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Abstract

Knowledge of how persons with amputation use their prostheses and how this use changes over 

time may facilitate effective rehabilitation practices and enhance understanding of prosthesis 

functionality. Perpetual monitoring and classification of prosthesis use may also increase the 

health and quality of life for prosthetic users. Existing monitoring and classification systems are 

often limited in that they require the subject to manipulate the sensor (e.g., attach, remove, or reset 

a sensor), record data over relatively short time periods, and/or classify a limited number of 

activities and body postures of interest. In this study, a commercially-available three-axis 

accelerometer (ActiLife ActiGraph GT3X+) was used to characterize the activities and body 

postures of individuals with trans-tibial amputation. Accelerometers were mounted on prosthetic 

pylons of ten persons with trans-tibial amputation as they performed a preset routine of actions. 

Accelerometer data was post-processed using a Binary Decision Tree to identify when the 

prosthesis was being worn and to classify periods of use as movement (i.e., leg motion like 

walking or stair climbing), standing (i.e., standing upright with limited leg motion), or sitting (i.e., 

seated with limited leg motion). Classifications were compared to visual observation by study 

researchers. The classifier achieved a mean accuracy of 96.6% (SD=3.0%).
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Introduction

Prosthetists, physicians, and prosthetics researchers are challenged to describe how persons 

with limb loss use their prostheses outside the clinic or laboratory [1]. Performance tests 

such as the timed up and go test [2] or the six-minute walk [3] can be used to measure 

mobility of a prosthetic user in a clinic or laboratory [4,5], but information on what 

prosthesis users do in their daily lives can be difficult to acquire. Characterizing ways that 

prostheses are used is complicated by the range of situations and environments users 

encounter. The characterization of prosthesis use could be partially achieved by quantifying 

prosthetic wear (e.g., donning and doffing) and users’ engagement in locomotor activities 

(e.g., walking and stair climbing) and fundamental body postures (e.g., standing or sitting). 
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Accurate knowledge of prosthetic use in free-living conditions would enhance prosthetic 

prescriptions, fitting processes, and measurement of outcomes [6].

Previous methods for measuring prosthetic use outside of a gait laboratory or clinic included 

self-report surveys and personal activity monitoring devices (e.g., pedometers and step 

activity monitors). Self-report surveys have been used to quantify frequency and duration of 

prosthetic use [7]. However, self-report of activity among persons with limb loss has been 

noted to be unreliable when compared to a step-activity monitor [8]. Pedometers and step-

counters have been used to objectively measure step-activity of persons wearing prostheses 

over extended periods of time [6,8–13]. While these sensors accurately measure gait 

activities, they are unable to provide information about body postures that may also be part 

of a person’s habitual activity [14]. Differentiation of body postures may be clinically 

important as sitting and standing can affect changes in residual limb volume and alter the fit 

of a prosthesis [15,16]. Accurate knowledge of how much a prosthetic user sits or stands 

could thus be useful in determining changes in socket fit throughout the day.

Identification of activities and postures has previously been achieved through classification 

of data from one or more body-mounted sensors [14,17–20]. This technique has been 

applied to characterize the quality of gait [21], discriminate activity levels [22], and 

determine body orientations [23] of individuals without amputations. It has also been used 

on persons with lower limb amputations to quantify step counts [18], estimate ambulation 

time [24], and describe gait patterns [25]. Algorithms have also been developed to identify 

locomotion and posture of individuals with an amputation from sensor data obtained over 

short time periods (i.e., up to several hours) [10,26–28].

While these studies demonstrated potential for activity and posture classification based on 

data from body-mounted sensors, there remain challenges to clinical use such as need for 

multiple sensors, subject donning requirements, low storage capacities, and short battery 

lives. Currently available sensors are also often restricted to short-term applications and/or 

require adherence to specific user protocols. Accordingly, more user-friendly and clinically-

relevant solutions are needed to overcome these challenges. Here, we explore the potential 

for a commercially-available accelerometer and custom signal processing algorithm to 

identify when prostheses are being worn and to classify periods of use as movement, 

standing, or sitting. Use of a single sensor mounted to a prosthesis would eliminate the need 

for the user to attach and remove the sensor, improve wear compliance, and reduce cost. We 

believe this strategy is a first step toward a prosthesis-integrated sensing system that could 

be used to collect, process, and convey information of interest to users, practitioners, and 

researchers.

