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Abstract
Plants are highly sensitive to environmental changes and even small variations in ambient

temperature have severe consequences on their growth and development. Temperature af-

fects multiple aspects of plant development, but the processes and mechanisms underlying

thermo-sensitive growth responses are mostly unknown. Here we exploit natural variation

in Arabidopsis thaliana to identify and characterize novel components and processes medi-

ating thermo-sensitive growth responses in plants. Phenotypic screening of wild accessions

identified several strains displaying pleiotropic growth defects, at cellular and organism lev-

els, specifically at high ambient temperatures. Positional cloning and characterization of the

underlying gene revealed that ICARUS1 (ICA1), which encodes a protein of the tRNAHis

guanylyl transferase (Thg1) superfamily, is required for plant growth at high temperatures.

Transcriptome and gene marker analyses together with DNA content measurements show

that ICA1 loss-of-function results in down regulation of cell cycle associated genes at high

temperatures, which is linked with a block in G2/M transition and endoreduplication. In addi-

tion, plants with mutations in ICA1 show enhanced sensitivity to DNA damage. Characteri-

zation of additional strains that carry lesions in ICA1, but display normal growth, shows that

alternative splicing is likely to alleviate the deleterious effects of some natural mutations.

Furthermore, analyses of worldwide and regional collections of natural accessions indicate

that ICA1 loss-of-function has arisen several times independently, and that these occur at

high frequency in some local populations. Overall our results suggest that ICA1-mediated-

modulation of fundamental processes such as tRNAHis maturation, modify plant growth
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responses to temperature changes in a quantitative and reversible manner, in

natural populations.

Author Summary

The increase in average temperatures across the globe has been predicted to have negative
impacts on agricultural productivity. Therefore, there is a need to understand the molecu-
lar mechanisms that underlie plant growth responses to varying temperature regimes. At
present, very little is known about the genes and pathways that modulate thermo-sensory
growth responses in plants. In this article, the authors exploit natural variation in the com-
monly occurring weed thale cress (Arabidopsis thaliana) and identify a gene referred to as
ICARUS1 to be required for plant growth at higher ambient temperatures. Plants carrying
lesions in this gene stop growing at high temperatures and revert to growth when tempera-
tures reduce. Using a combination of computational, molecular and cell biological ap-
proaches, the authors demonstrate that allelic variation at ICARUS1, which encodes an
enzyme required for the fundamental biochemical process of tRNAHis maturation, under-
lies variation in thermo-sensory growth responses of A. thaliana. Furthermore, the authors
discover that the deleterious impact of a natural mutation in ICARUS1 is suppressed
through alternative splicing, thus suggesting the potential for alternative splicing to buffer
the impacts of some natural mutations. These results support that modulation of funda-
mental processes, in addition to transcriptional regulation, mediate thermo-sensory
growth responses in plants.

Introduction
Environmental perturbations can often reveal cryptic phenotypes, which in turn can uncover
mechanisms associated with environmental regulation of growth and development [1–5].
Light and temperature are the two key environmental factors that have major impacts on plant
development. The molecular mechanisms associated with light signaling and its regulation of
plant development is very well studied [6–9]. In contrast, temperature response has been stud-
ied traditionally at extreme conditions characterized by heat shock response or cold stress re-
sponse [10–13]. However, even small differences in ambient growth temperature can have
profound effects on plant growth and development [12, 14, 15].

Vernalization, the acceleration of flowering in response to exposure to winter-like tempera-
tures, is one of the developmental processes well studied at the molecular level [16, 17]. In con-
trast to this response to extreme temperatures, very little is known about the molecular
mechanisms underlying thermo-sensory responses within moderate growth temperature
ranges [14]. Plants grown at higher ambient temperatures display elongated hypocotyls and
petioles, increased leaf serration, as well as early flowering [18–21]. Thermo-sensory responses
have been suggested to involve chromatin remodeling involving histone dynamics [22–24]. For
example, the incorporation and eviction of histone H2A.Z onto the nucleosomes modulated
through the SWR1 complex has been suggested to underlie transcriptional regulation of ther-
mal response in plants [23]. In fact, a direct measurement of transcriptional rates suggested
that there exists a global transcriptional process modulating mRNA abundance by temperature
[25]. However, the presence of H2A.Z in the gene body accounted for only part of this,
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suggesting that other factors contribute to the modulation of plant growth responses to ambi-
ent temperature variation.

