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Abstract

Simulating biologically relevant timescales at atomic resolution is a challenging task since typical 

atomistic simulations are at least two orders of magnitude shorter. Markov State Models (MSMs) 

provide one means of overcoming this gap without sacrificing atomic resolution by extracting long 

time dynamics from short simulations. MSMs coarse grain space by dividing conformational 

space into long-lived, or metastable, states. This is equivalent to coarse graining time by 

integrating out fast motions within metastable states. By varying the degree of coarse graining one 

can vary the resolution of an MSM; therefore, MSMs are inherently multi-resolution. Here we 

introduce a new algorithm Super-level-set Hierarchical Clustering (SHC), to our knowledge, the 

first algorithm focused on constructing MSMs at multiple resolutions. The key insight of this 

algorithm is to generate a set of super levels covering different density regions of phase space, 

then cluster each super level separately, and finally recombine this information into a single MSM. 

SHC is able to produce MSMs at different resolutions using different super density level sets. To 

demonstrate the power of this algorithm we apply it to a small RNA hairpin, generating MSMs at 

four different resolutions. We validate these MSMs by showing that they are able to reproduce the 
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original simulation data. Furthermore, long time folding dynamics are extracted from these 

models. The results show that there are no metastable on-pathway intermediate states. Instead, the 

folded state serves as a hub directly connected to multiple unfolded/misfolded states which are 

separated from each other by large free energy barriers.

1. Introduction

Conformational changes are crucial for a wide range of biological processes including 

protein folding[1], RNA folding[2] and the operation of key cellular machinery[3-5]. 

Extensive genetic, biochemical, biophysical and structural experiments can be performed to 

understand these conformational changes[3-5]. However, probing the mechanisms of 

conformational changes at atomic resolution is very difficult experimentally and without 

these details it is impossible to understand the fundamental chemistry they perform. 

Computer simulations may complement such experiments by providing dynamic 

information at an atomic level. However, there is a gap between the timescales where 

interesting biologically relevant conformational changes occur (typically microseconds and 

up) and those we can simulate at atomic resolution (typically only tens of nanoseconds). The 

length of atomistic simulations is limited by the need to take small timesteps (1 or 2 fs), 

which is determined by high frequency motions such as chemical bond stretching. One 

natural way to bridge this timescale gap is to use coarse grained models where the smallest 

unit of the system represents a group of atoms[6, 7]. In these models, much longer timesteps 

are allowed since the high frequency motions are not explicitly simulated. Coarse grained 

simulations work well for a variety of problems[8-12]; however, these models sacrifice 

accuracy for speed, making them less than ideal for investigating the detailed mechanisms of 

conformational changes.

An alternative approach to overcome the timescale gap is to build discrete-time Markov 

State Models (MSMs) [13-17]. These models may be built from many short (nanosecond 

timescale) simulations and then propagated to give long timescale dynamics, such as 

processes occurring on microsecond timescales or even longer. MSMs partition phase space 

into a number of distinct states, called metastable states, such that intra-state transitions are 

fast but inter-state transitions are slow. Such separation of timescales ensures that the model 

is Markovian, in that the probability of being in a given state at time t+Δt depends only on 

the state at time t. In an MSM, the time evolution of a vector representing the population of 

each state may be calculated by repeatedly left-multiplying by the transition probability 

matrix.

(1)

where P(nΔt) is a vector of state populations at time nΔt and T is the column-stochastic 

transition probability matrix. Any model is Markovian for a sufficiently long lag time (τ = 

Δt), because the system is able to relax to an equilibrium distribution from any arbitrary 

starting distribution after one lag time. The key point is to build a model with a lag time that 

is shorter than the timescale of the process of interest with a reasonable number of states. 

This requires a very good state decomposition, which is difficult. A few different approaches 
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have been developed to address this issue[13-18]. There also exist other methods to bridge 

the timescale gap such as milestoning [19]. However, most of these methods require the 

reaction coordinate is known a priori, while this information is often difficult to obtain.

