXnj Xn21 ¼ xn21; . . . ;Xn2k ¼ xn2kÞ:

(13)

That is, the transition probabilities under the k-order canon-
ical Markov approximation are equal to the transition prob-
abilities conditional on the previous k states under the
infinite-order chain. See Schwarz (1976), Fernández and
Galves (2002), and Gallo et al. (2013) for examples of math-
ematical studies of canonical Markov approximations of
infinite-order Markov chains.

Here we informally extend the terminology of canonical
Markov approximations to continuous processes. The SMC9 is
the canonical first-order Markov approximation to the ARG
because the distribution of coalescence times at x þ dx condi-
tional on the coalescence time at x is the same under the ARG
(an infinite-order, sequentially non-Markovian continuous
process) and the SMC9 (a first-order sequentially Markov con-
tinuous process). In this sense, the SMC9 is the most natural
first-order sequentially Markov approximation to the ARG.

Asymptotic bias of the population-size estimators
under SMC and SMC9

Given the joint density of pairwise coalescence times at
recombination sites under the ARG, it is possible to determine
the asymptotic bias of maximum-likelihood population size
estimators derived from the pairwise SMC and SMC9 likeli-
hood functions. These likelihood functions give the probabil-
ity of observing a sequence of pairwise coalescence times and
corresponding segment lengths across a chromosome under
the SMC and SMC9 models. Related likelihood functions
(allowing for variable historical population size) are implicitly

maximized in the PSMC and MSMC inference procedures (Li
and Durbin 2011; Schiffels and Durbin 2014, respectively).
These inference procedures are hidden Markov model
(HMM) methods in which the local coalescence times (or
genealogies) and segment lengths are hidden states inferred
from sequence data.

Here, we consider the estimators that would be obtained
if the hidden states in these models were actually observable
(see also Kim et al. 2015). We are motivated by the fact that
any biases of the estimators we investigate are likely to be
inherent in the full HMM-based inference procedures, since
these biases would be present even with perfect knowledge
of an infinite number of coalescence times. Furthermore, by
analyzing estimators derived from the hidden coalescence
states, we isolate the bias that is due to choice of coalescent
algorithm (SMC vs. SMC9) from the bias due to the mutation
model or discretization of the continuous hidden states in
a full HMM approach to inference.

To investigate the asymptotic properties of these estima-
tors, we assume that data are generated under the ARG, such
that at a fixed point the distribution of pairwise coalescence
times is exponential with rate = 1 and an ancestral segment
of length l recombines back in time at rate rl=2: Segment
lengths are measured in units of the true scaled recombina-
tion parameter r. Data generated under this model can be
represented as a sequence of pairwise coalescence times and
corresponding segment lengths: fðti; liÞ : 1# i# kg:

We are interested in estimating a single relative popula-
tion size h (defined relative to the true population size, N). If
the data are modeled by the SMC or SMC9, the likelihood of
a particular value of h is

L
	
hjfðti; liÞg


 ¼ 1
h
e2ðt1=hÞ Yk

i¼2

qðtijti21; hÞ

�
Yk
i¼1

lðti; hÞe2lðti;hÞli ;

(14)

where qðtjsÞ is the transition function and lðt; hÞ is the rate
of encountering the end of a segment given t, with both
quantities pertaining to the sequentially Markov coalescent
model being used to calculate the likelihood.

In the Appendix, we show that if the SMC is used, the
maximum-likelihood estimate of h converges to �0.95 as
the chromosome gets infinitely long. If the SMC9 is used,
the estimate is approximately unbiased in the same limit.