In this thermo-sensory transcriptional network, the PHYTOCHROME INTERACTING
FACTOR 4 (PIF4) has been suggested to be a central hub [18,20,26]. It has been shown that ele-
vated ambient temperature leads to an increase in auxin levels, which in itself is under the con-
trol of PIF4 [18,20,26]. Higher temperatures induce flowering and this process has been
suggested to be mediated through PIF4, in addition to other known flowering time related
genes [21,27,28]. Finally, altered regulation of the circadian clock has also been suggested to
play a role in governing the plant growth in different temperatures (thermo-sensory growth re-
sponse) [29]. The evening complex night-time repressor comprised of EARLY FLOWERING 3
(ELF3), ELF4 and LUX ARRYTHMO1 (LUX) is inhibited by higher temperatures, which in
turn can regulate the PIF4 gene, modulating thermal response [29]. Thus an overarching
theme that appears to emerge from these studies is that the thermal response in plants mostly
occurs at a transcriptional level.

Furthermore, natural populations of Arabidopsis thaliana (A. thaliana) exhibit extensive
variation in diverse traits including thermo-sensory growth and developmental responses [30].
The analysis of such natural variation has been very useful in identifying new mechanisms in-
volved in the regulation of development by temperature, as illustrated with our current under-
standing of the vernalization process [17]. The first analyses of natural variation for growth
processes in relation to high ambient temperature have already identified novel factors such as
the ISOPROPYL MALATE ISOMERASE LARGE SUB UNIT1 (IIL1) and the ERECTA genes
[3,31]. In addition, natural variation in thermal response for flowering time has identified
FLOWERING LOCUS M (FLM) as a regulatory factor, whose further analysis has suggested a
role for FLM alternative splicing in the modulation of flowering by ambient temperature
[21,32,33]. Thus our understanding of the molecular mechanisms and pathways that govern
natural variation in thermo-sensory growth responses in plants is just beginning to emerge.

In this study, we have undertaken a natural variation approach and discovered that the
uncharacterized and universally present gene, ICARUS1 (ICA1), is required for plant growth
specifically at high growth temperatures. Plants carrying loss-of-function alleles of ICA1 are se-
verely reduced in growth at high temperatures, but resume growth when reverted to lower ther-
mal regimes. ICA1 encodes a member of the tRNAHis guanylyl transferase (Thg1) superfamily
[34]. The Thg1 superfamily has been of biochemical interest as its members share a striking
structural similarity to nucleic acid polymerases and catalyze the addition of a guanosine resi-
due to the 5’ end of the tRNAHis, in an unusual 3’-5’ phosphodiester bond formation, which is
required for tRNAHis maturation [34, 35]. However, their biological impact at the organismal
level remains to be described. We have characterized the first plant member of this important
class of proteins, demonstrating its biological role at cellular and organismal levels. In addition,
we reveal substantial alternative splicing at the ICA1 locus, which is associated with phenotypic
suppression, indicating that alternative splicing can buffer the potential negative effects of
some natural mutations. Together, our results show that allelic variation of a Thg1 superfamily
gene contributes to the natural variation in the thermo-sensory growth response of plants.