MSMs are also multi-resolution in nature[13, 14]. In order to achieve a Markovian model at 

a certain lag time, the states must be defined such that large internal free energy barriers are 

avoided and conformations within the same metastable state can interconvert within one lag 

time. Thus, the number of states needed in an MSM depends on the desired lag time. The 

smaller the lag time is, the more states the MSM needs to ensure that dynamics within each 

state are memory-less after one lag time. A short lag time would result in a high resolution 

MSM having many metastable states, capturing numerous free energy minima separated by 

small barriers. A longer lag time results in a low resolution MSM with only a few states, 

each of which contains multiple local free energy minima. We introduce a new algorithm, 

Super-density-level Hierarchical Clustering (SHC), to construct MSMs at different 

resolutions for conformational dynamics. To our knowledge, SHC is the first algorithm 

focusing on generating MSMs at multiple resolutions.

The key insight of the SHC algorithm is to cluster conformations hierarchically using super 

density level sets in a bottom-up fashion starting with the densest regions of phase space, 

which correspond to the bottoms of free energy minima. This algorithm can generate multi-

resolution models by tuning the super density level sets, and each level of resolution 

constitutes a discrete-state MSM with a particular partitioning of phase space. At low 

resolution, it generates a coarse state decomposition with a small number of metastable 

states while at high resolution it generates a finer state decomposition with more metastable 

states. This leaves one the flexibility to select an MSM at the best resolution to study their 

biological problem.

The procedure to build MSMs using SHC is as follows. (1) Partition the conformations into 

a large number of states, called microstates, according to their structural similarity. An 

approximate K-centers clustering algorithm[20] is used here as it gives states with 

approximately uniform size, resulting in a correlation between the population of each state 

and its density. (2) Split the microstates into n density levels ordered from high to low 

density (L= {L1, … Ln}) such that each level contains approximately the same number of 

conformations. Then construct super density level sets Si, where Si = L1 ⋃ L2…⋃ Li−1 ⋃ Li. 

Thus each super density level contains all previous levels S1 ⊆ S2… ⊆ Si. (3) Within each 

super density level (Si), perform spectral clustering to group kinetically related microstates. 

Metastable regions are better separated at high density super levels, since most of the fuzzy 

microstates in the transition region are excluded at these levels. Now, build a graph 

representing the connectivity of the states across super density levels. Then generate 

gradient flows along the edges of the graph from low to high density levels. Each attraction 

node (or attractive basin) where the gradient flow ends is assigned to a new metastable state. 

(4) Assign every microstate not belonging to an attraction node to the metastable state it has 

the largest transition probability to. Thus we have a complete state decomposition for an 

MSM. Furthermore, this procedure may be repeated with different super density level sets to 

construct MSMs at different resolutions. The larger the number of super density levels, the 

finer the resolution and the larger the number of metastable states in the final MSM.
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In order to test SHC, we apply it to a small RNA hairpin with microsecond time scale 

dynamics: an eight nucleotide RNA GCAA tetraloop with the sequence 5′-GCGGCAGC-3′. 

It has 4 bases in the loop and two stem base pairs as shown in Figure 1. RNA hairpins are a 

ubiquitous secondary structure motif often involved in tertiary contacts[21]. Much 

experimental work has been done on these systems as a step towards understanding larger 

RNA molecules but knowledge of their folding is still incomplete[22-28]. Despite their 

small size, even eight nucleotide hairpins fold on a microsecond timescale[23], about two 

orders of magnitude longer than typical atomic simulations. However, using SHC, we are 

able to construct multi-resolution MSMs from many short 45 ns atomistic simulations. 

These models are able to predict microsecond timescale dynamics. We compare MSMs at 

different resolutions and also validate them by confirming their ability to reproduce the 

original simulation trajectories. Furthermore, we extract the kinetics between the most 

populated metastable states from our MSMs. The results suggest that the folded state is a 

hub connected to many non-native metastable states that are mostly uncoupled from one 

another. No metastable intermediate states are identified, while there are a few misfolded 

states such as states with shifted base pairing or an unfolded loop. This indicates that folding 

of an eight nucleotide RNA hairpin with only two stem base pairs might be different from 

RNA hairpins with longer stems where stable thermodynamic intermediate states were seen 

in previous simulations[22].

