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Abstract

Background

Mid-gestation fetal cutaneous wounds heal scarlessly and this has been attributed in part to

abundant hyaluronan (HA) in the extracellular matrix (ECM) and a unique fibroblast pheno-

type. We recently reported a novel role for interleukin 10 (IL-10) as a regulator of HA synthe-

sis in the fetal ECM, as well as the ability of the fetal fibroblast to produce an HA-rich

pericellular matrix (PCM). We hypothesized that IL-10-mediated HA synthesis was essen-

tial to the fetal fibroblast functional phenotype and, moreover, that this phenotype could be

recapitulated in adult fibroblasts via supplementation with IL-10 via an HA

dependent process.

Methodology/Principal Findings

To evaluate the differences in functional profile, we compared metabolism (MTS assay), ap-

optosis (caspase-3 staining), migration (scratch wound assay) and invasion (transwell

assay) between C57Bl/6J murine fetal (E14.5) and adult (8 weeks) fibroblasts. We found
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that fetal fibroblasts have lower rates of metabolism and apoptosis, and an increased ability

to migrate and invade compared to adult fibroblasts, and that these effects were dependent

on IL-10 and HA synthase activity. Further, addition of IL-10 to adult fibroblasts resulted in

increased fibroblast migration and invasion and recapitulated the fetal phenotype in an HA-

dependent manner.

Conclusions/Significance

Our data demonstrates the functional differences between fetal and adult fibroblasts, and

that IL-10 mediated HA synthesis is essential for the fetal fibroblasts' enhanced invasion

and migration properties. Moreover, IL-10 via an HA-dependent mechanism can recapitu-

late this aspect of the fetal phenotype in adult fibroblasts, suggesting a novel mechanism of

IL-10 in regenerative wound healing.

Introduction
Cutaneous wound repair occurs in a highly orchestrated sequence of events that begins with
hemostasis, proceeds to inflammation and proliferation, and concludes with dermal remodel-
ing. In most postnatal mammals, this process results in the formation of a scar [1]. In contrast,
the mid-gestation mammalian fetus is capable of healing dermal wounds without scar forma-
tion and includes the reconstitution of dermal appendages, which results in wound repair in-
distinguishable from the surrounding uninjured skin [1–5]. Although the distinct healing
properties of fetal wounds have been known for over thirty years, the complete underlying
mechanisms of fetal regenerative healing still remain poorly understood [6]. Previous studies
have demonstrated that fetal wounds have an attenuated inflammatory response [7–11], and
are composed of an extracellular matrix (ECM) with an abundance of the glycosaminoglycan,
hyaluronan (HA) [12–17].

The synthesis and remodeling of the ECM is primarily regulated by dermal fetal fibroblast
(FFB) and it is believed to be an integral contributor to the fetal regenerative phenotype [18].
Fibroblasts synthesize and respond to numerous growth factors and extracellular matrix com-
ponents, which stimulate and permit cellular proliferation and migration. The migration and
proliferation of fibroblasts into the acute postnatal wound is signaled by potent tissue growth
factors including platelet-derived growth factor (PDGF), transforming growth factor (TGF-β),
and basic fibroblast growth factor (bFGF) [19]. After injury, the wound fibroblast number in-
creases via migration from adjacent unwounded tissue, but soon after, fibroblast proliferation
rapidly expand the total pool of fibroblasts. Fibroblasts require a scaffold or matrix to bind to
and move across to enter the acute wound environment and initiate tissue repair. Previous re-
ports have described functional differences between adult fibroblasts (AFB) and fetal fibro-
blasts (FFB) including differences in migratory phenotype [20–22], proliferation [23],
differentiation and cytokine/ ECM synthesis [22, 24, 25] [26]. Further phenotypic differences
between FFB and AFB have not been fully elucidated.

FFB and AFB also differ in their production of hyaluronic acid (HA). HA promotes cell
migration and proliferation early in the repair process. As cells migrate into the wound, they
secrete hyaluronidase and plasminogen activator to degrade the HA and fibrin. As a result,
fibroblast migration is inhibited and fibroblast differentiation and mature connective tissue
synthesis is induced [27]. While both fetal and postnatal skin respond by producing HA
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following injury, the fetus is characterized by elevated and prolonged levels of high molecu-
lar weight hyaluronic acid (HMW-HA) [28, 29]. Compared to AFB, FFB produce more HA
and express higher levels of CD44, the main HA receptor [15]. The high levels of HA in the
fetal ECM may provide a permissive hydrated environment for fibroblasts to migrate
through the wound efficiently, thereby attenuating scar formation. It has been suggested that
the superior migration ability of the FFB may be a direct result of this unique HA-rich extra-
cellular matrix [24, 30].