Results

Sij-4 and Don-0 accessions display conditional and reversible growth
phenotypes depending on ambient temperature
To identify factors required for plant growth at high ambient temperatures, we grew a world-
wide collection of A. thaliana accessions at standard (21–23°C) and high temperatures (27–
28°C) and screened for accessions with severe growth defects at higher temperatures. We
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identified the Sij-4 and the Don-0 strains to be highly temperature-sensitive (Fig 1A). At high
temperatures, they both had altered leaf morphology and reduced expansion of leaf blades (Fig
1A). The outgrowth of the first true leaf primordium was delayed and the cell morphology was
also affected (Fig 1B and 1C). The high temperature-induced hypocotyl elongation was not ob-
served in Sij-4 indicating a general impairment of growth at high temperatures (Fig 1D). Plants
grown at intermediate temperatures displayed milder phenotypes indicating a quantitative na-
ture of the growth defects (S1A Fig). In addition, these phenotypes were reversible on thermal
shifts, although reversion was restricted mainly to the newly developed leaves, which initiated
or stop growth after shifting to 21 or 28°C, respectively (Fig 1E). However, when Don-0 plants
were transferred from 28 to 21°C, the oldest existing leaves did not grow, whereas younger ex-
isting leaves grew abnormally, leading to deformed leaves. Similar phenotypes were displayed
by the two accessions throughout development with adult plants showing very reduced growth,
smaller, pale and serrated leaves with reduced expansion of the leaf blade, altered phyllotaxy,
plant architecture and severely impaired seed production (S1A–S1C Fig). Analyses of F1 and F2
populations derived from inter-crossing Sij-4 and Col-0 indicated that the growth defects were
recessive and monogenic (280/1080 plants with growth defects, Chi-square p = 0.482; Figs 1D
and S1E and S2). Further analysis of hypocotyl elongation in the F2 progeny revealed a highly
significant genetic correlation between the leaf and hypocotyl phenotypes (rG

2 = 0.88,
p<0.0001) suggesting a shared genetic basis (S2B Fig).

Positional cloning of ICARUS1 identifies a universal protein required for
plant growth at high temperatures
To identify the underlying genetic loci, we first analyzed F1 plants derived from a cross between
the two sensitive accessions, Don-0 and Sij-4, which failed to complement each other indicat-
ing a common causal locus (S1D Fig). Consistent with this, genetic mapping using Don-0 x Ler
and Sij-4 x Col-0 F2 populations identified an overlapping region located in the middle of chro-
mosome 2 associated with the phenotype (Fig 2A and 2B). To reflect temperature sensitivity,
we named the presumed causal locus within this region ICARUS1 (ICA1, after the Greek myth-
ological character, who flew too close to the sun with wings attached with wax that melted at
high temperature). Additional fine mapping using F2 populations derived from Sij-4 x Col-0
and Sij-4 x Ler crosses, located ICA1 in a 37 or 393 kb genomic region, respectively (Fig 2B).
The two mapping intervals overlap in a 5.9 kb region that contains a single annotated gene,
At2g31580. Two T-DNA insertion lines in At2g31580 (designated as ica1-1 and ica1-2) in Col-
0 background also displayed pleiotropic growth defects depending on temperature similar to
Sij-4 and Don-0, although the exonic insertion line ica1-2 showed stronger phenotypes (Figs
2C and S3A–S3G). Crosses between ica1-1 and Sij-4 failed to complement the pleiotropic
growth phenotypes, indicating that At2g31580 is ICA1 (S3E Fig). This was further supported
by transgenic lines carrying an artificial microRNA against At2g31580 in the Col-0 back-
ground, which displayed the ica1 phenotype only at high temperatures (Figs 2D and S1F–
S1H). Finally, the ica1 phenotype was complemented in transgenic lines carrying the genomic
sequence encompassing the ICA1 locus from either Ler (ICA1gDNA-Ler) or Col-0
(ICA1gDNA-Col) driven by either the endogenous promoter (in Don-0 or ica1-2 background)
or the 35S CaMV promoter (in Sij-4 background) confirming that At2g31580 is the ICA1 gene
(Figs 2E and 2F and S3H).

ICA1 encodes a universal protein belonging to the tRNAHis guanylyl transferase (Thg1)
super-family [34,36]. In contrast to human/yeast orthologs, ICA1 encodes two tandemly repeat-
ed units of Thg1 within the protein and is known to be nuclear localized [37] (S4A Fig). To find
out whether structural or regulatory polymorphisms result in Don-0 and Sij-4 loss-of-function
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alleles, we analyzed their ICA1 sequence and expression levels. We did not find any obvious dif-
ferences in ICA1 expression levels across the accessions at lower temperatures, although there
was a slight increase in ICA1 expression of Sij-4 at higher temperatures (S5A and S5B Fig).
Moreover, sequence analysis revealed a single 1 bp deletion in exon-12 of Don-0 ICA1, which is