2. Methods

Here we explain the SHC algorithm in detail using an RNA GCAA tetraloop as an example. 

The dataset we examine here contains 9,963 45ns explicit solvent molecular dynamics 

simulations with an aggregate simulation time of 448 microseconds. Conformations are 

saved every 0.2 ns, and the total number of conformations is about 2.3 million. These 

simulations are initiated from different metastable regions of phase space identified by short 

Simulated Tempering[29, 30] simulations following the Adaptive Seeding Method (ASM)

[31]. More simulation details are available in Appendix A.

2.1. Partitioning conformations into microstates

Modern computer simulations can easily generate massive data sets with millions of 

conformations, making analysis of these data sets computationally challenging. To reduce 

the dimensionality of the data, we first group conformations into a large number (a few 

thousand or tens of thousands) of small clusters called microstates based on their structural 

similarity, in this case measured using the Root Mean Square Deviation (RMSD) between 

all heavy atoms. Each microstate must be small enough to ensure conformations in the same 

state can interconvert rapidly. An approximate K-centers clustering algorithm[20] was used 

here to generate microstates by minimizing the maximum cluster radius, where the cluster 

radius is defined as the maximum heavy atom RMSD distance between the cluster center 

and any other conformation within the cluster. The detailed implementation of the algorithm 

is discussed elsewhere[18, 20], and the code for the approximate K-centers clustering is 

available through the MSMBuilder package[18]. This algorithm has a computational 

complexity of O(kN), where k is the number of clusters and N is the number of 

conformations to be clustered. Moreover, it gives states with approximately equal radii. As a 
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result, there is a correlation between the population of each microstate and its density, 

allowing us to define density levels in the subsequent steps.

We have clustered ~2.3 million conformations into 10,000 microstates, and the same 

microstate decomposition is used to build all MSMs in this work. The cluster radius 

distribution has a sharp peak around 4 Å, confirming that the clusters have approximately 

equal radius (data not shown). Thus, the population of each microstate is a reasonable 

indicator of its conformational density. However, we note that even small differences in the 

radius of microstates may imply relatively large variations in their volumes due to the high 

dimensionality of conformation space. We empirically find that assuming all clusters have 

approximately equal volumes is useful. In the future, we can improve the density estimation 

step by working on low dimensional sub-manifolds where density estimation is consistent 

and accurate. These low dimensional sub-manifolds can be constructed with nonlinear 

dimensionality reduction techniques[32].

2.2. Super density level set formation

In this step, we first split the microstates into n density levels L= {L1, … Ln}. As discussed 

above, the density of microstates d1…dk can be estimated from their populations by dividing 

number of conformations within each microstate by the total number of conformaitons. We 

order microstates according to the value of di and classify the microstates into n consecutive 

levels. Each level contains about the same number of conformations. Density levels are 

ordered from high to low density, and labeled 1 to n. For example, from our RNA dataset, 

we have generated a density level set with three levels L= {L1, L2, L3}. L1, L2, and L3 

contain 146, 615, and 1810 microstates respectively, and approximately an equal number of 

conformations (each level contains about 25% of the total conformations, the remaining 

conformations are ignored until the final step of the algorithm). Thus, level L1 has the least 

number of microstates and contains only the highest density regions. From the density level 

set, we can easily construct the super density level set S= {S1, …, Sn} by defining Si = L1 ⋃ 

L2…⋃ Li−1 ⋃ Li. Each super density level contains all previous levels S1 ⊆ S2… ⊆ Si. In 

our example, three super density levels S1, S2, and S3 are created, containing 25%, 50% and 

75% of the total conformations respectively. Recently, a topological data analysis 

approach[33, 34] based on similar ideas regarding clustering in density level sets has been 

successfully applied to perform geometric clustering on biomolecular data. However, we 

found in this study that super level sets yield better results than density level sets in 

identifying kinetically metastable states (data not shown).