Our laboratory has previously reported an essential role of the anti-inflammatory cytokine
IL-10 in the fetal regenerative phenotype. Fetal skin has been shown to have higher levels of IL-
10 [31] and fetal wounds in transgenic IL-10-/- mice heal with a scar at a gestational age that
should heal scarlessly [32]. Most convincingly, multiple studies have demonstrated the ability
of IL-10 overexpression to induce scarless healing in postnatal wounds in both animal and
human clinical trials [33–35]. The mechanism of the regenerative effects of IL-10 is considered
to be an attenuation of the inflammatory response. However, we have recently reported an ad-
ditional mechanism for IL-10, beyond its immunoregulatory role, as a regulator of HA synthe-
sis in the fetal extracellular matrix as well as the regulator of FFB’s ability to produce an HA-
rich PCM [36–38]. The role of IL-10 in the functional capabilities of the FFB and the ability of
IL-10 to recapitulate the fetal phenotype in AFB is unknown.

Taken together, we hypothesize that IL-10 mediated HA synthesis is essential to the FFB
functional profile and that recapitulation of this function in AFB can be achieved by the addi-
tion of IL-10. To test this hypothesis, we first defined the functional profile of FFB and AFB by
assaying cellular metabolism, apoptosis, migration and invasion. We then determined which
functional parameters are IL-10 and HA dependent through a series of loss-of-function
experiments using transgenic IL-10-/- fibroblasts and a novel inhibitor of HA synthesis,
4-methylumbelliferone (4-MU). 4-MU is a well-established inhibitor of HA synthesis [39].
4-MU acts as a competitive substrate for UDP-glucuronyltransferase (UGT), an enzyme that
converts Glucosamine to UDP-Glucosamine [40–42]. We and others have previously demon-
strated that 4-MU inhibits HA production by other cell types without increasing cell death
[43]. Lastly, we investigated the role of IL-10 in postnatal fibroblast function by gain-of-func-
tion experiments using the addition of recombinant IL-10 (rIL-10).

Methods

Cell culture
All protocols were approved by the Cincinnati Children’s Hospital Institutional Animal Care
and Use Committee. Primary fetal murine dermal fibroblasts were isolated from mid-gestation
age fetuses (day 14.5) from control C57BL/6J and transgenic IL-10-/- mice (Strain numbers
000664 and 002251 respectively, Jackson Laboratories, Bar Harbor, ME) using standard isola-
tion protocols [44]. Primary adult murine dermal fibroblasts were obtained from control
C57BL/6J adult mice (8–12 weeks). Only dorsal skin between the forelimbs and hind limbs was
excised and used for cell isolation. Cells were plated in BD Falcone cell culture flasks (BD Bio-
sciences, Bedford, MA) without any additional surface coating, and the fibroblast culture was
maintained in Dulbecco’s Modified Eagle’s media (DMEM) (GIBCO, Carlsbad, CA) supple-
mented with 10% bovine growth serum (BGS) (Hyclone, Logan, UT), 1% sodium pyruvate,
penicillin 100 units, streptomycin 100 μg and amphotericin B 0.25 μg (PSF) (Invitrogen, Carls-
bad, CA), and maintained in a humidified chamber at 37°C with 5% CO2. Cells between pas-
sages 5–10 were used for experiments.
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Metabolic Assay
Cell metabolic activity was evaluated using the MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-car-
boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (Roche, Indianapolis, IN). This
is a colorimetric assay which measures cellular metabolic activity through the reduction of tet-
razolium dye, MTS, to formazan via NAD(P)H-dependent cellular oxidoreductase enzymes
[45]. Independent baseline viability curves were generated for fetal C57BL/6J, fetal IL-10-/- and
adult C57BL/6J fibroblast lines to account for variances in mitochondrial dehydrogenase activi-
ty between cell types. Cells were seeded in 96-well plates at a density of 1000, 2000, 3000, 4000,
5000, 7500, 10000 and 15000 cells per well in DMEM with 10% BGS and PSF, and incubated
for 4 hours at 37°C and 5% CO2 to allow fibroblasts to settle and attach. The relative number of
viable cells was determined after 4 hours by the addition of 200 μl MTS solution and absor-
bance read at 490 nm after 2 hours incubation (S1 Fig). All the experimental groups were eval-
uated at 48 hours. Cells were seeded in a 96-well plate at a density of 5000 cells per well in
DMEM with 10% BGS and PSF with or without the treatments (IL-10 (200 ng/ml; PeproTech,
Rocky Hill, NJ) and/or 4-MU (0.3 mM/ml; Sigma-Aldrich Corp. St. Louis, MO). The dose of
IL-10 was determined by performing a dose escalation study using various IL-10 levels and ex-
amining the effect on HA synthase 1 (HAS1) gene expression. 200ng/ml of IL-10 represented
the plateau of the maximal increase in HAS1 gene expression. The dose of 4-MU was chosen
based on previous reports of levels between 0.25–1.5 mM [46–50] achieving efficient and effec-
tive inhibition of HA synthesis. While higher levels of 4-MUmay have a more pronounced ef-
fect on inhibiting HA synthesis in our system, we choose to use a lower dose to reduce any
toxicity. After 48 hours of incubation, 200 μl MTS solution was added and incubated for anoth-
er 2 hours. Absorbance was measured at 490 nm. Cellular activity for each experimental group
was calculated using respective baseline standard curves for each cell type in question. The
assay was performed in triplicates for each experimental group with cells at passage 5 or 6 from
three independent isolations (n = 3).