In this study we used commercially-available accelerometers and a custom software 

algorithm to classify the movements and body postures of persons with trans-tibial 

amputation. Our hypothesis was that data from a single prosthesis-mounted accelerometer 

could be used to identify when a prosthetic user was wearing their prosthesis and if they 

were sitting, standing, or actively moving. An algorithm was designed to identify when the 

prosthesis was being worn and to classify actions as movement (i.e., regular leg motion like 
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walking or stair climbing, transitioning from one posture to another, or donning or doffing 

the prosthesis), standing, or sitting.

Methods and Materials

Experimental Design

Persons with trans-tibial amputations were recruited to test the developed classification 

algorithm in a semi-controlled activity protocol. All subjects were recruited from local 

prosthetic clinics, peer support groups, and hospitals. Inclusion criteria were ages 18 to 75, 

trans-tibial amputation that occurred at least two years prior to testing, Medicare Functional 

Classification Level (MFCL) 2 (limited community ambulator) or higher [29], a healthy 

residual limb with intact skin, and ability to walk for at least an hour (with rests as 

necessary). Subjects provided informed consent prior to participation. All procedures were 

approved by a University of Washington Institutional Review Board (IRB) before study 

procedures were initiated.

ActiLife ActiGraph (Pensacola, Florida) GT3X+ accelerometers were applied to each 

subject to measure limb segment accelerations. The GT3X+ has a +/− 6g (gravitational 

acceleration) dynamic range, 0.00293g resolution, 100Hz maximum sampling rate, up to 31 

days of battery life, and up to 40 days of data storage. A dynamic range of +/− 6g has 

previously been found to be acceptable for quantifying movement patterns during walking 

[31,32]. The Actigraph accelerometer is packaged in a 4.6×3.3×1.5cm water-resistant 

enclosure and weighs 19 grams. One accelerometer was attached to the subject’s prosthesis, 

proximal to the foot. Positioning the accelerometer at this location, instead of one more 

proximal, ensured the sensor was subjected to high accelerations (i.e., received a strong 

signal) during leg motions. The sensor was oriented with the positive x-axis along the limb 

axis and the positive z-axis in the medial-lateral direction (Figure 1). A second 

accelerometer was affixed to the anterior thigh on the same leg as the prosthesis. It was 

oriented with the positive x-axis along the limb axis and the positive y-axis facing to the 

subject’s right. These locations ensured that different postures would be easily differentiated 

using anterior-posterior acceleration data. A sheet of Tegaderm (3M) was placed on the skin 

of the thigh. Adhesive backed Velcro was then used to attach the accelerometer to the 

Tegaderm (Figure 1). The second accelerometer was further secured with an elastic strap to 

minimize local movements. Sampling rates for both accelerometers were 40Hz. A 40Hz 

sampling rate was deemed acceptable as most of the energy in gait is concentrated below the 

resulting Nyquist frequency of 20Hz [33,34]. Using a sample rate of 40Hz rather than a 

higher rate typically used in gait laboratories, maximized the duration of data collection and 

still allowed for the identification of relevant gait events. At this sampling rate, GT3X+ 

accelerometers were capable of recording data for up to 30 days.

Two experiments were performed to assess the accuracy of a novel algorithm designed to 

classify use of prostheses as 1) movement (e.g., walking, using stairs, or transitioning from 

one posture to another), 2) standing (i.e., upright standing posture with minimal movement), 

3) sitting (i.e., seated posture with minimal movement), or 4) doffed (i.e., prosthesis not 

being worn) based on data from the pylon-mounted accelerometer. The thigh-mounted 

accelerometer was used in both experiments to enhance accuracy of activity and posture 
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recognition so as to validate classifications derived by an algorithm run only on the single 

accelerometer data. Two algorithms were developed to classify movement, posture, and 

wear. One algorithm made use of data from only the pylon-mounted accelerometer, and the 

other algorithm made use of data from both accelerometers.