Fig 1. ICA1 growth phenotypes in natural accessions of Arabidopsis depend on temperature. (A) 2
week-old Sij-4 and Don-0 plants grown at 23°C and 27°C. (B & C) Scanning electron microscopy of Sij-4
grown at 23°C and 27°C. Differences in cell morphology are visible upon high magnification (C) from day 10.
Scale bar = 50μM. (D) Hypocotyl elongation at 23°C and 27°C under short days (SD) in Col-0, Sij-4 and F1

plants derived from a cross between these two strains. 15–30 plants per genotype were analyzed for
hypocotyl length measurement. *: p<0.0001; ns: not significant in Student t-tests comparing growth at the two
temperatures. (E) Reversibility of the growth phenotype of Don-0 adult plants (4 week-old) in temperature
shift experiments between 21 and 28°C. White arrows indicate new leaves developed after temperature shift.

doi:10.1371/journal.pgen.1005085.g001
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Fig 2. Positional cloning of ICA1. (A) Whole genome scanning of F2 (Sij-4 x Col-0) along with marker positions and recombination frequencies (R.f.) with
ICA1. Map positions are given in Mb. (B) Fine mapping of ICA1 in F2 (Don-0 x Ler-0), F2 (Sij-4 x Col-0) and F2 (Sij-4 x Ler-0) segregating populations. Map
positions and the number of recombinants are indicated above and below the line respectively. An overlapping interval of 5.9 kb contains a single gene. The
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predicted to truncate the C-terminal half (position T490�, Fig 2B). Also, the Sij-4 strain harbors
two nonsynonymous substitutions, of which the serine to proline (S81P) substitution corre-
sponds to the nucleotide-binding site in the yeast homologue (equivalent to H34)[38] (Figs 2B
and S4B). To test if this substitution affects ICA1 function, we generated Sij-4 transgenic lines
carrying a 35S::ICA1gDNA-Col construct with an S81P substitution. Contrary to 35S::ICA1gD-
NA-Col original construct, this transgene was unable to complement Sij-4 growth defects (Fig
2F), indicating that S81P is the causal polymorphism. The locations of both structural mutations
in Don-0 and Sij-4 further suggest that the two ICA1 halves are required for its function and the
structural perturbations might affect either the activity or the stability of ICA1 protein.

Transcriptional and computational analyses suggest impairment of cell
cycle in Sij-4
In order to understand the developmental mechanisms that lead to the growth defects observed
in Sij-4, we analyzed genes that are differentially expressed between Col-0 and Sij-4 at different
temperatures using RNA-seq analysis. In agreement with the temperature-dependence of the
Sij-4 phenotype, more genes were differentially expressed between Col-0 and Sij-4 at 27°C than
at 23°C (5449 versus 1661; S1 and S2 Tables). To assess whether the gene expression is specifi-
cally affected at higher temperatures or the differences in expression levels are more pro-
nounced, we compared the fold changes in gene expression between Col-0 and Sij-4 at 23°C
with the same genes at 27°C. There was a significant correlation between the fold changes, sug-
gesting that the differences in expression levels were exacerbated at 27°C consistent with the
quantitative nature of the observed phenotypes (S6 Fig). Of the 4236 genes differentially ex-
pressed only at 27°C (S3 Table), 2723 (65%) were down regulated in Sij-4 compared to Col-0.
Gene ontology analysis [39,40] detected a highly significant enrichment of genes associated
with cell proliferation, cytokinetic processes and DNA replication suggesting alterations of cell
cycle regulation (S4 and S5 Tables). A comparison with a previously published analysis [41] re-
vealed that the down regulation of gene expression in Sij-4 is more evident in genes expressed
in the S and M phases of the cell cycle (S6 Table).

Since mutations in tRNAHis guanylyl transferase will possibly affect the availability of amino
acyl histidine tRNA to be incorporated into proteins, we reasoned that proteins with higher
number of histidine residues are more likely to be affected by mutations in ICA1. Accordingly,
we undertook a computational analysis of the proteome of A. thaliana to identify processes en-
riched among proteins with relatively high histidine content, which revealed a significant en-
richment for genes associated with cell cycle processes (S7–S9 Tables). Therefore, we
hypothesized that a translational disruption of these proteins and the transcriptional down-
regulation of cell cycle genes could confer the growth defects caused by the ICA1 loss-of-
function alleles.