Cell Apoptosis
FFB and AFB were plated at 7500 cells per well in cell culture chamber slides in DMEM con-
taining 10% BGS and PSF. The chamber slide surfaces were not treated with any additional
coating. Cells were allowed to attach overnight to the slides followed by aspiration of the media
and unattached cells. Fresh DMEM containing 2% BGS and PSF was added to the cultures
with or without IL-10 (200 ng/ml) and/or 4-MU (0.3 mM/ml)). Cells were incubated for 48
hours, after which the chamber slides were washed with PBS and cells were fixed in 4% parafor-
maldehyde for 15 minutes at room temperature. Immunocytochemistry for apoptosis was per-
formed. Endogenous peroxidase activity was blocked with 3% hydrogen peroxide for 10 min at
room temperature. Non-specific protein binding was blocked with 5% normal goat serum in
phosphate buffered saline plus 0.1% Tween-20 (PBSTw). Anti-cleaved caspase-3 (1:400, Cell
Signaling Technology, Danvers, MA) antibody was incubated for 2 hours at room temperature.
Following washes in PBS, slides were incubated in goat anti-rabbit IgG secondary antibody
conjugated with HRP (1:200, Vector Laboratories, Burlingame, CA) for 15 minutes at room
temperature. Slides were washed and developed in DAB and counter stained with nuclear fast
red stain, cleared and mounted. Cells were imaged with bright field microscopy using a Nikon
80i microscope and Nikon Elements Software, v3.2 (Nikon Instruments, Melville, NY). The
rate of apoptosis was calculated as the number of caspase-3 positive cells over the total number
of cells per high-powered field (20X) averaged over ten images. Immunohistochemistry was
performed in triplicate for each experimental group with cells at passage 5 or 6 from three inde-
pendent isolations (n = 3).
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Migration Assay
FFB and AFB were seeded in 12-well cell culture plates without any additional surface coating
at a density of 1.0x106 cells per well in 3 ml DMEM containing 10% BGS and allowed to adhere
overnight. The media was removed and cells were then serum starved in DMEM containing
only 2% BGS for 24 hours prior to the treatment. After this time, treatment and control groups
were established with or without the supplementation of IL-10 (200 ng/ml) and/or 4-MU (0.3
mM/ml) to the conditioned media. A scratch defect was created in the cell monolayer along
the diameter in each group using a sterile pipette tip (20–200 μl tip). Four points were marked
and defined along the scratch defect, which were used as reference points to capture photo-
graphic images to trace defect closure at multiple time points, including immediately following
scratching (0 hours), at 6 hours, 12 hours, and after 24 hours incubation. Phase contrast imag-
ing with an Axiovert 100M inverted microscope (Carl Zeiss, Thornwood, NY) was used to ob-
tain 4x images. The unfilled scratch defect area was measured at each reference point per well,
averaged over 4 fields per well (S2 Fig). Data was presented as extent of wound closure, that is,
the percentage by which the scratch area has decreased at a given time point for each treatment
as compared to the original defect (at 0 hours). All experiments were carried out in triplicate
with cells from three independent isolations (n = 3) and the passage number was similar
amongst the different groups.

