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Abstract

Epistasis, or gene–gene interaction, results from joint effects of genes on a trait; thus, the same 

alleles of one gene may display different genetic effects in different genetic backgrounds. In this 

study, we generalized the coding technique of a natural and orthogonal interaction (NOIA) model 

for association studies along with gene–gene interactions for dichotomous traits and human 

complex diseases. The NOIA model which has non-correlated estimators for genetic effects is 

important for estimating influencing from multiple loci. We conducted simulations and data 

analyses to evaluate the performance of the NOIA model. Both simulation and real data analyses 
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revealed that the NOIA statistical model had higher power for detecting main genetic effects and 

usually had higher power for some interaction effects than the usual model. Although associated 

genes have been identified for predisposing people to melanoma risk: HERC2 at 15q13.1, MC1R 

at 16q24.3 and CDKN2A at 9p21.3, no gene–gene interaction study has been fully explored for 

melanoma. By applying the NOIA statistical model to a genome-wide melanoma dataset, we 

confirmed the previously identified significantly associated genes and found potential regions at 

chromosomes 5 and 4 that may interact with the HERC2 and MC1R genes, respectively. Our study 

not only generalized the orthogonal NOIA model but also provided useful insights for 

understanding the influencing of interactions on melanoma risk.

Introduction

In the past several years, searching for genetic factors that cause various human complex 

traits and diseases has become one of the most important and challenging goals for modern 

geneticists. Genome-wide association studies (GWASs), in which every locus is usually 

analyzed separately, have identified a large number of causal variants for human genetic 

diseases and traits, such as cancer, diabetes and heart disease (Craddock et al. 2010; Ehret et 

al. 2011; Amos et al. 2011). However, one of the limitations of this single-locus analytical 

strategy is that interactions between loci or between genes and environmental exposures are 

usually ignored (Culverhouse et al. 2002; Moore 2003). For this reason, more efforts are 

being made to characterize the complex network between multiple genes that contribute to 

disease outcome.

Epistasis means that a genetic effect is modulated by effects from other loci or the genetic 

background. Gene–gene (G × G) interaction most commonly refers to a departure from 

additive genetic effects of several genes on a trait; thus, the same alleles of one gene could 

display different genetic effects in different genetic backgrounds. Epistasis was initially 

characterized in an animal model in the early 1900's as playing an important role in 

determining some phenotypes (Wilson 1902). For common human diseases and disorders, 

such as anemia, cystic fibrosis and complex autoimmune diseases, the relevance of gene–

gene interactions is still being studied but became a more prominent explanation for the 

failure of GWAS to explain much of the variation in risk among individuals in the last 

decade (Nagel 2001, 2005; Wandstrat A 2001). Moreover, epistasis was recently revealed to 

be the main force in long-term molecular evolution (Breen et al. 2012). Several methods 

have been developed for searching for the interactions when performing genetic association 

studies (Ritchie et al. 2001; Hahn et al. 2003; Chung et al. 2007; Gayan et al. 2008; 

Rajapakse et al. 2012). The major motivation of developing these approaches is to improve 

the power of detecting effects and to provide a more comprehensive assessment of genetic 

architecture influencing a trait (Kraft et al. 2007).

The natural and orthogonal interaction (NOIA) framework was initially developed for 

association studies of quantitative traits allowing gene–gene interactions (Alvarez-Castro 

and Carlborg 2007). Its statistical formulation provides an approach in which the estimates 

of the genetic effects remain orthogonal; that is, they are consistent in reduced models. This 

holds true even if Hardy–Weinberg Equilibrium (HWE) is violated. One of the advantages 
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of the NOIA framework relies on its convenience for model selection to find the complex 

genetic architecture underlying the outcome trait. By enabling the modeling of multiple loci 

along with their interactions, the NOIA statistical model provides meaningful estimates of 

genetic effects as it leads to orthogonal decomposition of genetic variance (Alvarez-Castro 

et al. 2008). Therefore, the NOIA statistical model renders a more meaningful calculation of 

the heritability of a trait when compared with traditional models. Ma et al. (2012) recently 

extended the NOIA model for modeling joint influencing from genetic factors and 

environmental exposure for quantitative traits. Treating the genotypic values at a log odds 

scale, they applied the NOIA statistical model for the analysis of case–control data as well 

and identified a few potential gene–environment interactions contributing to the lung cancer 

risk.

Cutaneous melanoma (CM) is a highly aggressive malignant tumor of melanocytes and 

accounts for the majority of deaths from skin cancer. CM is a common cancer and about 

55,560 new cases of melanoma in situ were diagnosed in 2012 (Siegel et al. 2012). GWAS 

and family-based approaches have revealed several loci that influencing CM risk. Studies of 

the data from The University of Texas MD Anderson Cancer Center found most significant 

associations between melanoma risk and the melanocortin 1 receptor (MC1R) located at 

chromosome region 16q24.3, the HECT and RLD domain containing E3 ubiquitin protein 

ligase 2 (HERC2)/oculocutaneous albinism II (OCA2) at region 15q13.1 and cyclin-

dependent kinase inhibitor 2A (CDKN2A or p16) at 9p21.3 (Bishop et al. 2009; Sturm et al. 