The purpose of the first experiment was to assess the accuracy of single- and dual-

accelerometer classifications of activities performed in a laboratory setting compared to 

visual observation. Subjects were asked to perform a pre-defined activity protocol that 

included walking over level ground (i.e., an indoor hallway); sitting on office chairs, sofas, 

or benches; standing; ascending and descending stairs; and doffing and donning the 

prosthesis. These activities were deemed to be most representative of the activities of 

clinical interest to prosthetists. Subjects were asked to sit in each type of seat at least three 

times, stand and walk the hallway at least five times, use the stairs at least once, and 

doff/don their prosthesis once. Each time the subject performed an activity in the test 

sequence, they were asked to perform it for at least 60 seconds. Subjects were asked to 

perform the sequence in a set order, but were asked to engage in each activity, posture, or 

don/doffing action as they normally would (i.e., no instructions were given for walking 

speed, sitting posture, etc.). Subjects were visually monitored while they performed the test 

sequence. A researcher followed and timed each subject with a stopwatch to capture when 

subjects started and stopped each type of movement, posture, or don/doffing action. This 

record was used for ground-truth comparisons.

The purpose of the second experiment was to assess differences between single- and dual-

accelerometer classifications of activities performed in free-living settings. In the second 

experiment, two subjects were asked to wear both accelerometers for two days outside of the 

laboratory. Subjects were asked to go about their days normally. When they doffed their 

prosthesis, they were to remove the thigh mounted accelerometer and set it on a flat surface. 

Use of Velcro and elastic band for accelerometer attachment allowed the subject to easily 

reattach the thigh mounted accelerometer.

Classification Algorithm

Raw acceleration data, such as those shown in Figure 2, obtained from the GT3X+ 

accelerometers were post-processed using custom algorithms written using MathWorks 

Matlab 7.12.0 (Natick, Massachusetts) software. No filtering was performed on the data. 

Data were buffered into short windows with an overlap of 50%. Window length was 

experimentally determined as described below and set to 45 samples (i.e., 1.125s).

A binary decision tree (BDT) algorithm [17] was designed to classify the windowed data. 

Data from all three axes of the pylon-mounted accelerometer were used to determine if the 

subject was active, stationary (i.e., sitting or standing), or had doffed the prosthesis. 

Determination of posture was performed using only the anterior-posterior data of one 

accelerometer. For the algorithm that used data from only the pylon-mounted accelerometer, 

data from the anterior-posterior axis of that accelerometer was used. For the algorithm that 

used data from both accelerometers, data from the anterior-posterior axis of the thigh-

mounted accelerometer was used.
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The BDT (Figure 3) used signal magnitude area (SMA) to determine if the prosthesis was 

moving or stationary within each window. SMA was calculated by subtracting the mean (μ) 

of the window from each of the accelerometer axes, integrating the absolute value of the 

result over a full window, and dividing by the window size (T). This method has previously 

been used to detect activity levels [20,23]. SMA was evaluated using the following equation:

The developed algorithm required several subject-specific parameters for calibration. First, 

the accelerometers’ locations (i.e., left or right leg) were required to correctly orient the 

pylon-mounted accelerometer’s anterior-posterior axis; the axial direction did not change 

and the y-axis of the accelerometer rotated with leg change to remain pointing in the lateral 

direction. Second, the pylon accelerometer’s inclination while the prosthesis was doffed and 

standing upright with the foot on the floor was required. This doffed position served as a 

reference to differentiate sitting and standing postures. This strategy was effective because 

the anterior-posterior inclination angle (with respect to the vertical axis) was found to be 

greater than the doffed reference angle for sitting and less than it for standing (Figure 4).

Two activity thresholds were used to guide classifications. The lower and upper activity 

thresholds were experimentally determined via a sensitivity analysis using the laboratory-

based experiment data as described below. These thresholds were set to 0.01g and 0.1g, 

respectively (Figure 2). When SMA was below the lower threshold, the subject was deemed 

either to be stationary or to have doffed their prosthesis. When SMA remained below the 

lower threshold for more than 320s, the prosthesis was considered doffed. The 320s 

parameter was chosen based on the observation that subjects in stationary postures during 

the first experiment were not completely immobile for the full length of time they were in 

the posture, but further research will be needed to validate it. Otherwise, the prosthesis was 

assumed to be donned and windows were classified as a stationary posture (i.e., standing or 

sitting). When SMA was between the lower and upper thresholds, the accelerometer data 

from that window were averaged to find the inclination [35]. Inclination was then compared 

to the subject’s reference inclination to determine if the subject was sitting, standing, or 

doffed (Figure 2). If the prosthesis was oriented in a way that did not correspond to one of 

those postures, indicated by the inclination being outside of a range that could be obtained 

by a sitting or standing individual, the window was classified as unknown. Lastly, when 

SMA exceeded the upper threshold, the subject was considered to be engaged in movement.