2.3. Spectral Clustering within super density levels

Spectral clustering [35-38] is performed on a transition probability matrix within each super 

density level (Si). Since these transition probablity matrixs are generated by normalizing 

number of transitions between pairs of micorstates by counting directly from the original 

simulation trajectories, applying spectral clustering on them is able to lump kinetically 

related microstates into larger metastable states. Metastable regions are better separated in 

high density super levels, since most of the fuzzy microstates in transition regions are 

excluded at these levels. For example, in the RNA dataset, multiple disconnected blocks are 

found in the transition probability matrix for level S1, indicating good separation of 
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metastable regions. When we move up to levels containing more low density microstates, 

less and less disconnected blocks are found in the transition probability matrix, and 

eventually the matrix becomes completely connected. In the example with three density 

levels, the first level S1 contains 35 metastable states, S2 contains 25, and S3 contains only 6 

states. In order to identify nearly disconnected blocks in a transition matrix, we choose 

eigenvalues very close to 1 for spectral clustering. In particular, a constant spectral gap of 

Δλ = 0.0001 is used for this example.

Next we build a graph representing the connectivity of the metastable states across super 

density levels. Figure 2 is an example of such a graph with three levels. Each node in the 

graph represents one metastable state. As discussed above, the number of nodes in each 

level decreases from S1 to S3. In S1, there is a large node (node 1) containing 64% of all the 

conformations in that level. Similar nodes can also be found in other levels such as node 2 

(83%) in S2 and node 3 (99%) in S3. These results suggest that there is a large metastable 

state corresponding to the folded state, to be discussed in more detail in the Results and 

Discussion section. In the next step, gradient flows are generated along the edge of the graph 

from low to high density levels. Nodes that do not have any flow into denser states 

correspond to basins of attraction, or metastable states. For example, node 1 is an attraction 

node, while nodes 2 and 3 are not. As shown in Figure 2, there are 46 attraction nodes in this 

model (35 in S1 and 11 in S2). Thus the model contains 46 metastable states.

2.4. Assigning microstates not in attraction nodes

In the previous step, all the attraction nodes were selected as metastable states. Here, we will 

assign the remaining nodes to metastable states, as well as microstates that were not 

included in any of the density levels. This is achieved by computing the transition 

probabilities from each of these microstates to all possible metastable states, and assigning 

each microstate to the metastable state it has the largest transition probability to. If a 

particular microstate cannot transition to any of the metastable states in a single step we 

consider a progressively larger number of steps until we see transitions between this 

microstate and some metastable state.

Following the above steps yields a complete state decomposition for an MSM. In the 

example shown in Figure 2, a 46-state MSM is generated. In order to construct MSMs at 

different resolutions we repeat the same procedure using different numbers of super density 

levels.

3. Results and Discussion

3.1. Constructing MSMs at different resolutions

Using SHC, we have constructed four different MSMs by varying the number of super 

density levels (NL) all with a lag time of 0.2 ns. The super density level set is defined as S= 

{d0/NL, 2d0/NL,…, d0}, where d0 = 0.75. Specifically, we used 3, 6, 9, and 15 super density 

levels, yielding MSMs referred to as L3 MSM, L5 MSM, L9 MSM and L15 MSM 

respectively. In addition, we also built a model (L1 MSM) with L = 1 as a control. Some 

properties of these models are listed in Table 1.
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The first property in the table is the number of macrostates in each MSM. This number 

increases with L, and L15 MSM contains more than ten times more states than L1 MSM. 

With many more states, L15 MSM is a higher resolution model than L1 MSM. Thus SHC is 

able to generate multi-resolution MSMs by changing the number of super density levels NL. 