2008). HERC2 and MC1R have been found to be associated with pigmentary phenotypes 

such as skin, hair and eye (Ghilardi et al. 2002; visser et al. 2012). CDKN2A (or p16) is a 

putative tumor suppressor gene which is involved in multiple human cancer types (Nobori et 

al. 1994). Although one-locus association studies have been applied widely to investigate 

melanoma risk, the gene–gene interactions underlying this disease have not been fully 

exploited. Exploring how these genetic loci jointly influencing the development of 

melanoma can provide important clues in the pathogenesis and treatment of melanoma.

In this study, we mainly focus on the applicability of the NOIA framework in genetic 

association studies and extended it to the case of a qualitative trait. For testing the gene–

gene interactions in the association modeling, adding the interaction effect into the modeling 

always results in lost power to detect the main genetic effects, that is, the additive and 

dominant effects. The usual functional one-locus model uses natural substitution for the 

parameter estimations which renders a non-orthogonal model whenever a dominance 

component is modeled, which means that the hypothesis tests lose power when the 

interaction terms are incorporated into the modeling. The NOIA statistical model overcomes 

this disadvantage because of its orthogonality. That is, even we add several additional 

parameters (for interaction) to NOIA modeling, estimation of the parameters for main 

effects will not be influenced.

In this study, we evaluated the behavior of the NOIA statistical model over the usual 

functional model for detecting the genetic effects, through both simulation analyses and 

application on melanoma dataset. Specifically, we evaluated the performance of these two 

models for detecting genetic effects while allowing for interaction for both quantitative traits 

and case–control traits when the interaction coefficients were positive, negative or zero 
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values. In most scenarios we simulated, the NOIA orthogonal model presented higher power 

and yielded more precise estimators than the usual functional model. In addition, we also 

extended the NOIA statistical model to reduced models including the additive, dominant and 

recessive models. Application to the melanoma dataset showed that the full NOIA statistical 

model had higher power than the full usual functional model in the one-locus analysis. The 

NOIA statistical model also had higher power in the two-locus analysis allowing interaction 

effects. We validated the main genetic effects of previously identified associated variants 

influencing melanoma risk using the NOIA statistical model. For the first time, significant 

interaction effects between SNP rs6871296 and HERC2 gene, SNP rs10009093 and MC1R 

gene contributing to the melanoma risk were indicated by application of our models.

Methods

Two-locus gene–gene interaction models

The statistical formulation of the NOIA model for quantitative traits was first described by 

Alvarez-Castro and Carlborg (2007). As shown in Ma et al. (2012), the genotypic vector G 

can be expressed as, in the one-locus statistical model,

(1)

Which ensures orthogonality of the estimates of the three parameters. Further details about 

these notations can be found in Ma et al. (2012). Alvarez-Castro et al. (2008) noted that the 

statistical model was an orthogonal model that had uncorrelated estimates of the parameters, 

which is also reflected by variance components decomposition (Ma et al. 2012). The test 

statistics for main effects of orthogonal (or statistical) model and functional model for a 

univariate analysis has been derived recently (Xiao et al. 2013). They showed loss of power 

for detecting main effects for the functional model due to confounding between dominance 

and main effects in most cases. The interaction functional Wald test with dominance 

components will also suffer from dependence among the parameters. In the current study, 

we mainly focus on applying the NOIA statistical model for testing association along with 

gene–gene interactions. We also evaluated some of the statistical benefits of using this novel 

model and particularly the effect of the dependence in the parameters on test statistics for the 

functional model which we will introduce later in this section and of orthogonality for the 

NOIA model.

To extend the model to a two-locus model allowing gene–gene interaction, we assumed that 

a quantitative trait is influenced by two diallelic loci, A and B. We use pij and qij to denote 

the genotype frequencies of genotype Aij and Bij, respectively. NA is the number of variant 

allele A2 and NB is the number of variant allele B2. N̄A and N̄B denote the means of N A and 

NB, respectively, whereas VA and VB denote the variance of NA and NB, respectively. 