When data from only the pylon-mounted accelerometer was used for classification, sitting or 

standing was calculated based on the inclination of the prosthesis as determined by anterior-

posterior accelerometer measurements. When data from both the pylon-mounted 

accelerometer and the thigh-mounted accelerometer were used for classification, the pylon-

mounted accelerometer data was used to determine movement, and data from the anterior-

posterior axis of the thigh-mounted accelerometer was used to determine posture (Figure 4).

A sensitivity analysis was performed on the three experimentally-determined parameters of 

the classification algorithm. Window size, upper activity threshold, and lower activity 
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threshold were varied to determine the optimal values described above and to assess the 

sensitivity of the results to changes in those parameters.

Accuracy Evaluation

Classification accuracy for each experiment was calculated by comparing (on a window-by-

window basis) the predicted activity or body posture to that which was recorded by the 

researcher during the experiment. The accuracy was computed as the ratio of the number 

correctly classified windows to the total number of windows that were evaluated. Accuracy 

was calculated for both single- and dual- accelerometer classification algorithms. Confusion 

matrices, a method of describing which postures and activities were misclassified and as 

what posture or activity they were misclassified, were calculated for each subject [36]. A 

mean confusion matrix was also calculated using classifications from all subjects. For the 

second experiment, accuracy in differentiating sit and stand postures and activities was 

quantified by comparing the prediction of the BDT algorithm using only data from the 

pylon-mounted accelerometer to that from both accelerometers.

Results

Eight subjects (six male and two female) were recruited to participate in the first (i.e., lab-

based test sequence) experiment and two subjects (both male) were recruited to participate 

in the second (i.e., multiple day validation) experiment (Table 1). All subjects had a 

unilateral trans-tibial amputation. Subjects’ mean age was 53.0 (SD=11.6), mean weight was 

90.4 kg (SD=11.6 kg), mean height was 178.0 cm (SD=7.2 cm), and mean time since 

amputation was 19.6 years (SD=13.9 years). Subjects were classified as MFCL-2 (n=3), 

MFCL-3 (n=3), and MFCL-4 (n=4) by the study prosthetist based on interview and clinical 

evaluation.

Window lengths from 20 to 80 samples were tested to determine the effect of window length 

on classification accuracy. The sensitivity of both classification algorithms to window length 

was similar. Both algorithms had a maximum classification accuracy at approximately 45 

samples per window (Figure 5).

Accuracies for classifications derived using lower activity thresholds between 0.001 and 

0.02g and upper activity thresholds between 0.01 and 0.2 g were computed. It was found 

that if the activity thresholds were low, accuracy decreased substantially because stationary 

postures (e.g., standing or sitting) were classified as active use (Figure 6). As thresholds 

increased from their optimal value, accuracy dropped off due to periods of activity being 

misclassified as sitting, standing, or doffed. Maximum accuracy was achieved for the pylon 

data classification algorithm using a 0.01 g lower threshold and a 0.1 g upper threshold. 

Maximum accuracy was achieved for the pylon and thigh data classification algorithm using 

a 0.008 g lower threshold and a 0.1 g upper threshold. These optimal thresholds were used in 

all subsequent analyses.

In experiment 1, overall classification accuracy for each subject ranged from 90.1% to 

99.6% when using data from only the pylon-mounted accelerometer (Table 2). Mean 

classification accuracy was 96.6% (SD=3.0%). The most commonly misclassified body 
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posture was sitting, which was typically misclassified as standing. The confusion matrix 

(Table 3) shows the percentage of actions that were classified correctly or misclassified as 

other activities.

The algorithm that used data from both accelerometers had classification accuracy equal to 

or better than the algorithm that used only data from the pylon-mounted accelerometer. 