Metastability is another important property for an MSM. A good MSM should contain a 

state decomposition which maximizes the separation of timescales. The self-transition 

probability, indicating the stability of each macrostate, is a simple and straightforward way 

to check if there is a good separation of timescales. The metastability (Q) listed in Table 1 is 

defined as the sum of the self-transition probabilities (Tii) of each macrostate. Table 1 also 

shows the average self transition probability: <Tii> = Q/N, where N is the number of 

metastable states. <Tii> decreases with L, indicating higher resolution models have smaller 

average self transition probabilities. This is consistent with the fact that higher resolution 

models will capture smaller free energy minima, which are separated by smaller free energy 

barriers and therefore less metastable.

Another interesting property, which is not listed in the table, is the population of each 

macrostate. For the control model L1 MSM, the populations of the six states ordered from 

high to low are: 98.0%, 1.6%, 0.2%, 0.05%, 0.05%, and 0.05%. Only two states have 

populations greater than 1%, and the rest have negligible populations. A closer look at the 

data shows that these four states each contain only a single microstate, and they are almost 

disconnected from the rest of phase space. Thus these four states might not be significant 

metastable regions, but just noise due to insufficient sampling. This is one issue with 

spectral clustering algorithms such as PCCA[37] and PCCA+[38], which tend to first 

separate the most disconnected blocks from the transition probability matrix. This makes it 

difficult to choose a proper number of metastable states in order to identify all the significant 

metastable regions. SHC is able to overcome this issue by clustering from the highest 

density super level, which guarantees that the most populated metastable regions are 

identified first. L3 MSM, L5 MSM, L9 MSM, and L15 MSM contain 8, 15, 12, and 10 

states with populations larger than 1% respectively.

3.2. Validating MSMs

In this section, we will validate the MSMs discussed above in two ways: implied timescales 

and Chapman-Kolmogorov equation.

Implied timescales—Examining the behaviors of the implied timescales is one way to 

check if the model is Markovian as first suggested by Swope. et. al.[16]. Implied timescales 

(τk) can be computed from the eigenvalues of the transition matrix T as shown below:

(2)

where μk is an eigenvalue of the transition matrix with the lag time τ. Each implied 

timescale describes an aggregate transition between subsets of macrostates. If the model is 

Markovian and Equation (1) holds, the exponentiation of T should be identical to an MSM 

constructed with a longer lag time, and the implied timescales will be independent of the lag 

time. This requires that lag times are sufficiently long. The shortest lag time for this 
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condition to hold is defined as the Markovian time, which is correlated with the longest 

internal equilibrium time of any state. Figure 3 displays implied timescales plots as a 

function of the lag time for L3 MSM. As shown in Figure 3 (a), the implied timescales level 

off around a lag time of 20ns. This implies that the model is Markovian with long enough 

lag times. However, big fluctuations are observed for the three slowest timescales. A further 

investigation shows that these slow timescales are due to low-population states which are 

nearly disconnected from the other states. If we exclude three states (with populations 0.1%, 

0.09%, and 0.04%) containing very few non-self transition counts from our analysis, these 

slowest timescales disappear (see Figure 3 (b)). The implied timescale plots for other 

resolution MSMs also level off as shown in Figure 4. These results suggest that MSMs 

generated from SHC are Markovian with sufficiently long lag times. Higher resolution 

MSMs with a finer discretization of phase space should have shorter Markovian times, since 

the intra-state equilibrium times are shorter. Looking at Figure 4, the implied timescales of 

L15 MSM seem to level off slightly faster than those of L6 MSM. However, it is hard to tell 

by eye whether there is any large difference in the Markovian times for these models. Thus, 

the implied timescales check has some drawbacks. It is difficult to determine by eye if and 

where the implied timescales level off. In addition, small uncertainties in the eigenvalues 

can induce large uncertainties in the implied time scales[14].