Therefore, N̄A = p12 + 2p22, VA = p12 + 4p22 − (p12 + 2p22)2, Correspondingly, N̄B = q12 + 

2q22, VB = q12 + 4q22− (q12 + 2q22)2.
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For two-locus gene–gene interaction models, as described by Alvarez-Castro and Carlborg 

(2007), the vector of two-locus genotypic values, GAB, can be built as follows:

(2)

if the two loci, A and B, are in linkage equilibrium. EAB is the two-locus vector of genetic 

effects; SAB is the two-locus genetic effect design matrix which is the Kronecker product of 

the design matrix of loci B and A. From NOIA one-locus statistical model (Eq. (1)), the two-

locus modeling vectors GAB, EAB and design matrix SAB can be obtained by the Kronecker 

product of one-locus modeling as follows:

(3)

(4)

(5)

The coding matrix, , can be used in a two-locus association test along with gene–gene 

interactions. For this model, there are nine parameters to be inferred, including one baseline 

term (μ), two additive terms (αA and αB), two dominant terms (δA and δB), and four 

interaction terms (αα, δα, αδ and δδ). This is a full model with both additive and dominant 

effects. We extended this statistical model to the reduced genetic models, including additive, 

dominant and recessive models (supplementary text).

Traditionally, the one-locus genotypic values are usually coded as (−1, 0, 1) or (0, 1, 2) for 

the additive effect. Dominant effect is sometimes added for full modeling coded as (0, 1, 0). 

Both of these two models are referred to as a natural or functional model in the NOIA 

framework, as it uses natural scale of allele counts for estimating the genetic effects and 

reflects the functionality of the alleles at the locus. Unlike the statistical model, the genetic 

effects in this functional model are using natural substitutions rather than based on the 

population effects which depend upon genotype frequencies. Similarly, using the (0, 1, 2) 
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functional coding approach, the two-locus genetic effect design matrix can be obtained as 

the Kronecker product of the two design matrices,

(6)

Therefore, the genotypic values can be expressed as

(7)

Herein, we use Greek letters for the genetic effects to distinguish with those from the 

statistical model. Reduced models, including additive, dominant and recessive models, were 

also extended for the usual functional model (Supplementary text). As in the one-locus 

functional model, the estimation of the parameters was not based on the genotype 

frequencies and therefore reflects the main and interaction effects in a different way when 

compared with the statistical model. This model is not orthogonal. The relationship between 

the NOIA statistical model and usual functional model can be derived straightforwardly 

through  (Alvarez-Castro and Carlborg 2007).

Simulation methods

We performed simulation analyses for both quantitative and case–control traits by applying 

the NOIA statistical G×G interaction model (Eq. (4)) and the usual functional G×G 

interaction model (Eq. (6)).

To simulate samples of independent individuals with a quantitative trait controlled by two 

diallelic loci, we assumed that there was no linkage disequilibrium (LD) between the two 

markers. For locus A, a value of the minor allelic frequency (p) was given in the simulated 

population. Genotypes A11, A12 and A22 were assigned to an individual with probabilities (1 

− p)2, 2p(1 − p) and p2 respectively. Similarly, the minor allelic frequency (p) was given to 

locus B. Genotypes B11, B12 and B22 were assigned to an individual with probabilities (1 − 

q)2, 2q(1 − q) and q2 respectively. From a pre-specified vector of parameters, 
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, we assigned each individual a genotypic value 

according to his/her assigned two-locus genotypes. Then, by randomly generating a value 

from a normal distribution with pre-specified mean and variance (0 and ), we generated an 

observed phenotype/trait by adding this residual to the previously assigned genotypic value. 

We used data from 2,000 individuals as a replicate and simulated 1,000 replicates for each 

genetic model.

In this part of our investigation of quantitative traits, three scenarios were simulated with 

different interaction terms (Table 1). The minor allele frequencies for both loci were set to 

0.3, and the residual variance  was 144.0. The true values of the nine parameters in these 

three scenarios are shown in Table 1.

To investigate whether the setting of allele frequency influencing the testing of the effects, 

we also simulated a quantitative trait with minor allele frequency 0.49. The pre-specified 

value for the genetic effect terms remained the same as in previous simulations for 

quantitative traits.

Ma et al. (2012) thoroughly derived the formulation of the statistical model in quantitative 

traits and demonstrated that a similar statistical model could also be defined for a qualitative 

trait by handling the genetic effects as the logit scale of the outcome. Similarly, we 

performed a case–control simulation analysis in our study. We used logistic model and 

Bayes theorem to determine the genotypes of each individual according to the pre-specified 

genetic effect terms, . For each replicate, 1,000 cases and 1,000 controls were simulated, 

and a total of 1,000 replicates were simulated. The minor allele frequency was set to 0.30. 

Three scenarios were simulated with different interaction terms. The generated values of the 

parameters in the three different scenarios for qualitative traits are shown in Table 1.

Analysis of G × G interactions influencing melanoma risk

We applied the NOIA statistical model and the usual functional model to the CM data, 

samples from a genome-wide case–control study including 1,804 cases and 1,026 controls. 