Invasion Assay
Cell invasion assays were performed using BD BioCoat Matrigel Invasion Chambers (354480,
BD Biosciences, San Jose, CA) per the manufacturer’s instructions. Briefly, 10,000 cells were
plated inside the matrigel coated chambers in 500 μl of DMEM containing 2% BGS. 750 μl of
DMEM containing 2% BGS was added to the outer chambers. Experimental and control
groups were established with or without the supplementation of IL-10 (200 ng/ml) and/or
4-MU (0.3 mM/ml) to the inner chamber only. After 48 hours, non-invading cells were re-
moved from interior surface of the membrane by scrubbing gently using a cotton-tipped swab.
Each insert was then fixed and stained using Diff-Quik staining (NC9943455, Fisher Scientific,
Waltham, MA) as per manufacturer’s instructions, with a two minute incubation in Diff-Quik
fixative, solution I and solution II. The chambers were then washed in water; the membranes
were gently cutout and mounted onto histology slides with Prolong Gold (Life Technologies,
Carlsbad, CA) for imaging. Micrographs were taken of 10 fields at 40X magnification per sam-
ple (S3 Fig) using a Nikon 80i microscope and Nikon Elements Software, v3.2 (Nikon Instru-
ments, Melville, NY). The number of cells in each field were counted and averaged over the 10
fields for each experimental group, with triplicates performed per treatment or control group
with cells from three independent isolations (n = 3) and the passage number was similar
amongst the different groups.

Statistical Analysis
Statistical significance of the data was evaluated using analysis of variance (ANOVA), followed
by post hoc tests (Tukey) and Student’s t-test when appropriate. MS-Excel (Microsoft, Red-
mond, WA) was used for the purpose.

Results

FFB have a distinct functional profile compared to AFB
To assess for functional differences between FFB and AFB, we compared the rate of metabo-
lism, apoptosis, migration and invasion (Fig 1). Metabolic activity of the fibroblasts was
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assessed using an MTS assay. The increase in the metabolic rate compared to their baseline ac-
tivity at 48 hours was significantly lower in the FFB compare to AFB (41.6±9.8% vs. 183.6
±38.5%, p<0.01) (Fig 1A). Similarly, the rate of apoptosis, evaluated through immunostaining
for caspase-3, demonstrated that FFB have a significantly decreased rate of apoptosis compared
to AFB (7.9±2.2% vs.13.1±1.4%, p = 0.01) (Fig 1B). Next, a scratch wound assay was conducted
to evaluate the differences in rate of fetal versus adult fibroblast migration by comparing the
percent closure of the scratch defect at multiple time points. At 6 hours after creation of the
scratch defect, the difference in the migration between FFB and AFB was not statistically signif-
icant (14.97±5.3% vs. 11.3±5.9, p = ns) (Fig 1C). However, by 12 hours, FFB demonstrated sig-
nificantly increased migration compared to AFB (28.22+8.47% vs. 12.64 ± 9.23, p<0.05)
(Fig 1C). FFB continued to demonstrate increased migration in comparison to AFB even at 24
hours (64.72±9.12% vs. 12.06±10.54%, p<0.01) (Fig 1C). Lastly, the difference in ability of FFB
and AFB to invade through a matrix was evaluated using a matrigel invasion transwell assay.
FFB demonstrated significantly more invasion compared to AFB (8.4±1.4 cells/HPF vs. 3.6±1.1
cells/HPF, p<0.05) (Fig 1D).

Fig 1. Differences in the functional profile of FFB compared to AFB. A) Rate of metabolism, B)
apoptosis, C) migration and D) invasion were compared between FFB and AFB. Bar plots represent average
±SD. Asterisks denote statistically significant differences between the groups (* p<0.05, ** p<0.01; Student’s
t-test; n = 3 per group at similar passage number; each experiment was conducted in triplicates with cells
from independent isolations).

doi:10.1371/journal.pone.0124302.g001
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Together, these results indicate that FFB exhibit a more dynamic phenotype than AFB,
characterized by greater migration and invasion, and less apoptosis than AFB. Notably, because
FFB demonstrate less metabolic activity than AFB, it seems unlikely that the enhanced migra-
tion and invasion seen by AFB is merely a byproduct of greater activation. Also, the fact that
these observations were made in vitro indicated that these attributes were intrinsic to the FFB
themselves, rather than being predicated on their location within fetal tissues.