ICA1-Sij-4 loss-of-function alleles lead to a block in G2/M transition at
high ambient temperatures
To further evaluate the potential impairment of the cell cycle, we tested if the Sij-4 growth phe-
notypes result from defects in cell proliferation using specific cell cycle markers. To this end,
we used a marker line expressing the CyclinB1,1::GFP fusion protein driven by CycB1,1

single nucleotide deletion of Don-0 and the missense mutations between Col-0 and Sij-4 along with the corresponding amino acid changes are given below.
(C) Phenotype of the Col-0 and ica1-2 (Col-0 background) grown at 27°C. (D) Phenotype of 35S::amiR-ICA1 in Col-0 background at 23°C and 27°C. (E)
Phenotypic complementation of Don-0 with an ICA1-Ler transgene at 28°C (4 week-old plants). (F) Transgenic suppression of ICA1-Sij-4 phenotype at 27°C
by 35S::ICA1gDNA-Col and lack of phenotypic suppression with the S81Pmutation.

doi:10.1371/journal.pgen.1005085.g002
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promoter, which is known to be expressed only during the G2/M transition checkpoint and de-
graded at the end of the M phase [42–44]. Analysis of a segregating F2 population derived be-
tween pCycB1;1::CycB1;1-GFP line in Col-0 background and Sij-4, showed that
CyclinB1,1-GFP expression was stronger in plants exhibiting the loss-of function mutant phe-
notype (henceforth referred to as ICA1-Sij-4) compared to normal appearing plants (hence-
forth referred to as ICA1-Col-0) (Fig 3A), which suggests that a fraction of ICA1-Sij-4 cells
may be arrested in the G2/M transition phase. In agreement with this, RNA-seq analysis
showed that 82% (67 out of 82) of the genes with expression that peaked at the G2/M boundary
[45] were significantly down regulated in Sij-4 compared to Col-0 at high temperature (S10
Table). Cells arrested in the G2/M transition often undergo endocycling, and the timing of this
arrest correlates with changes in cell size [46]. Consistent with this, we observed enlarged cells
in Sij-4 plants using the pATML1::mCitrine-RCI2A plasma membrane marker [46] (Fig 3B).
In addition, we used a histone H2B marker [46] (pATML1::H2B-mYFP) to visualize ICA1-
Col-0 and ICA1-Sij-4 nuclei in abaxial epidermal cells, revealing larger elongated nuclei sugges-
tive of increased DNA content (Fig 3C and 3D). This was verified by flow cytometric analyses,
where Col-0 plants showed more than 90% of the cell nuclei with either 2C or 4C DNA content
(Figs 3E and S7). By contrast, Sij-4 plants grown at high temperatures also contained nuclei
with 32C and 64C at the expense of the 2C and 4C cells, which indicates that a significant pro-
portion of the cells have gone through additional DNA replications (Figs 3E and S7). Introduc-
tion of the ICA1-Col-0 allele driven by the 35SCaMV promoter (35S::ICA1gDNA-Col) in Sij-4
suppressed this endoreduplication, hence indicating that it is caused by ICA1 allelic variation
(Figs 3E and S7). Thus, the growth defects observed in loss-of-function alleles of ICA1 at high
temperature are associated with disruptions in cell cycle regulation.