Single-nucleotide polymorphisms (SNPs) were genotyped from Illumina Omni 1-

Quad_v1-0_B array and 783,945 SNPs remained after the quality control and other filtering 

procedures were applied (Amos et al. 2011). The CM samples were collected from patients 

treated at The University of Texas MD Anderson Cancer Center between 1998 and 2008, 

and the controls were collected from the friends of the patients with matched sex and age 

during the same period. All the participants were non-Hispanic whites. The details of the 

genome-wide case–control study have been described previously (Amos et al. 2011). The 

initial goal of that study was to detect novel loci that predisposed whites to CM. The 

objective of the current study was to apply the newly developed methods to validate the 

already identified potential causal SNPs and gene–gene interactions that contribute to 

melanoma risk. We also attempted to compare the performance of the NOIA statistical 

model with that of the usual functional model on genetic effects detection. Logistic 

regression was used for the genetic effects estimation, and the P values were obtained using 

the Wald test statistic with the null hypothesis that the coefficient was zero. The Manhattan 
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plots for the P values tested for the additive, dominant and interaction effects were graphed 

by Haploview software.

Results

simulation study

For quantitative traits and case–control traits, analyses of three scenarios were performed 

when there were positive, negative or zero values for the interaction coefficients respectively 

(Table 1).

First, we performed simulation studies on a quantitative trait under three scenarios. Our first 

simulation exhibited both main effects of two genes and their interactions with the true 

effect values

Figure 1 illustrates the power of the NOIA statistical model and usual functional model on 

detecting the four main genetic effects including the additive effects and the dominant 

effects of locus A and locus B, and four interaction effects between locus A and locus B For 

detecting the main genetic effects, the NOIA statistical model clearly had higher power than 

the usual functional model, especially for additive effects (Fig. 1, upper panel). The NOIA 

statistical model also exhibited slightly higher or equal power than the usual functional 

model for detecting the interaction effects except for the dominance-by-dominance term 

(Fig. 1, bottom panel). The density distribution of the parameters estimated from these 

replicates is shown in Figure S1. Clearly, the variance of all the main genetic effects (aA, dA, 

aB and dB) and most of the interaction effects (aa, ad and da) estimated from the NOIA 

statistical model was much smaller than those from the usual functional model (Fig. S1). 

Furthermore, the estimations of the genetic effects were both accurate for the two models, as 

the peaks were all located around the simulated true values (Fig. S1).

To explore whether the values of the interaction terms influencing the estimations of the 

parameters, we simulated a second scenario in which the interaction effect coefficients were 

set to be negative values and 

. A similar pattern with the 

first scenario was observed for the power of detecting the genetic effects; however, in this 

scenario the preference of the statistical NOIA model over the usual functional model on 

detecting the main effect of locus A and locus B was not obvious (Fig. 2). For some of the 

main genetic effect parameters, the usual functional model showed slightly higher power 

than the NOIA statistical model.

We also analyzed a third scenario, in which there were no interaction effect and only the 

main genetic effects from the two loci influencing the trait (Fig. 3). For this scenario, the 

NOIA statistical model still had higher power for detecting the main genetic effects (Fig. 3, 

upper panel). The NOIA statistical and usual functional model yielded similar false-positive 
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rates for detecting the interaction effects, both of which were close to the nominal value 

(Fig. 3, bottom panel). The density distributions of the parameters estimated from these 

replicates in scenario 2 and scenario 3 of quantitative traits simulations were shown in 

Figure S2–S3.

Figures 4 and S4–S5 show the results obtained from the case–control trait simulations. In 

Fig. 4, the simulating values of the genetic effects were 

, in which main genetic effects and 

interaction effects influencing the outcome trait and the interaction coefficients were 

positive values. Similar to the simulation studies of the quantitative traits, the NOIA 

statistical model had higher power than the usual functional model for detecting most of the 

genetic effect terms. The parameter of the dominant-by-dominant interaction effect was 

exactly the same between these two models, which is expected from the equation of the 

models . Interestingly, when we set the interaction terms to be negative 

values, where , the power of 

both models for detecting additive effects of locus A or locus B was similar to that of these 

two models when the interaction terms were positive (Fig. S4).

For the third scenario, in which no interaction effects were present for the case–control trait, 

the power of the NOIA statistical model was still higher than that of the usual functional 

model to detect the main effects, while the false discovery rates for detecting the interaction 

effects remained the same (Fig. S5). For all the scenarios we simulated, the density 

distributions of the eight parameters are shown in supplementary Figures (Figs. S6–8). The 

estimation of the genetic effects was accurate, and the variance of the effects from the NOIA 

statistical modeling was less than that from the usual functional model for most parameters.