Chapman-Kolmogorov Check—An alternative way to validate MSMs is to directly 

check if Equation (1), a form of the Chapman-Kolmogorov equation, holds[14]. Figure 5 

shows the time evolution of the populations of the top eight most populated states in L3 

MSM. Populations extracted from the raw data are compared with those generated by the 

MSM starting from the same initial populations (see Equation (1)). As shown in Figure 5, 

these populations agree well within statistical error. Similar agreement was found for the 

other MSMs as well (data not shown). These results suggest that MSMs generated by SHC 

are consistent with the original dataset from which they were constructed. The final 

obervation is that population distriutions are almost flat, which may suggest that the starting 

conformations of the simulations generated from the Adaptive Seeding Method[31] are 

already close to the equilibrium distribution (See Appendix 1 for details).

3.3. RNA hairpin folding mechanism

Despite the small size of RNA hairpins, there is some debate over whether they fold in a 

two-state or multi-state manner. Thermodynamic measurements such as temperature 

melting[25] support the two-state model, while kinetic experiments such as temperature 

jump suggest a multi-state model[39]. Using the laser temperature jump technique, the 

Gruebele group[23] observed two unfolding relaxation phases of the eight nucleotide 

gcUUCGgc hairpin at low temperatures: a fast phase of 1-2 microseconds, and a slow phase 

of 5-10 microseconds[23, 40]. They also developed a lattice model with four metastable 

states that accurately reproduced the experimental data[23]. However, it is difficult to 

extract information at atomic resolution from this simple model.

MSMs are a useful tool for extracting kinetics from atomistic simulations. From L3 MSM, 

we have computed the Mean First Passage Time (MFPT) between the eight most populated 

metastable states. The MFPT is defined as the average time taken to get from the initial state 
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to the final state[41]. It can easily be computed from a transition probability matrix (see the 

Appendix B for details). The results of this calculation are displayed in Figure 6, along with 

representative structures from each state. State 1 is the folded state and has the largest 

population (77.1%), indicating the free energy surface is biased to the native state at 300K. 

Multiple non-native states, each directly connected to the folded state, are also identified: 

e.g. states 3 and 4 with coil structures, state 2 with a shifted base pairing, and state 5 with an 

unfolded loop. MFPTs for folding (i.e. transitions from non-native states to the folded state) 

are all around a few hundred nanoseconds, while MFPTs for unfolding are at least an order 

of magnitude longer (from a few to tens of microseconds). This confirms that the folded 

state is the most stable state at 300 K. All MFPTs between non-native states are at least eight 

microseconds, much longer than those for folding. This suggests that these states are 

uncoupled from each other. Therefore, no metastable on-pathway intermediate states are 

indentified in this system. The transition from state 1 (folded) to 8 (shifted base pairing) has 

the longest MFPT (45.7 microseconds) among all the unfolding transitions, indicating a 

large energy barrier for breaking non-native base pairing/stacking followed by forming 

native ones. State 5 (unfolded loop) has the shortest MFPT (0.16 microseconds) among all 

the folding transitions, which suggests the kinetics of loop rearrangements are relatively 

rapid.

We have successfully extracted kinetic information between the most populated metastable 

states from our MSMs. The overall unfolding timescales fall in a range of a few to tens of 

microseconds, in qualitative agreement with experimental observations. However, direct 

comparisons between our simulations and laser T-jump experiments are not possible at 

present because our simulations are at a single temperature and are therefore unable to 

capture effects due to the temperature jump. No stable thermodynamic intermediate states 

were found for folding of this 8 nucleotide RNA hairpin, in contrast to a previous study of a 

12 nucleotide hairpin[22]. These results suggest that increasing the number of stem base 

pairs complicates the folding mechanisms of RNA hairpins.