Figure 6 Comparison of densities of coalescence
times t2 at the right locus conditioned upon coales-
cence times t1 at the left locus. Conditional densi-
ties fT2 jT1 ðt2jt1Þ are shown for the ARG, SMC, and
SMC9 models for three different rates of recombi-
nation between the two loci (r ¼ 0:1; 1:0; 5:0)
and three different conditioned-upon coalescence
times t1 at the left locus (t1 ¼ 0:1; 1:0; 4:0). The
area under each curve is PðT2 6¼ t1jT1 ¼ t1Þ; the
conditional probabilities PðT2 ¼ t1jT1 ¼ t1Þ are not
shown.
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If the data are reduced to just the segment ages, the likeli-
hood equation is

L
	
hjfðti; liÞg


 ¼ 1
h
e2ðt1=hÞ Yk

i¼2

qðtijti21; hÞ: (15)

Using this reduced likelihood, the asymptotic maximum-
likelihood estimate is asymptotically unbiased under the
SMC9. Under the SMC, the reduced likelihood and the full
likelihood produce the same maximum-likelihood estimate
(see Appendix).

We confirm the asymptotic bias of the SMC estimator and
the apparent lack of asymptotic bias of the SMC9 estimators
by simulation. Figure 8 shows 100 simulated estimates cal-
culated using the SMC, SMC9, and reduced SMC9 likelihood
functions. Each estimate was calculated using 100 indepen-
dent pairs of chromosomes simulated under the ARG, with
each chromosome of total length 4Nr ¼ 1000; where N is
the diploid size and r is the per-generation probability of
recombination. Likelihood functions were multiplied across
independent pairs of chromosomes, and the same set of
simulations was used to produce the estimates for all three
likelihood functions.

Discussion

We have presented a continuous-time Markov chain that
describes the pairwise coalescence times at two fixed loci
evolving under the SMC9 model of coalescence with recombi-
nation. We analyzed this Markov chain to derive the joint
distribution of coalescence times at the two loci and the con-
ditional distribution of coalescence times at one locus given
the coalescence time at the other. We compared these distri-
butions to those of the ARG and SMC models and found that
the difference between the ARG and the SMC9 was much less
than the difference between the ARG and the SMC.

We showed that the conditional distribution of coales-
cence times at point x þ dx given the coalescence time at x is
the same under the ARG and SMC9. This implies that the
SMC9 is the canonical first-order approximation to the pair-
wise ARG. However, this correspondence is true only of the

continuous-chromosome models. If instead the ARG is
a model of the genealogies at a sequence of discrete loci,
then the first-order canonical Markov approximation is the
Markov approximation obtained by modeling a conditional
ARG between every successive pair of loci. This model was
studied by Hobolth and Jensen (2014), who referred to the
model as a “natural” Markov approximation to the ARG.
Conceptually similar sequentially Markov coalescent models
have been used in the so-called “coalescent hidden Markov
model” family of methods (Hobolth et al. 2007; Dutheil et al.
2009; Mailund et al. 2011).

Chen et al. (2009) presented a method of simulating data
under higher-order sequentially Markov approximations to
the ARG, where the ARG of some number of preceding loci
is retained in the process of generating the marginal gene-
alogy at a given locus. They showed by simulation that
higher-order approximations generate times until most re-
cent common ancestry that are more consistent with the
ARG than do lower-order approximations, but little theoret-
ical work on these higher-order Markov approximations has
been done.

The two-locus Markov chains analyzed in this article
assume a single well-mixed population, but natural popula-
tions often have more complex demographic histories,
featuring, for example, variable historical population sizes,
migration between subpopulations, and/or past divergence
from other populations. The theoretical properties of the
sequential, across-the-chromosome formulations of the pair-
wise SMC and SMC9 with variable population sizes have
been studied previously (Li and Durbin 2011; Schiffels and
Durbin 2014). Eriksson et al. (2009) used simulation to
study two-locus properties of the SMC9 with population bot-
tlenecks, migration between subpopulations, and diver-
gence between populations. They found that the SMC9
generally performs well in these contexts. The two-locus
Markov chains we study here could be extended to include
these features (as was done for the ARG by Lessard and
Wakeley 2003 and Eriksson and Mehlig 2004), which would
provide a framework for calculating exact quantities for the
two-locus SMC and SMC9 in the context of structured pop-
ulations. We leave this for future work.