ICA1-Sij-4 cells are hypersensitive to DNA damage
The G2/M cell cycle checkpoint allows the repair of DNA after DNA synthesis and it has been
shown that DNA damage can induce endoreduplication in Arabidopsis [47,48]. Since at 27°C,
a fraction of ICA1-Sij-4 cells were arrested at the G2/M transition coupled with endoreduplica-
tion, we tested if ICA1 loss-of-function alleles affect the capacity of the plants to respond to
DNA damage. To this end, we used the first leaf assay, which is based on the growth arrest of
the first true leaves when subjected to DNA damage during early plant development [49,50].
Seedlings of Sij-4, Col-0, 35S::ICA1gDNA-Col lines in Sij-4 background and 35S::amiR-ICA1 in
Col-0 background were subjected to DNA damage by Bleomycin treatment and evaluated for
their subsequent leaf development at 23°C (Fig 4A). Sij-4 seedlings were hypersensitive to Bleo-
mycin with more than 80% of the plants lacking the first leaves compared to 15% in Col-0. The
Sij-4 hypersensitivity was reduced in the 35S::ICA1gDNA-Col lines in Sij-4 background, while
35S::amiR-ICA1 lines in Col-0 background displayed enhanced sensitivity to Bleomycin (Fig
4B). These results suggest that ICA1 is also affecting the capacity to repair DNA damage, even
under standard growth temperatures.

Natural ICA1 loss-of-function alleles are rare at global and regional
scales but occur at high frequency in some local populations
To assess the population frequency of ICA1-mediated growth alterations in response to tem-
perature, we carried out additional phenotypic screening of a well-characterized regional col-
lection of wild accessions from the Iberian Peninsula, where the accession Don-0 was originally
isolated [51] (S8 Fig). Thus, we identified the Frc-0 strain displaying the temperature-depen-
dent growth defects of Don-0 and Sij-4 (Fig 5A). F1 plants, derived from an Frc-0 x Don-0
cross, showed similar phenotypes to parental lines, indicating that Frc-0 carries an ICA1 loss-
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Fig 3. ICA1 affects cell cycle and endoreduplication. (A) Expression pattern of Cyclin B1;1 in leaves of ICA1-Sij-4 and ICA1-Col plants segregating in an
F2 (Sij-4 x Col-0) population grown at 27°C and analyzed using a pCycB1;1::CycB1;1-GFPmarker. (B) Shape of abaxial epidermal cells of the first leaf from
Col-0 and Sij-4 plants grown at 27°C and visualized using the plasmamembrane marker (pATML1::mCitrine-RCI2A). Magnification: left 10X, right 40X. (C)
Epidermal cell nuclei of the first leaf of ICA1-Sij-4 and ICA1-Ler plants selected in an F2 (Sij-4 x Ler) family grown at 27°C and visualized with the histone H2B
marker (pATML1::H2B-mYFP). Magnification: left 10X, right 40X. (D) Quantification of nuclei sizes measured as mean (± standard deviation) nuclei area in
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of-function allele (Fig 5A). Sequence analysis identified a different SNP in the ICA1-Frc-0 al-
lele, which causes a serine to proline substitution at position 84 (S84P). Since this serine is
highly conserved in most plants and animals and is located close to the similar S81P polymor-
phism of Sij-4, it is likely that this structural mutation causes ICA1 loss-of-function (Fig 5C).
Therefore, we found a total of three different natural ICA1 loss-of-function alleles from geo-
graphically distant locations (S8 Fig). To evaluate if these natural ICA1mutations might be tol-
erated at local population level, we also analyzed allele frequencies in Don-0 and Frc-0
populations from the Iberian Peninsula. Phenotypic and genotypic analyses of several individ-
uals per population showed that Don and Frc locations differed in the amount genome-wide
genetic diversity per population (gene diversity of 0 and 0.05 respectively) and were highly dif-
ferentiated (average number of allelic differences of 0.33±0.02). However, the ICA1-Frc-0 allele
is nearly fixed in Frc location (6 homozygous ICA1-Frc-0 out of 6 individuals) and the ICA1-
Don-0 allele was maintained at high frequency over time, since 7 out of 9 individuals were ho-
mozygous for ICA1-Don-0 allele six years after the initial Don collection [52].