4. Conclusions and Future Plans

Markov State Models (MSMs) are a useful tool for bridging the gap between experimental 

and computational timescales. MSMs are inherently multi-resolution, however, algorithms 

focused on constructing MSMs at different resolutions are lacking. Here we have introduced 

a new algorithm, called Super-level-set Hierarchical Clustering (SHC), which is capable of 

constructing MSMs of conformational dynamics at multiple resolutions. The key insight of 

this algorithm is to perform spectral clustering hierarchically using super level sets starting 

from the highest density level, which guarantees that highly populated metastable regions 

are identified before less populated ones. This is an improvement over direct application of 

spectral clustering to the full data set, which tends to identify sparse states that are very 

weakly coupled to the rest of phase space due to insufficient sampling before identifying 

real metastable states in denser regions of phase space. We applied SHC to an 8 nucleotide 

GCAA RNA tetraloop, and built four MSMs at different resolutions. Each of these models 

was validated by both the implied timescales and Chapman-Kolmogorov checks. The 

overall unfolding timescales predicted from our MSMs are between a few and tens of 

microseconds, which are qualitatively consistent with those observed by laser temperature 
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jump experiments. Our results suggest that there are no metastable intermediate states. 

Instead, the folded state is directly connected to multiple unfolded and misfolded states, 

which all fold faster than they interconvert with one another.

In SHC, we use the populations of microstates from K-centers clustering to approximate 

their conformation density. However, estimating densities in high dimensional spaces is 

quite challenging. In particular, our approximate K-centers algorithm only generates clusters 

with approximately equal radii and small variances in the cluster radius may induce large 

volume differences. In the future, we plan to improve our density estimates by computing 

kernel density functions around microstate centers or the average of the kernel density for a 

few randomly selected conformations within the state. Alternatively, we may employ 

nonlinear dimensionality reduction techniques[32] to discover lower dimensional spaces 

where the density may be estimated more easily. We have demonstrated that SHC is able to 

generate a large number of MSMs at different resolutions. However, we haven’t discussed 

how to determine which one is the best model. A Bayesian approach to compare different 

MSMs by Bacallado et al.[43] may be used for model selection in the future. Finally, while 

we have focused on identifying metastable states in this work, SHC may also be used to 

identify intermediate and transition states by studying non-attractive nodes in lower density 

super density levels. In addition to being biologically relevant themselves, identification of 

these states could allow us to perform adaptive sampling by starting more simulations from 

transition states in order to rapidly sample transition events between metastable states.

Acknowledgments

XH is supported by NIH Roadmap U54 GM072970 and a startup fund from Hong Kong University of Science & 
Technology. XH would also like to acknowledge the support of Prof. Michael Levitt. YY, JS, LG, and GC are 
supported by DARPA HR0011-05-1-0007. YY and GC are also supported by NSF DMS-0354543, and LG by NSF 
FRG-0354543 and NIH GM-072970. GRB is supported by the NSF Graduate Research Fellowship Program. This 
work is also funded by NIH R01-GM062868 and NIH P01 GM066275. Computer resources were provided by NSF 
award CNS-0619926 and Folding@Home volunteers.

Appendix A: Simulation Details

Our simulations were generated using the Adaptive Seeding Method (ASM)[31]. First, two 

sets of 1120 27ns Simulated Tempering (ST) simulations[29, 30] were run: one started from 

a folded state and the other from a random coil. An independent MSM with 10 states was 

then built using MSMBuilder[18] for each dataset in order to identify the dominant 

metastable states. Next, one hundred random conformations were selected from each 

metastable state and used as starting points for new constant temperature simulations (2,000 

points in total). Five 45ns constant temperature 300K MD simulations were launched from 

each point. This resulted in a dataset with 9,963 trajectories (some simulations were not 

completed). All the simulations were performed using Stanford’s Bio-X2 cluster and 

Folding@Home[44]. We used nucleic acid parameters from the AMBER99 force field[45, 

46]. The RNA molecule was solvated in a water box with 2,543 TIP3P[47] waters and 7 Na+ 

ions. The simulation system was minimized using a steepest descent algorithm, followed by 

a 100ps MD simulation applying a position restraint potential to the RNA heavy atoms. All 

NVT simulations were coupled to a Nose-Hoover thermostat with a coupling constant of 

0.02ps−1[48]. A cutoff of 10 Å was used for both VdW and short range electrostatic 

HUANG et al. Page 10

Pac Symp Biocomput. Author manuscript; available in PMC 2015 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interactions. Long-range electrostatic interactions were treated with the Particle-Mesh Ewald 

(PME) method[49]. Nonbonded pair-lists were updated every 10 steps with an integration 

step size of 2 fs in all simulations. All bonds were constrained using the LINCS 

algorithm[50].