Figure 7 Two-locus continuous-time Markov
chains representing the ARG and SMC9 models in
the r/0 limit, conditional on the first event being
a recombination event. These processes represent
the joint distribution of coalescence times on either
side of a recombination site under the ARG and
SMC9. The state R*

0 is a special starting state out
of which the first event is always a recombination
event. A shows the process unconditional on
whether S ¼ T ; and B shows the process condi-
tional on S 6¼ T : The model representing the joint
distribution of coalescence times at recombination
sites under the SMC is equivalent to the model in B
with the transition rates from R1 to CL and CR equal
to 1 instead of 3=2:
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We calculated the asymptotic bias of a population size
estimator under the pairwise SMC to be �95% of the true
population size. This is not a very large bias, but given the
continued use of the SMC model in population-genomic in-
ference methods (Palamara et al. 2012; Sheehan et al. 2013;
Rasmussen et al. 2014), there is an apparent need to reex-
amine the consequences of using the simpler SMC model
instead of the slightly more complicated SMC9 model. For
example, it will be important to consider whether including
the possibility of varying population sizes will increase or
decrease asymptotic bias. In this context, using the SMC as
a basis for a likelihood function may also bias the estimates
of the magnitude and timing of population size changes,
since the longer segments produced by the ARG will seem
younger when they are modeled under the SMC.

Depending on the particular application, it may some-
times be mathematically difficult to employ the SMC9 in-
stead of the SMC. Nevertheless, the SMC9 is the model
underlying two recently introduced population-genetic in-
ference methods: the MSMC method of Schiffels and Durbin
(2014) (which simplifies to a PSMC9 inference procedure
when the number of haplotypes is two) and a procedure
based on the distribution of distances between heterozygous
bases, introduced by Harris and Nielsen (2013). In each case
it was acknowledged that the SMC9 provided more accurate
results than the SMC.

From the arguments that led to the development of the
continuous-time Markov chains representing the joint distri-

bution of coalescence times at recombination sites (Figure 7),
it seems that the joint distribution of coalescence times on
either side of a recombination event will be the same under
a variety of demographic scenarios. If one were to allow the
historical population size to vary, the waiting time until
the conditioned-upon recombination event would still be
the same under the SMC9 and ARG, and the remaining co-
alescence events would also be distributed identically. Like-
wise, when there is population substructure with migration
between subpopulations, the distribution of events occurring
at recombination sites should be the same under the SMC9
and ARG. Finally, when there are more than two haplo-
types sampled, it seems that the joint distributions of ge-
nealogies on either side of a recombination event would be
the same between the SMC9 and the ARG marginally. These
ideas need to be properly explored in future studies, but
they suggest that asymptotic bias due to using the SMC9 in
place of the ARG will be minimal under a variety of de-
mographic scenarios.
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Appendix

Derivation of Joint Density of Pairwise Coalescence Times at Two Loci

To calculate the joint density of coalescence times, it is necessary to calculate RjðtÞ; the probability that the SMC9 two-locus
Markov process (Figure 3) is in state Rj at time t, and IðtÞ; the probability that the SMC9 process is in state I at time t. To solve
for RjðtÞ; one can use the forward Kolmogorov equation (for j$ 1)

R9jðtÞ ¼ rRj21ðtÞ þ ðjþ 1ÞRjþ1ðtÞ2 ð2jþ 1þ rÞRjðtÞ: (A1)

Through substitution, the solution to (A1) can be shown to be

RjðtÞ ¼ R0ðtÞ
h
ðr=2Þ	12e22t
ij

j!
: (A2)

To find R0ðtÞ; we note that it is equal to fT1;T2ðt; tÞ (see Equation 2). In turn,

fT1;T2ðt; tÞ ¼ fT1ðtÞPðT2 ¼ tjT1 ¼ tÞ; (A3)

where fT1ðtÞ ¼ e2t is the marginal distribution of coalescence times at the first (or second) locus and
PðT2 ¼ tjT1 ¼ tÞ ¼ e2rlðtÞ is the probability of no change in coalescence times given the coalescence time t at the first locus.
Here lðtÞ ¼ ð12 e22t þ 2tÞ=4 is the exponential rate of encountering a change in coalescence time along the chromosome
given that the local coalescence time is t (Eriksson et al. 2009; Carmi et al. 2014). Thus R0ðtÞ is given by

R0ðtÞ ¼ e2te2rlðtÞ: (A4)

This completes the solution of RjðtÞ: Using Figure 3,

RþðtÞ ¼ IðtÞ þ
XN
j¼1

RjðtÞ; (A5)

where IðtÞ is the probability that the process is in state I at time t. Using (A2) and (A4), we get

XN
j¼1

RjðtÞ ¼ R0ðtÞ
XN
j¼1

h
ðr=2Þ	12e22t
ij

j!