We also studied a setting with MAF 0.49 (Figs. S9–10). The NOIA statistical model still had 

higher power than the usual functional model for detecting the main genetic effects. To 

evaluate the false positive rates of the two models, we also simulated a null scenario where 

no any effect existed. The false-positive rates of the NOIA statistical model at the 0.05 

significance level for detecting the eight genetic effects are 0.051, 0.044, 0.054, 0.048, 

0.061, 0.044, 0.055 and 0.058. The false-positive rates of the usual functional model for 

detecting the eight genetic effects are 0.042, 0.04, 0.04, 0.037, 0.051, 0.058, 0.052 and 

0.058.

Application to melanoma susceptibility

To evaluate the performance of the NOIA statistical model and usual functional model, we 

carried out GWAS of 2,831 white participants, including 1,805 cases and 1,026 controls for 

799,671 SNP genotypes. To identify novel and verify the previously identified causal SNPs, 

we performed initial analyses using the one-locus NOIA statistical model without 

dominance component included. The Q–Q plot for the sample is shown in Figure S11. No 

obvious inflation of the test (λ= 1.011) was observed for the test statistic. Next, we applied 

the one-locus NOIA model with dominance component included to the melanoma dataset. 

SNPs with rare homozygotes (genotype cut-off value was 0.005, 123,902 SNPs removed) 
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were filtered and the Q–Q plot is shown in Figure s12 (λ = 1.014). λ = 0.93 was obtained if 

the SNPs without all three genotypes were not filtered, reflecting the conservative nature of 

genotype-based tests (compared to allele based tests) if any of the genotypes is not present in 

the data. The one-locus association results showed that nine SNPs were significant reaching 

the genome-wide association level (5.0 × 10−8) and 140 SNPs were significant at the 1.0 × 

10−4 level (Table 2, Table S1). Among the most significant SNPs that contribute to 

melanoma risk, two regions were found to be genome-wide significant (Table 2). They are 

located on 15q13.1 (centered at the HERC2/OCA2 region) and 16q24.3 (around MC1R 

gene). These two most significant SNPs located in these two regions are rs1129038 (P = 

3.73 × 10−8, odds ratio [OR] 0.70, 95 % confidence interval [CI] 0.61–0.79) and rs4785751 

(P = 1.13 × 10−10, Or 1.43, 95 % CI 1.29–1.60), respectively. The risk variants of these two 

SNPs were A and G, respectively. The SNPs located around MTAP were shown to be the 

third highly significant regions which are located at 9p21.3. The most significant SNP, 

SNP9-21789598 (P = 4.15 × 10−7), is located at the 5′-UTR of the MTAP gene, close to the 

CDKN2A gene.

To compare the performance of the NOIA statistical model with that of the usual functional 

model on one-locus association study, we compared the top SNPs identified by these two 

models in a Manhattan plot (Fig. 5). The NOIA statistical model showed a highly significant 

main additive effect signal in the HERC2 regions (Fig. 5a) at 15q13.1 whereas the usual 

functional model did not (Fig. 5b). The identification of the other two regions at 9p21.3 and 

16q24.3 was similar for the two models. No obvious signal for the dominance effects was 

identified by either model (data not shown).

We further applied the NOIA statistical model (Eq. 4) and the usual functional model (Eq. 6) 

on the two-locus association study in which gene–gene interactions testing were 

incorporated. Attempting to identify potential SNPs that interacted with the two significant 

genes (HERC2 and MC1R) while contributing to the association with melanoma risk, we 

selected rs1129038 and rs4785751, the two most significant SNPs, as the reference SNPs for 

the two-locus scan, respectively. We then performed a genome-wide, two-locus scan by 

treating these two SNPs as reference SNPs separately and compared the performance of the 

NOIA statistical model with that of the usual functional model for detecting the main 

genetic and interaction effects.

First, for SNP rs1129038 in HERC2 region, the NOIA statistical model still showed a 

strongly significant signal with P value in the 1 × 10−10 significance level on the two 

significant regions adjacent to the MTAP and around MC1R genes for the additive effects, 

whereas the functional model had no obvious signal (Fig. 6a, b). Compared to the one-locus 

scan (Fig. 5a), the overall power for detecting the additive effect did not decrease in the 

NOIA two-locus model when additional parameters were included in the model (Figs. 5a, 

6a). This is not the case for the functional model (Figs. 5b, 6b). Moreover, no significant 

signal was observed for the dominant effects by either model (data not shown). For the four 

interaction terms, except the dominant-by-additive (da) interaction term, no obvious signal 

was identified by either model. A series of significant SNPs around gene IL31RA 

(interleukin-31 receptor A) and DDX4 on chromosome 5 were identified by the NOIA 

statistical model for interacting with rs1129038 at the da interaction term (Fig. 6c), where 
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the da term means the interaction between the additive component of the rs1129038 and the 

dominant component of the candidate interacting SNP. These signals were not identified by 

the usual functional model (Fig. 6d). We then checked the LD status between the significant 

SNPs around the IL31RA gene and the significant SNPs around the DDX4 gene, showing 

that the two genes are in strong LD.