Average classification accuracy using both accelerometers was 98.5% (SD=2.5%), 1.9% 

greater than that obtained using a single accelerometer (Table 2).

In experiment 2, mean agreement between classification with one and both accelerometers 

was 90.3% (SD=5.2%). Classification of activities for one subject (Subject 9) was 84.7% 

while for the other subject (Subject 10) it was 95.8%.

Discussion

We demonstrated that a prosthesis-mounted ActiLife ActiGraph GT3X+ three-axis 

accelerometer can be used to identify the postures and movement of persons with trans-tibial 

amputation. We also showed that differentiation of sit and stand postures is possible using 

knowledge of the prosthesis doffed with the foot flat on the floor. A custom algorithm 

classified data gathered from users as they performed actions in a free-living situation. In a 

laboratory-based experiment, use of a pylon-mounted accelerometer alone or in conjunction 

with a thigh-mounted accelerometer allowed for classification of movement and posture 

with accuracy greater than 90.1%, which may be deemed acceptable for clinical and/or 

scientific applications.

Although the developed algorithm accurately classified movements and postures in general 

(Table 2), it was challenged in select situations. For example, the algorithm commonly 

misclassified sitting as standing when subjects were seated on a high bench. Although sitting 

accuracy was above 98.2% for low chairs, subjects often oriented their prosthesis at a right 

angle to the ground in higher chairs rather than extending their prosthetic leg forward as they 

did in a lower seat. As such, standing may be overestimated (and sitting underestimated) if 

users sit with their knees flexed at 90 degrees. Use of a second accelerometer may eliminate 

this issue, but may introduce other problems, such as compliance or improper attachment 

and removal. It may be possible to reduce the number of single-accelerometer 

misclassifications by using a probabilistic model to account for transitions between 

activities.

The classification algorithm achieved a comparatively low accuracy of 90.1% for one test 

subject in experiment 1. This subject wore a brace on her contra-lateral limb, which may 

have been a factor in the observed low classification accuracy. Further research may be 

required to investigate the effects of braces and other walking aids (e.g., canes and walkers) 

on the classification algorithm.

This movement and posture classification algorithm was capable of identifying the specified 

behaviors with accuracies of 94.0% with only a single accelerometer for all but one 

prosthesis user (Table 2). It also appears that using a second accelerometer may not be 

necessary for accurate classification, as it increased classification accuracy by an average of 
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only about 1.9% during the laboratory based experiment. Agreement between single 

accelerometer classification and dual accelerometer classification in the second (free living) 

experiment was 84.7-95.8%. The large difference in results between the two subjects is most 

likely due to the subjects standing or sitting in different ways, but more research must be 

done to investigate.

This activity monitoring method may therefore avoid the need for multiple monitors as used 

in other studies [18,23,27,37]. The developed system appears to meet or exceed 

classification accuracies reported in related studies on able-bodied and elderly populations 

[17,18,23,37]. Our system also used fewer sensors than other systems [14,19,37]. Our 

classification system is designed to detect sitting and standing postures as well as 

movement, unlike currently available prosthetic monitors such as the StepWatch3 

(Orthocare Innovations, Mountlake Terrace, WA) and the Patient Activity Monitor 

(Reykjavik, Iceland) [18].

Additional research is needed before this classification strategy can be recommended for 

clinical use. The system must be validated more thoroughly while prosthesis users move 

through their free-living environments. The choice of classification parameters, including 

the upper and lower SMA thresholds and the 320s stationary period, must also be validated. 

One potential limitation in use of the developed posture and activity classification strategy is 

the unknown effect of riding in a motorized vehicle. Further research is required to isolate or 

account for external accelerations to which a user may be subjected while riding in vehicles. 

Additionally, postures (e.g., lying down) or specific activities (e.g., stair climbing) of 

interest to researchers should be explored to ensure they can be appropriately classified with 

this system.

Clinical uses of this technology (e.g., rehabilitation training, componentry evaluation, etc.) 

should be explored to determine if the accuracy of which this system is capable is sufficient 

for such applications. The long battery life and large storage capacity of the ActiGraph 

GT3X+ accelerometer suggest that this sensor may be suitable for long-term data collection. 