¼ e2te2ðr=4Þð1þ2t2e22tÞ
h
eðr=2Þð12e22tÞ 21

i
:

(A6)

Next, IðtÞ satisfies the forward Kolmogorov equation

I9ðtÞ ¼
XN
j¼2

ðj2 1ÞRjðtÞ2 2IðtÞ; (A7)

the solution to which is

IðtÞ ¼ e22t
Z t

0
e2u

XN
j¼2

ðj2 1ÞRjðuÞdu

¼ e22t
Z t

0
R0ðuÞ

n
2e2u þ   eðr=2Þð12e22uÞ�ðr22Þe2u 2 r

�o
du

¼ e22t


12 eð22tðr22Þþr2e22trÞ=4 2 e2ðr=4Þ2ðr24Þ=2ð2rÞ2ðr22Þ=4

�
�
G

�
r2 2
4

; 2
r

4

�
2G

�
r2 2
4

; 2
e22tr

4

���
:

(A8)

Here, Gða; bÞ ¼ RN
b xa21e2xdx is the incomplete gamma function.
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Together (A4), (A5), (A6), and (A8) give the joint distribution (2) for the SMC9. For the ARG and SMC, the quantities
analogous to R0ðtÞ and RþðtÞ for these models can be obtained by exponentiating the rate matrices implicit in Figure 2 and
Figure S1. For the SMC, the joint distribution can also be derived using the representation (1).

The walk on the states R0;R1;R2; . . . constitutes a birth–death process with killing, where birth events correspond to
additional recombination events taking the process from Ri to Riþ1; death events correspond to coalescence events that take
the process from Ri to Ri21; and killing events, which take the process to an absorbing state, here correspond to coalescence
events that take the process to CL; CR; or I: Under this formulation, the birth rate is constant li ¼ r; the death rate is linear
mi ¼ i; and the killing rate is linear gi ¼ iþ 1: This class of processes was studied by van Doorn and Zeifman (2005), who
demonstrated a different approach for calculating RiðtÞ: This alternative approach (not shown) confirms our derivation of
(A4).

Derivation of Asymptotic Bias

We are interested in estimating a single relative population size h (defined relative to the true population size, N), which
must be incorporated into the transition density function qðtjsÞ at recombination sites under the SMC and SMC9. Under the
SMC, this transition density function is

qSMCðtjs; hÞ ¼

(
1
s

�
12 e2t=h

�
t, s

1
s
e2ðt2sÞ=h

�
12 e2s=h

�
t. s:

(A9)

This is equivalent to the conditional density (S6 in File S1) with the addition of a relative population size parameter. Under
the SMC9, the transition function is

qSMC9ðtjs; hÞ ¼

(
ð2=hÞ	12 e22t=h



1þ 2s=h2 e22s t, s

ð2=hÞe2ðt2sÞ=h	12 e22s=h

1þ 2s=h2 e22s t. s;

(A10)

which is equivalent to the conditional density (S3 in File S1) with a relative population size parameter included.
Under the SMC, given the local coalescence time t, the distance along the chromosome until the nearest recombination

event (measured in units of r) is exponentially distributed with rate t (McVean and Cardin 2005). The likelihood function for
a single relative population size h under the SMC is thus

LSMC
	
hjfðti; liÞg


 ¼ 1
h
e2ðt1=hÞ Yk

i¼2

qSMC
	
tijti21; h


Yk
i¼1

tie2tili

}
1
h
e2ðt1=hÞ Yk

i¼2

qSMCðtijti21; hÞ:
(A11)