Table 3 presents the top SNPs interacted with rs1129038 at the da interaction term analyzed 

by the NOIA statistical two-locus interaction model. Four SNPs near gene IL31RA and three 

SNPs near gene DDX4 were showing significant interaction with rs1129038 reaching the 1.0 

× 10−6 significance level. However, other than the da interaction effect and the main 

additive effect from rs1129038, no main effects from the candidate interacted SNPs were 

identified.

Similarly, we compared the performance of the gene–gene interaction models for detecting 

genes that interacted with rs4785751 around MC1R gene. Comparing the performance of the 

NOIA statistical model and that of the usual functional model on detection of the main 

additive effects, the former still remained the signal for those identified strongly associated 

regions while the latter did not (Fig. 7). No interaction effects were identified by either 

model for rs4785751.

Finally, we also applied the reduced NOIA statistical model, the additive models (details 

shown in supplementary text), for detecting the gene–gene interactions that contribute to 

melanoma risk. For the second reference SNP, rs4785751, significant SNPs were identified 

for the additive-by-additive interaction effect (P = 7.07 × 10−6) (Table 4). These SNPs are 

located in chromosome 4 close to gene PGRMC2.

Discussion

In most scenarios we simulated, the NOIA statistical model presented higher power for 

detecting additive effects and some interaction effects compared with the usual functional 

model. In other words, the functional model more likely to estimate the non-zero parameters 

as not different from zero for the main genetic effect and some interaction effect parameters 

than the statistical model. The NOIA model also yielded more precise estimators. Moreover, 

the investigation of type I error showed no significant difference of these two models. 

Analyses of the melanoma dataset also showed higher power of the NOIA statistical model 

by one-locus and two-locus genome-wide scan. The interaction analyses of the melanoma 

dataset showed that the NOIA statistical model preserved power for detecting the main 

genetic effects. The functional model lost power when multiple loci were jointly modeled. 

The NOIA statistical model identified potential epistasis between the rs1129038 (located 

around HERC2 gene) and IL31RA gene at chromosome 5 while the functional model did 

not. Another significant region interacting with rs4785751 around MC1R gene was also 

identified, PGRMC2 located at 4q26, by the NOIA statistical additive G × G model.

For the analyses of melanoma data, the NOIA one-locus statistical model provided 

confirmatory evidence of the association of three previously identified causal regions with 

melanoma risk, HERC2 at 15q13.1, MC1R at 16q24.3 and CDKN2A at 9p21.3. Compared to 
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the NOIA statistical model, the usual functional one-locus model including a dominance 

component did not detect the most significant region, the HERC2 gene, which has been well 

characterized in the previous studies (Amos et al. 2011). When we compare our analyzed 

results from the full usual functional model to those from the additive model (Fig. 5), we 

found that the HERC2 signal was detected very clearly by the usual additive model but not 

by the usual full model. Thus, we conclude the NOIA model has higher power than the usual 

functional model in one-locus genome-wide scans when a full genetic model is used. The 

increase in power from Wald-type tests also reflects the change in the standard errors of the 

tests if we look at the test statistics of the usual functional model and the NOIA model with 

dominance component testing incorporated (Xiao et al. 2013).

The interaction analyses showed that the power of the NOIA statistical model was higher 

than that of the usual functional model for detecting main genetic effects when interactions 

are included. When main and interaction effects between the two loci were modeled, the 

usual functional model presented lower power while the statistical model maintained its 

power for detecting the main genetic effects (Fig. 6a). This result reflects one of the 

important properties of the NOIA model, orthogonality. Using orthogonal models for 

quantitative traits analysis or binary diseases yields consistent estimation for genetic effect 

in reduced models. Here, we clearly see that the functional model had no consistent 

estimation when multiple loci were modeled together.

Moreover, the NOIA statistical model identified potential interaction between the rs1129038 

(located around HERC2) and a region at chromosome 5, whereas the functional model did 

not. This region is located in the 5′-UTR of IL31RA gene at 5q11.2 and the intron of the 

gene DDX4 at 5p15.2-p13.1. The expression of IL31RA is induced in activated monocytes 

and constitutively expressed in epithelial cells and may function in skin immunity (Ghilardi 

et al. 2002). It was also recently found that IL31RA was associated with neuroblastoma risk 

by GWAS (Capasso et al. 2013). The interesting aspect of this interaction is that no main 

genetic effect was found for these SNPs. The interaction is based on the dominant-by-

additive interaction term. Although it is hard to interpret the dominant-by-additive 

interaction term here, it is possible that only the reference locus (rs1129038) has a main 

effect while a significant interaction effect exists for gene–gene interaction. Another 

significant region, PGRMC2 located at 4q26, interacting with rs4785751, was also 

identified, by the NOIA additive model. This is the first report of the implication of potential 

genes and regions that were shown to interact with SNPs associated with melanoma risk. 