IL-10 is essential to FFB migration and invasion
The role of IL-10 in the fetal fibroblast functional profile was evaluated by comparing the dif-
ferences in the rate of metabolism, apoptosis, migration and invasion between the control
C57BL/6J FFB and transgenic IL-10-/- FFB of the same gestational age (E14.5). IL-10-/- FFB
demonstrated a significant increase in metabolic rate at 48 hours compared to control FFB
(41.6±9.8% vs. 189.63±38.8%, p<0.01) (Fig 2A). However, the IL-10-/- FFB had a similar rate
of apoptosis to control FFB (7.9+2.2% vs. 5.1+0.4%, p = 0.17) (Fig 2B). Loss of IL-10 resulted in
a significant decrease in migration to close a scratch wound defect in FFB at 12 and 24 hours,
with FFB from control mice having greater “wound closure” rates than FFB from IL-10-/- mice
(12 hours: 28.22+8.47% vs. 14.8+3.0%, p = 0.03; 24 hours: 64.72±9.12% vs. 18.24+3.0%,
p<0.01) (Fig 2C). Control FFB also had significantly greater invasion capability compared to
IL-10-/- FFB (8.4+1.4 cells/HPF vs. 3.7+0.7, p<0.01) (Fig 2D).

These data demonstrate that IL-10 is essential to the dynamic phenotype of FFB described
in Fig 1. Consistent with this, our data indicate that IL-10-/- FFB have a phenotype similar to
the AFB. The rate of metabolic activity, migration and invasion of the IL-10-/- FFB is not statis-
tically different when compared to AFB (S4 Fig).

HA synthesis is essential to FFB migration and invasion
We have previously established that IL-10-/- FFB produce significantly lower levels of HA and
are characterized by reduced HA-pericellular matrix coats in vitro and reduced HA levels in cu-
taneous wounds in vivo [37, 38]. In addition, IL-10 supplementation led to increased HA pro-
duction by AFB [36]. To evaluate the role of HA in the IL-10 mediated fetal functional
phenotype described here, experiments were performed by competitively inhibiting HA
synthase function using 4-MU. This drug was added to cell culture media at 0.3 mM/ml and
the effect on metabolism, apoptosis, migration and invasion was determined. HA synthase in-
hibition resulted in a significantly decreased metabolic activity at 48 hours compared to normal
control FFB (6.3±4.6% vs. +41.6±9.8%, p<0.01) (Fig 2A). Competitive inhibition of HA
synthases has no effect on apoptosis of FFB when compared to normal FFB (7.9+2.2% vs. 8.8
+2.7%, p = 0.64) (Fig 2B). However, compared to control FFB, HA synthase inhibition resulted
in a significant decrease in migration of FFB to close a scratch wound defect at 12 and 24 hours
(@ 12 hours: 28.22+8.47% vs. 6.8+9.3%, p<0.01; @ 24 hours: 64.72±9.12% vs. 7.43+5.9%,
p<0.01) (Fig 2C), as well as a significant decrease in invasion capability (8.4+1.4 cells/HPF vs.
4.4+0.9, p<0.01) (Fig 2D).

These data indicate that inhibition of HA synthesis leads to a loss of the enhanced functional
profile associated with FFB in vitro. Of note, HA synthase inhibition in normal FFB resulted in a
migration and invasion rates similar to IL-10-/- FFB at the same gestation age (Fig 2C and 2D).

IL-10 recapitulates the fetal migration and invasion phenotype in AFB
Our data suggest that the dynamic phenotype associated with FFB was both HA and IL-10 de-
pendent. Therefore, we next sought to evaluate the ability of IL-10 to recapitulate the fetal phe-
notype in AFB. To this end, experiments were performed where AFB were treated with

IL-10 and Hyaluronan Are Essential to Fetal Fibroblast Function

PLOS ONE | DOI:10.1371/journal.pone.0124302 May 7, 2015 7 / 17



recombinant murine IL-10, and similar functional parameters were evaluated. We found that
the metabolic activity of AFB was unchanged with or without IL-10 supplementation (191.8
±32.5% vs. 183.6±38.5%, p = ns) (Fig 3A), and that the increase in metabolic activity of the IL-
10 treated AFB remained significantly higher than that of the FFB at 48 hours (191.8±32.5% vs.
41.6±9.8%, p<0.01) (Fig 3A). Similarly, we found that the rate of apoptosis of AFB was un-
changed with or without IL-10 supplementation (12.2+2.6% vs. 13.1+1.4% (p = ns) (Fig 3B),
and that the IL-10 treated AFB evidenced significantly increased apoptosis than the FFB (12.2
+2.6% vs. 7.9±2.2%, p<0.05) (Fig 3B). However, IL-10 treatment significantly enhanced migra-
tion of the AFB as compared to untreated AFB (@ 12 hours: 21.5+5.7% vs. 12.64±9.23%