Appendix B: Mean First Passage Time (MFPT)

The mean first passage time (MFPT) from initial state i to final state f in an MSM is the 

average time taken to get from state i to state f[41]. The MFPT (Xif) given that a transition 

from state i to j was made first is the time it took to get from state i to j plus the MFPT from 

state j to f. Thus the MFPT (Xif) can be defined as (cite),

(A.1)

where tij is the lag time of the transition matrix T. The boundary condition for this 

calculation is:

(A.2)

The set of linear equations in Equation (A.1) and (A.2) can be solved to obtain the MFPT 

Xif.
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Figure 1. 
(A) Structure of the 8 nucleotide RNA GCAA tetraloop, generated by truncating the two 

terminal base pairs from the NMR structure of a 12 nucleotide tetraloop (PDB ID 1zih). (B) 

The cartoon representation of the same structure using sticks to represent the orientation of 

the bases. The same cartoon representation will be used in Figure 6 to illustrate 

representative structures from different metastable states.
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Figure 2. 
A graph describing the connectivity of the metastable states generated by SHC. Each node in 

the graph denotes a single metastable state. Each row corresponds to one super density level: 

states belonging to S1 (in red), S2 (in blue), and S3 (in green) contain 25%, 50%, and 75% of 

all the conformations respectively. Two nodes are connected if they share microstates, and 

the arrows represent the gradient flows from low density to high density regions, i.e. from S3 

to S1. Arrows representing self transitions are plotted at attraction nodes where the flow 

ends. The radius of each node is scaled linearly by its population within each super level.
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Figure 3. 
Top twenty implied timescales as a function of the lag time for the L3 MSM (L3 denotes the 

super density level set containing 3 levels) The plots are generated by using (a). the 

transition probability matrix with all 46 states. (b) the transition probability matrix with only 

43 states with three nearly uncoupled states excluded (These three states have very few 

transition counts to other states).
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Figure 4. 
Top twenty implied timescales as a function of the lag time for (a) L6 MSM, (b) L9 MSM, 

and (c) L15 MSM. L6, L9, and L15 indicate that 6, 9 and 15 super density levels are used to 

generate these MSMs respectively. The insert in (b) is the same as the main figure except 

that the y axis goes up to 7 microseconds in order to show one very long implied timescale.
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Figure 5. 
Comparison between the time evolution of the populations of the eight most populated states 

(with populations larger than 1%) in the L3 MSM (red) and the raw data (black). The error 

bars in the black curves are the standard deviations computed from one hundred boot 

strapping runs each of which randomly selected 8,000 of 9,963 trajectories with 

replacement. A 20ns lag time is used to build the transition probability matrix based on the 

L3 MSM state decomposition.
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Figure 6. 
Mean First Passage Times (MFPTs) between the eight most populated states in the L3 MSM 

with a lag time of 20ns (L3 MSM is generated from a super level set with three levels, see 

Table 1 for details). All the MFPTs are in units of microseconds. States are labeled in red 

from 1 to 8 according to their populations in descending order. The populations of each state 

are shown in black. Two representative conformations are shown from each state using 

Pymol[42] with a cartoon representation. These conformations were extracted by selecting 

the centers of the top populated microstates in each macrostate.
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Table 1

Number of states (N), metastability (Q), and average self transition Probability (<Tii>=Q/N) for five MSMs 

generated by SHC using super density level sets containing L levels.

L 1 3 6 9 15

N 6 46 57 63 68

Q 5.95 44.3 54.2 59.3 63.4

<Tii> 99.1% 96.3% 95.1% 94.1% 93.2%
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