These interactions need to be confirmed by future validation studies which suggest that the 

NOIA statistical model is preferable on epistasis detection to the usual functional model. 

Although the sample size in this study was sizeable, there are a very large number of SNPs 

that were tested in this study, so that the very significant results we obtained could still 

reflect a false-positive result.

We also found another important characteristic of the NOIA one-locus framework. Both the 

full NOIA and functional models with dominance components are ill-conditioned if the SNP 

has only two or less genotypes in the population. This arises because of the value of the 

determinant of XTX (X is the design matrix) was equal to zero when the dominance 

component is included in the testing. For the additive models without the dominance 
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component testing, the determinant value of XTX is not equal to zero. When the design 

matrix is noninvertible, one needs to use generalized inverses as alternative in setting up the 

tests rather than the inverse procedure that in R programming software. Therefore, in our Q–

Q plots, the λ values were less than 1.0 (0.86–0.92) when performing NOIA or usual 

functional one-locus models with dominance component testing on melanoma dataset. After 

we removed the SNPs with minor genotype frequency <0.005, the λ values changed to 1.014 

and 1.023 for the NOIA and usual model, respectively (Fig. S12). According to our 

analyses, we suggest to apply the NOIA full model in two stratifications for one-locus scan 

of real data. For SNPs with all three types of genotypes, NOIA full model is preferred to 

identify potential dominant effects while maintaining the power to detect additive effects. 

Additive model would be better for those SNPs to get right distributions if they do not have 

all three genotypes.

In this study, we compared the NOIA statistical model and usual functional model for 

analyzing epistasis, or gene–gene interactions, for quantitative traits and dichotomous 

diseases. These two models can be transformed to each other but they have different 

meanings for their parameters and the test statistics varies reflecting non-orthogonality for 

many functional models. The NOIA statistical model utilizes the population properties 

estimated from the sample, whereas the usual functional model focuses on the biological 

properties. It should be noted that the genotype frequencies used in the NOIA model should 

only be estimated from the genotype data of the sample, according to the NOIA theory 

derived in Alvarez-Castro and Carlborg (2007), to have orthogonal estimates of the 

parameters. Depending on how the sample is selected from the population, the estimated 

genotype frequencies and thus the parameters generated from the NOIA statistical model 

may be significantly different from their population counterparts. Nevertheless, as far as 

power of detecting the main and interaction effects are concerned, using the estimated 

frequencies should provide an accurate test statistic. One might be tempted to use better 

estimated genotype frequencies from other source that are closer to the true population 

parameters than what can be estimated from the data set of interest. However, using those 

“better” estimates of genotype frequencies would reduce the orthogonality of the NOIA 

statistical model. The usually used functional approach is based on the observed genotype 

instead of the population frequencies that were used in the NOIA statistical model. The 

advantage is that the results are easier to interpret. However, the disadvantage of the 

functional model is that the estimated regression coefficients are not orthogonal, when 

dominance components are modeled (Xiao et al. 2013). Parameters from application of the 

NOIA model describe the variance components, rather than allele substitution effects, so 

may be seen as having a less clear interpretation. This is the first time the performance of the 

NOIA statistical model in detecting gene–gene interactions and main effects are evaluated 

since they were developed in 2007 (Alvarez-Castro and Carlborg 2007).

Whether there are factors that influencing interaction effects without playing marginal 

effects has been a critical issue in genetic association studies (Cordell 2009). In single-locus 

analysis, each locus is considered separately. Therefore, factors that influencing interaction 

effects without displaying marginal effects will be missed, as they do not lead to marginal 

correlation between the genotype and outcome phenotype. Our results demonstrated that the 
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NOIA interaction models is capable of detecting interaction effects without influencing the 

estimation of the main effects, which could explain more missing heritability of human 

complex diseases. The usual traditional models do not have this advantage since it loses 

power when more parameters are added to the modeling.

Beyond the two-locus interactions, we may also expect interaction among multiple loci, for 

instance, three-locus interactions. One may simply extend the full and additive NOIA 

statistical models to the case of three-locus interactions by straightforwardly applying 

Kronecker products. We applied the NOIA three-locus interaction models to the melanoma 

data on the significant SNPs contributing to the melanoma risk but did not find signal for 

three-locus interactions. We also applied the three-locus interaction models on the 

significant SNPs contributing to lung cancer risk that was investigated in Ma et al. (2012), 

but again no three-way interactions were identified. This may be because even less power is 

available to detect high-order models for the given sample size. Large datasets will be 

required to estimate these parameters accurately. Interpreting the interactions is also 

complicated even for two-locus interactions. Validation from replication analysis and 

experiments to explain how they interact with each other is a challenging task. The 

underlying mechanism of the interactions is also difficult to explain.