Under the SMC9, the likelihood function for a relative population size h is

LSMC9ðhjfðti; liÞgÞ

¼ 1
h
e2ðt1=hÞ Yk

i¼2

qSMC9ðtijti21; hÞ
Yk
i¼1

lðti;hÞe2lðti;hÞli ;
(A12)

where lðt; hÞ ¼ ½hð12 e22t=hÞ þ 2t�=4 is the exponential rate of encountering recombination events that change the co-
alescence time when the local coalescence time is t (Eriksson et al. 2009). Note that under the SMC, the length li of
a segment is independent of the relative population size h given the local coalescence time ti: This is not true for the SMC9,
since the probability that the coalescence time changes at a recombination site depends on the population size.

As the length of the chromosome increases and the number of coalescence-time changes goes to infinity, the asymptotic
maximum-likelihood estimate ĥ of the relative population size under the SMC is
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ĥ ¼ lim
k/N

arg max
h

1
h
e2ðt1=hÞ Yk

i¼2

qSMCðtijti21;hÞ

¼ lim
k/N

arg max
h



log

�
1
h
e2ðt1=hÞ

�

þ
Xk
i¼2

log
�
qSMCðtijti21;hÞ

�)

¼ lim
k/N

arg max
h

Xk
i¼2

log
�
qSMCðtijti21;hÞ

�
¼ arg max

h
EARG

�
logðqSMCðTjS;hÞÞ

�
¼ arg max

h

Z N

0

Z N

0
pSMC9ðsÞqSMC9ðtjs; 1Þ

� logðqSMCðtjs;hÞÞdtds
� 0:95:

(A13)

Here the penultimate equality holds only if there is ergodic (i.e., law-of-large-numbers-like) convergence of the sequence
of pairs of coalescence times on either side of a recombination site under the ARG. In File S1, we show that the continuous-
chromosome pairwise ARG is ergodic. That is, the mean coalescence time across a long chromosome converges to the mean
coalescence time at a single point along the chromosome. We are unable to prove the ergodicity of the sequence of pairs of
coalescence times at recombination sites where the coalescence time changes; instead, we note that (A13) is supported by
simulation (see above). We also note that Wiuf (2006) proved the ergodicity of the discrete-locus ARG under a variety of
neutral demographic models. A similarly in-depth proof may also apply for continuous-chromosome models, but we do not
explore the point further.

In (A13), the ultimate equality follows from the fact that the joint distribution of coalescence times is marginally the same
at recombination sites under the ARG and the SMC9. Numerical maximization of the double integral shows that the
maximum-likelihood estimate of a single population size N under the pairwise SMC is asymptotically biased, with the
asymptotic estimate being �0:95N.

Under the ARG, the stationary distribution of lengths between recombination events that change the local coalescence
time (i.e., the identity-by-descent segment length distribution) is slightly different from that of the SMC9. (They are different
because subsequent recombination events “heal” with slightly different probabilities under the ARG, while under the SMC9,
each subsequent recombination event heals with the same probability.) Under the ARG, the identity-by-descent (IBD) length
distribution is not currently known. Given that under the SMC9 the maximum-likelihood estimator for a relative population
size involves the observed lengths, it is not currently possible to calculate the asymptotic bias of the pairwise SMC9
maximum-likelihood estimator of a single population size. However, the IBD length distribution under the ARG is approx-
imated very closely by the SMC9 IBD length distribution (Carmi et al. 2014), so the SMC9 estimator is likely to be nearly
asymptotically unbiased.
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Coalescence time distributions at recombination sites

Here, we derive the joint, marginal (i.e., one-locus), and conditional distributions of coalescence times at
recombination sites where the coalescence time changes under the ARG, SMC’, and SMC. The distributions
related to the ARG and SMC’ are derived from analysis of the continuous-time Markov chains representing
coalescence times at such recombination sites under these models (Figure 7). Under the ARG and SMC’,
the joint density function of coalescence times at recombination sites that change the coalescence time (i.e.,
the joint density of S and T ) is

fS,T (s, t) =


3
4

(
1− e−2s

)
e−t s < t

3
4

(
1− e−2t

)
e−s s > t,

(S1)

and the marginal density function of S (or T ) is

π(s) =
3

8
e−s

(
2s+ 1− e−2s

)
. (S2)

The conditional distribution of T given S is

fT |S(t|s) =
fS,T (s, t)

π(s)
=


2(1−e−2t)
1−e−2s+2s t < s

2e−(t−s)(1−e−2s)
1−e−2s+2s t > s.