Fig 2. The role of IL-10 and hyaluronan in the functional profile of FFB. A) Rate of metabolism, B)
apoptosis, C) migration and D) invasion were compared between FFB and IL-10 knockout FFB to determine if
IL-10 is essential to the functional profile of the FFB, and between FFB and FFB in presence of 4-MU to
determine if hyaluronan is essential to the functional profile of the FFB. Bar plots represent average±SD.
Asterisks denote statistically significant differences between the groups (* p<0.05, ** p<0.01; Student’s t-test
and ANOVA; n = 3 per group at similar passage number; each experiment was conducted in triplicates with
cells from independent isolations).

doi:10.1371/journal.pone.0124302.g002
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(p<0.05); @ 24 hours: 41.04+15.07% vs. 12.06±10.54% (p<0.05)) (Fig 3C). The rate of migra-
tion of IL-10 treated AFB was comparable to FFB migration at 12 and 24 hours (@ 12 hours:
21.5+5.7% vs. 28.22+8.47% (p = ns); @ 24 hours: 41.04+15.07% vs. 28.22+8.47% (p = ns))
(Fig 3C). IL-10 treatment also enhanced invasion of the AFB as compared to the untreated
AFB controls (6.3±0.2 cells/HPF vs. 3.6±1.1, p<0.01) (Fig 3D). Indeed, the invasion of IL-10
treated AFB was brought to levels comparable to the FFB invasion phenotype (6.3±0.2 cells/
HPF vs. 8.4+1.4, p<0.05) (Fig 3D).

These data suggest that IL-10 treatment recapitulates aspects of the fetal—type fibroblast
phenotype in AFB, in terms of migration and invasion, but that other aspects, metabolism and
apoptosis rates were independent of IL-10.

Fig 3. The role of IL-10 in recapitulating the fetal functional profile of AFB. A) Rate of metabolism, B)
apoptosis, C) migration and D) invasion were compared between AFB, AFB+IL-10, and FFB to determine if
IL-10 treatment can recapitulate the fetal functional profile in the FFB. IL-10 treatment recapitulated the
migration and invasion aspects of the fetal-type fibroblast phenotype in AFB, but metabolism and apoptosis
rates were not impacted by IL-10. Bar plots represent average±SD. Asterisks denote statistically significant
differences between the groups (* p<0.05, ** p<0.01; Student’s t-test and ANOVA; n = 3 per group at similar
passage number; each experiment was conducted in triplicates with cells from independent isolations).

doi:10.1371/journal.pone.0124302.g003
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IL-10 mediated recapitulation of fetal functional properties in AFB is HA
dependent
To evaluate the contribution of HA to the IL-10 mediated recapitulation of fetal type migration
and invasion in AFB, we inhibited HA synthase activity using 4-MU. We observed that com-
petitive inhibition of HA synthases negated the increased migration produced by the addition
of IL-10 to AFB at both 12 and 24 hours after the creation of the scratch wound defect (@ 12
hours: 11.98+6.9% vs. 21.51±5.7, p<0.05; @ 24 hours: 11.90±7.5% vs. 41.04+15.07%, p<0.01)
(Fig 4A). Similarly, the increase in invasion with IL-10 supplementation was abrogated with
competitive inhibition of HA synthases in AFB (1.4+0.3 vs. 6.3+0.2, p<0.001) (Fig 4B).

Discussion
We report here the contribution of IL-10 mediated HA production to the fetal phenotype of
FFB. Our work has two major new findings. First, our data supports the hypothesis that the
FFB have a distinct functional profile from AFB and that these phenotypic differences are cell-
intrinsic and independent of the fetal tissue environment, because they are evident in vitro.
FFB demonstrate decreased rates of metabolic activity and apoptosis and increased rates of cel-
lular migration and invasion compared to AFB. The properties of metabolic activity and apo-
ptosis are independent of IL-10 and HA. In contrast, the properties of enhanced migration and
invasion of the FFB are dependent on IL-10 and HA. The differences in the fetal and adult fi-
broblast functional profile may represent an evolutionary strategy to adapt to the environment
[51]. AFB demonstrated higher rates of metabolic activity and apoptosis, and have been previ-
ously demonstrated to have increased inflammatory response when stimulated, compared to
FFB [8, 9]. This may represent an increase in the cellular turnover rate that is in response to a