The difference between the NOIA statistical model and the usual functional model lies 

largely in their focus. The former is characterized by orthogonal parameters that denote 

average effects of allele substitutions over population, whereas the latter focuses on the 

natural allele substitutions for parameter estimation. Estimating contributions to overall 

variance as performed in an NOIA analysis has the advantage of allowing orthogonal 

estimates of components that directly contribute to heritability. Use of NOIA derived 

approaches has a more direct application in characterizing genetic architecture for 

population-based studies than is provided by functional models. They are different 

viewpoints of a similar analysis. Nonetheless, when investigating the epistasis or gene–

environment interactions, choosing the most appropriate framework is still important. For 

hypothesis testing using Wald or scores tests, as we showed in this study, power can be 

higher for the NOIA models. We thus recommend that the NOIA statistical model be used 

for one-and two-locus association tests if dominant effects and/or interaction effects are of 

interest because of its higher power and its desired statistical properties.

In summary, we have for the first time demonstrated using simulated and real data that the 

NOIA statistical model can be applied to association studies of gene–gene interaction for 

both quantitative and binary traits. We evaluated the performance of NOIA model for 

logistic regression applied to binary data. We showed by simulated and real data that the 

functional models have lost power for detecting main effects due to confounding between 

the dominance and main effects in most cases, which is consistent with the previous 

declaration from the theoretical derivation of the test statistics in Xiao et al. (2013). The 

main advantages of the NOIA statistical model, compared to the usual functional model, 

include (a) it can show greater power in detecting interaction effects between genes, and (b) 

it is more powerful when detecting the main effects in the presence of interaction effects. 

Application of the NOIA statistical model to the melanoma data resulted in discovery of 
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some potential interaction effects between Il31RA and HERC2 genes, 4q26 and MC1R 

genes.

Finally, it should be noted that the hypothesis we test when comparing the functional and the 

statistical models should be understood in terms of the overall effects of a gene and the 

interaction effect between two genes, instead of the concrete values of the parameters. The 

additive, dominant and interaction parameters have different definitions in these two models 

and thus cannot be directly compared. In this sense, the NOIA approach we advocate is 

more suitable to detect for genetic factors in the presence of G × G interaction than to 

exactly characterize an interaction effect between two genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation dataset under scenario 1 when the interaction terms were positive. 

For each graph, Greek symbols and solid lines correspond to the NOIA method, and the 

broken line corresponds to the functional method. The upper panel is for the additive effects 

and dominant effects of locus A and locus B, respectively. The bottom panel is for the 

interaction effect between locus A and locus B. The simulating values of the genetic effects 

were 

. Corresponding values of the statistical genetic effects were 
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Fig. 2. 
Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation dataset under scenario 2 when the interaction coefficients were 

negative. For each graph, Greek symbols and solid lines correspond to the NOIA method, 

and the broken line corresponds to the functional method. The upper panel is for the 

additive effects and dominant effects of locus A and locus B, respectively. The bottom panel 

is for the interaction effect between locus A and locus B. The simulating values of the 

genetic effects were 

. Corresponding values of the statistical genetic effects were 
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Fig. 3. 
Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation dataset under scenario 3 when no interaction effects present. For 

each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken 

line corresponds to the functional method. The upper panel is for the additive effects and 

dominant effects of locus A and locus B, respectively. The bottom panel is for the interaction 

effect between locus A and locus B. The simulating values of the genetic effects were 

. 

Corresponding values of the statistical genetic effects were 
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Fig. 4. 
Power under different critical values of the P values obtained using the Wald test for the 

case–control simulation data-set under scenario 1 when positive interaction effects present. 

For each graph, Greek symbols and solid lines correspond to the NOIA method, and the 

broken line corresponds to the functional method. The upper panel is for the additive effects 

and dominant effects of locus A and locus B, respectively. The bottom panel is for the 

interaction effect between locus A and locus B. The simulating values of the genetic effects 

were 

. 

Corresponding values of the statistical genetic effects were 
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Fig. 5. 
Manhattan plot for the genome-wide association studies of the CM susceptibility by one-

locus scan. Detection of the additive effect through a the NOIA statistical model and b the 

usual functional model

Xiao et al. Page 23

Hum Genet. Author manuscript; available in PMC 2015 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Manhattan plot for the genome–wide association studies of the CM susceptibility by two-

locus scan for rs1129038. Detection of the additive effect (αA and aA) through a the NOIA 

statistical model and b the usual functional model; detection of the dominant–additive 

interaction effect (δα and da) through c the NOIA statistical model and d the usual 

functional model
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Fig. 7. 
Manhattan plot for the genome-wide association studies of the CM susceptibility by two-

locus scan for rs4785751. Detection of the additive effect (αA and aA) through a the NOIA 

statistical model and b the usual functional model
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