(S3)

Equations (S1), (S2), and (S3) hold marginally at recombination sites where the coalescence time changes
under both the ARG and SMC’. Equations (S2) and (S3) were derived for the SMC’ by Carmi et al. (2014,
see eqns. (8) and (9), respectively), confirming our derivation.

Under the SMC the process for generating coalescence times at recombination sites is equivalent to the
continuous-time Markov chain in Figure 7B with the transition rates from R1 to CL and CR equal to 1
instead of 3/2. Under this model for the SMC, the joint density of coalescence times on either side of a
recombination event is

fS,T (s, t) =

e
−t(1− e−s) s < t

e−s(1− e−t) s > t
(S4)

and the marginal density of S (or T ) is

π(s) = se−s. (S5)

The conditional distribution of T given S under the SMC is

fT |S(t|s) =
fS,T (s, t)

π(s)
=

{
1−e−t

s t < s
e−(t−s)(1−e−s)

s t > s,
(S6)

which confirms the derivation of Li and Durbin (2011, cf. their Eq. (S6)).

Pairwise ARG is ergodic

Here we show that the pairwise ARG is sequentially ergodic. Let {t(x)}x≥0 represent the random pairwise
coalescence time at point x along two aligned, continuous, infinitely-long chromosomes modeled by the ARG.
Let time be scaled such that the marginal distribution of t(x) is exponential with rate 1 for all x ≥ 0, and
thus E[t(x)] = 1. Let the distance across the chromosome be measured such that a segment of length l
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recombines apart back in time at rate l/2. (Equivalently, a recombination event happens in the chromosome
interval (x, x+ dx) in the time interval (t, t+ dt) with infinitesimal probability dx dt.)

One useful property of t(x) is that it is strongly stationary. That is, the joint distribution of {t(x)}a≤x≤b
is the same as the joint distribution of {t(x)}a+h≤x≤b+h for all 0 ≤ a < b and h > 0. To see that this is
the case, consider the Wiuf and Hein (1999) algorithm for constructing an ARG sequentially across the
chromosome: at a given point, a genealogy is drawn from the marginal distribution of genealogies, and then
the algorithm proceeds along the chromosome generating recombination events and genealogies, where at
each point along the chromosome, such events are drawn from the conditional distribution given all previous
coalescence and recombination events. The initial point from which the marginal genealogy is drawn has no
effect on the resulting joint distribution of genealogies.

A stationary process t(x) is ergodic if the covariance function r(x) converges to zero as x goes to infinity
(Karlin and Taylor, 1975). Under the ARG, the covariance function is

r(x) =
x+ 18

x2 + 13x+ 18
, (S7)

which satisfies this condition. Thus the pairwise ARG is sequentially ergodic: the mean coalescence time
across a long chromosome converges to the mean coalescence time at a single point. A similar proof could
be given for the discrete-locus ARG with evenly spaced loci, which has a covariance function of the same
form as the continuous-chromosome ARG.

Supplementary Figures
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Figure S1: Schematic of the ARG back-in-time Markov process for two loci. The process starts in state R0,
and transitions to other states occur with the rates indicated by arrows between states.
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Figure S2: Back-in-time Markov process for generating a coalescence time T2 at the right locus conditional
on the time T1 = t1 at the left locus under the SMC’. Starting at time zero in state R0, the process follows
the transitions indicated by the solid arrows at the rates accompanying these arrows. Transitions indicated
by dotted arrows are followed instantaneously at time t1. See Hobolth and Jensen (2014) for analogous
processes for the ARG and SMC models.
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