Fig 4. The essential role of HA in IL-10 mediated recapitulation of the fetal-type migration and
invasion profile in AFB. A) migration and B) invasion were compared between AFB, AFB+IL-10, and AFB
+IL-10 in the presence of 4-MU to determine if IL-10 mediated recapitulation of fetal-type fibroblast migration
and invasion in AFB is HA dependent. The increase in migration and invasion with IL-10 supplementation
was abrogated with competitive inhibition of HA synthases in AFB. Bar plots represent average±SD.
Asterisks denote statistically significant differences between the groups (* p<0.05, ** p<0.01, *** p<0.001;
Student’s t-test and ANOVA; n = 3 per group at similar passage number; each experiment was conducted in
triplicates with cells from independent isolations).

doi:10.1371/journal.pone.0124302.g004
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more challenging and active environmental milieu in adult wounds compared to the protected
environment of the fetus. This difference may serve to achieve wound closure at the expense of
scar formation and reduced wound strength. Conversely, FFB have enhanced migratory prop-
erties which may allow the deposition of a more organized extracellular matrix [4], and with a
previously accepted attenuated inflammatory milieu of the fetus, may lead to decreased scar
formation and regenerative healing.

Second, these data demonstrate that IL-10 treatment can recapitulate the fetal functional
phenotype of enhanced migration and invasion in AFB. There are no prior data that demon-
strate that IL-10 has an effect on fibroblast motility. Our data suggest that this may occur
through an HA synthase-dependent mechanism, which is supported by the abrogation of IL-
10’s positive effects in the presence of the HA synthase inhibitor 4-MU (Fig 5). These data
build on our previous work showing that IL-10, a potent anti-inflammatory cytokine produced
by multiple immune cells early in wound healing [52], plays a critical role in fetal regenerative
wound healing [31, 32]. Mechanistically, it has been shown that IL-10 in the fetus not only reg-
ulates the inflammatory response [32] but also has a novel role in the regulation of the HA-rich
ECM synthesis, suggesting pleiotropic roles of IL-10 in regenerative healing. Furthermore, we
and others have previously demonstrated that overexpression of IL-10 in postnatal wounds
creates an environment permissive of regenerative healing, which was attributed primarily to
the known anti-inflammatory properties of IL-10. Recently, we also have substantial evidence
that demonstrates a largely unknown role of IL-10 treatment in the regulation of the HA-rich
ECM in postnatal wounds [36–38]. The current study extends this previous work by bringing
it to the level of IL-10 and HA effects on specific FFB functions: namely migration and inva-
sion. Moreover, we have demonstrated a novel-role for IL-10 as a regulator of the fetal fibro-
blast functional profile which is dependent on HA synthesis. These data may account at least
in part for the mechanism of how the fetus heals without scar and IL-10’s ability to achieve re-
generative healing in postnatal wounds.

Our work implicates a major role for HA in fetal wound healing. It has been well described
that the fetus is characterized by elevated and prolonged levels of HA which plays a crucial role
in fetal tissue repair [53]. Consistent with this, Caskey RC et al. reported similar findings of de-
creased inflammatory response and regenerative healing in murine cutaneous wounds treated
with lentiviral overexpression of HAS-1 [54]. The large, flexible, hydrophilic molecules of HA
also have the ability to retain water and disperse solutes, and may provide an environment for
fibroblasts to efficiently course through the wound. This in part explains the better migratory
properties of FFB compared to the AFB as observed in the current study. The ability of FFB to
migrate more efficiently compared to AFB has been correlated with fetal ability to synthesize
HA [30]. The role of HA in cell migration is further established by the fact that it has also been
to shown to potentiate migration in various other cells types, including neural crest cells and
cardiac cushion cells [55, 56]. While the mid-gestational fetal skin is rich in IL-10 and HA, as
the development progresses, both IL-10 and HA levels decline [57, 58], which is commensurate
with the onset of a scarring phenotype in the third trimester.