Anticipated advances in battery and storage technologies will also likely extend the length of 

time such sensors can be used to monitor subjects. Such research will help to determine if 

prosthesis-integrated monitoring systems can enhance clinical care and improve quality of 

life for prosthesis users.

Conclusion

A classification algorithm was developed to identify periods of prosthesis use and to 

discriminate activities and body postures of individuals with a lower-limb amputation. 

Periods of movement, standing, sitting or a doffed prosthesis were accurately classified in a 

laboratory based experiment more than 92.0% of the time when using data from two body-

mounted accelerometers and more than 90.1% of the time when using data from a single 

accelerometer. These data suggest that activities and body postures can be well classified 

using this classification algorithm and data from a single, commercially-available 

accelerometer. More research is required to validate the system in situations where the 

activity duration and type are not controlled. The authors believe that the information 
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derived from this system will provide valuable clinical insight into how persons with trans-

tibial amputation use their prostheses in their free-living environments and that such 

evidence can be used to facilitate prosthetic treatment and rehabilitation of persons with 

limb loss. It may also be useful for automatic feedback control to adjust prosthesis 

mechanisms based on activity and posture.
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Figure 1. 
Accelerometer attachments and orientations. One accelerometer was connected securely to 

the subject’s pylon with the z-axis facing in the medial-lateral direction and the x-axis facing 

in the long direction. A second accelerometer was attached securely to the subject’s thigh 

with the y-axis facing to the right and the z-axis facing in the anterior-posterior direction.
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Figure 2. 
Plots of signal magnitude area and pylon acceleration signals for different activities and 

postures. If SMA was higher than the upper threshold then the subject was considered 

engaged in movement. If the SMA was between the thresholds, the subject was considered 

stationary. If the SMA was below the lower threshold for over 320 seconds then the 

prosthesis was considered doffed. The above plot shows SMA in dB to accurately show the 

difference between the thresholds. The lower threshold, set to 0.01g corresponds to −40dB 

and the upper threshold of 0.1g corresponds to −20dB.
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Figure 3. 
The binary decision tree algorithm used for activity and posture classification. Thigh 

acceleration signals (dashed line) were considered only in cases where two accelerometers 

were used
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Figure 4. 
Pylon and thigh acceleration signals over a sixty second period when the subject was sitting, 

had doffed their prosthesis and place the foot flat on floor in the reference position, or was 

standing.
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Figure 5. 
Sensitivity of classification accuracy to window length. The classification accuracy reached 

a maximum at 45 samples per window for both algorithms that were tested.
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Figure 6. 
Sensitivity of classification accuracy to activity thresholds. Classification accuracy reached a 

maximum when the lower threshold was 0.01g and the upper threshold was 0.1g. Accuracy 

decreases significantly if lower thresholds are chosen, but higher thresholds result in smaller 

losses in accuracy.
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Table 1

Subject demographics.

Subject Limb
side gender age etiology

years
since

amputation

residuum
length
(cm)

weight
(kg)

height
(cm) MFCL

1 r m 69 trauma 47 15 99.5 182.9 3

2 r m 58 trauma 5 17 80.9 177.8 4

3 l f 56 trauma 9 17 100.0 167.6 2

4 r m 31 Infection 2 16 88.7 170.2 3

5 l m 49 tumor tumor 12 19 108.5 177.8 2

6 l m 49 trauma 22 10 100.0 182.9 4

7 l m 36 trauma 2 23 98.2 190.5 3

8 r f 65 trauma 58 10 78.4 167.0 2

9 r m 65 trauma 11 17 72.7 175.3 4

10 r m 52 trauma 28 19 77.3 188.0 4

Mean - - 53 - 19.6 16.2 90.4 178.0 3.10

SD - - 12 - 18.4 3.7 11.7 7.8 0.83
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Table 3

The confusion matrix for activities in the first experiment shows that there were few unclassifiable activities 

when using only the pylon-mounted monitor. The most commonly misclassified activities were sit and stand. 

The rows of the confusion matrix represent the visually identified activity or posture. The columns represent 

the classifications generated by the binary decision tree (BDT) algorithm.

known\predicted doffed sit stand active

doffed 0.987 0.005 0.005 0.003

sit 0.017 0.919 0.054 0.010

stand 0.003 0.025 0.967 0.005

active 0.000 0.001 0.002 0.997
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