In order to facilitate effective wound healing, fibroblasts must migrate and invade through
various environments, including fibrin clot, the provisional matrix during the proliferative
phase and a more collagenous matrix during remodeling [59]. The initial wave of fibroblasts
migrate into the wound bed in a directed fashion in response to chemokines and growth factors
produced by inflammatory cells, which then proceed to modulate keratinocyte migration and
re-epithelialization through paracrine signaling [60]. In post-natal wounding, these fibroblasts
differentiate into myofibroblasts, characterized by the expression of alpha-smooth muscle
actin, and are capable of exerting contractile forces in the wound. These myofibroblasts are no-
tably absent in fetal wounds that heal without scar [61] and have been shown to have distinct
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Fig 5. FFB have a distinct functional profile from AFB. A) FFB demonstrates decreased rates of
metabolism and apoptosis and increased rates of cellular migration and invasion compared to AFB. IL-10
treatment can recapitulate the fetal functional phenotype of enhanced migration and invasion in AFB. B)
Mechanistically, our previous data has shown that fetal fibroblasts synthesize more HA and HA-rich
pericellular matrices (PCM) compared to AFB. IL-10 in the fetus has a novel role in the regulation of the HA-
rich ECM synthesis. This is the first report that demonstrates that IL-10 mediated HA synthesis regulates the
migration and invasion of the FFB, we posit this regulation, in part, facilitates the fetal regenerative response.
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characteristics when compared to undifferentiated post-natal fibroblasts. For instance, myofi-
broblasts have been demonstrated to interact differently with keratinocytes compared to fibro-
blasts with a unique pattern of cytokine secretion. Further study is necessary to characterize
the effect of IL-10 and HA on myofibroblasts.

Our results suggest that IL-10 mediated HA synthesis is essential to the fetal fibroblast func-
tional profile which can be recapitulated in AFB by addition of IL-10. The precise relation be-
tween IL-10 and HAmolecules has not been completely elucidated. It has been shown that
wounds in IL-10-/- adult mice close significantly faster as compared to wild type controls, albeit
with exaggerated scarring and impaired wound strength [62], while wound treatment with
HMW-HA increases time to completely heal, but results in better tissue repair and restoration
of the repair tissue integrity [63]. Targeted manipulations of IL-10 and HA signaling within fi-
broblasts may represent new therapeutic targets to achieve improved wound healing and re-
duce scar formation.

Conclusions
This study reports the differences between functional profile of the FFB and AFB, some of
which may be crucial for the regenerative wound healing observed in fetal skin. To the best of
our knowledge, this is the first report that demonstrates that IL-10 mediated HA synthesis reg-
ulates the migration and invasion of the FFB and that IL-10 treatment can recapitulate this
functional phenotype in postnatal fibroblasts. This functional role of IL-10 may be essential to
the fetal regenerative phenotype. While these studies have been confined to the skin, under-
standing the fetal regenerative response to injury may have therapeutic implications for any pa-
thology characterized by excessive fibroplasia.

Supporting Information
S1 Fig. Baseline viability curves for different cell types. Cellular metabolic activity was deter-
mined using an MTS assay. To account for the cellular differences between the different cell
types studied, a respective baseline viability curve was developed for each cell type in question.
(TIF)

S2 Fig. Quantification of cell migration using a scratch wound closure assay. Cells were
plated on 12-well cell culture plates. A scratch defect was created in the cell monolayer along
the diameter. Four points were marked along the scratch defect as reference points to capture
photographic images to trace defect closure at multiple time points. Representative 4X images
from each group are shown. The lines represent the scratch defect edges.
(TIF)

S3 Fig. Quantification of cell invasion using a matrigel invasion assay. Cells were plated on
a transwell porous membrane coated with matrigel. The cells that invaded through the matrigel
matrix and passed the porous membrane to the outer side were identified by Diff-quik staining.
Representative high-power (40X) images from stained membranes from each treatment group
are shown. Arrows represent the pores in the membranes.
(TIF)

In comparison to this, AFBs produce less HA and PCM and contribute to scar formation in postnatal wounds.
IL-10 treatment increases HA synthesis and HA-rich PCM in AFB and revert them to a more fetal-type
dynamic phenotype with increased migration and invasion, and recapitulate fetal phenotype in
postnatal wounds.

doi:10.1371/journal.pone.0124302.g005
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S4 Fig. IL-10 is essential to the dynamic phenotype of FFB described in Fig 1. IL-10-/- FFB
have a phenotype similar to the AFB. The rate of metabolic activity (A), migration (C) and in-
vasion (D) of the IL-10-/- FFB is not statistically different when compared to AFB. Bar plots
represent average±SD. Asterisks denote statistically significant differences between the groups
(�� p<0.01; Student’s t-test; n = 3 per group at similar passage number; each experiment was
conducted in triplicates with cells from independent isolations).
(TIF)
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