Natural intragenic suppression of mutations through alternative splicing
As a complementary approach to find additional natural ICA1 loss-of-function alleles, we ana-
lyzed ICA1 sequences from the Arabidopsis 1001genome project, which recovered the S81P
and T490� mutations in Sij-4 and Don-0 respectively. In addition, an identical single bp dele-
tion was found in the Petro-1 and Dobra-1 accessions. This mutation is predicted to shift the
reading frame and generate a short truncated protein of 31 amino acids (Fig 5C). While we

ICA1-Sij-4 and ICA1-Ler-0 plants selected in an F2 (Sij-4 x Ler-0) family grown at 27°C. *: p<0.0001 in Student t-test comparing nuclei sizes of both genotypic
classes. (E) Flow cytometry analysis of Sij-4 plants compared with Col-0 and 35S::ICA1gDNA-Col in Sij-4 background at 27°C. Scale bars in A, B andC are
100μM.

doi:10.1371/journal.pgen.1005085.g003

Fig 4. Sij-4 plants are hypersensitive to DNA damage. The sensitivity to DNA damage was assessed by the emergence of first leaves after Bleomycin
treatment, which introduces double strand DNA breaks. (A) First leaf development in 10-day-old Col-0 seedlings grown at 23°C under long days. Examples
for Sij-4 plants with (i) and without (ii) true first leaves are shown. (B) Percentage of plants developing true leaves when treated with Bleomycin (BLEO) or
mock treated. Results from three independent experiments are shown for plants of Col-0, Sij-4, 35S::ICA1gDNA-Col in Sij-4 background and 35S::
amiR-ICA1 in Col-0 background. Error bars indicate standard deviation from three biological replicates with 50 to 100 seedlings each. *: p<0.0001 in Student
t-tests comparing pairs of genotypes.

doi:10.1371/journal.pgen.1005085.g004
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confirmed this deletion through Sanger sequencing, Petro-1 and Dobra-1 failed to display the
described phenotypes associated with ICA1 loss-of-function, suggesting the presence of modifi-
ers (Fig 5B). To assess whether intragenic second-site suppression could account for the lack of
disrupted phenotypes in Petro-1 and Dobra-1, we compared ICA1 cDNAs from these strains
with those of Col-0. We first cloned and sequenced Col-0 cDNAs isolated from 23°C (76
clones) or 27°C (95 clones), which identified a total of 22 different transcripts that uncovered
extensive alternative splicing at ICA1 (S11 Table). Three splice forms, referred to as SF1, SF2
and SF3, accounted for 70% of transcripts (Fig 5D and S11 Table) and no significant difference
was found in the frequency of ICA1 transcripts between the two temperatures (S11 Table and
Fig 5D). Only the SF1 transcript encodes the full length ICA1 protein of 567 amino acids,
whereas transcripts SF2 and SF3 are predicted to generate truncated proteins of 354 or 40

Fig 5. ICA1 allelic variation and intragenic suppression by alternative splicing. (A) Frc-0 displays the growth defect at 27°C and the phenotype of F1

(Frc-0 x Don-0) plants demonstrates that ICA1-Frc-0 is another ICA1 loss-of-function allele. (B) Absence of the growth defects in Petro-1 and Dobra-1
accessions grown at 27°C. (C) Natural polymorphisms of major effect observed in ICA1 and their genomic positions. (D) Proportions of alternatively spliced
transcripts of ICA1 at 23°C and 27°C in Col-0 and at 27°C in Dobra-1 and Petro-1. (E) Schematic representation of the three major splice forms (SF1, SF2
and SF3), along with the predicted stop codons (shown as red lines) in Col-0 and Dobra-1/Petro-1. The single nucleotide deletion of Dobra-1/Petro-1 is
shown as a yellow line, whereas the region affected by alternative splicing is marked in orange color. The predicted protein lengths are indicated in the right
side of panel. SF2 is due to an alternative splice acceptor site for I8 in E9 resulting in a shorter E9 exon; SF3 is due to an alternative splice acceptor site in the
first intron resulting in a partial intron retention (IR).

doi:10.1371/journal.pgen.1005085.g005
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amino acids respectively (Fig 5E). Since the truncated proteins are smaller than that encoded
by Don-0 strain, these are likely to be nonfunctional. SF3 results from the use of an alternative
splice acceptor site in intron 1 leading to the retention of 46 bp, which is predicted to shift the
reading frame and to generate a premature stop codon in exon 2 (Fig 5E). Sequencing of
cDNAs from Dobra-1 (48 clones) and Petro-1 (18 clones) revealed a splicing pattern similar to
Col-0 (S11 Table). The single nucleotide deletion of Dobra-1/Petro-1 leads to a premature stop
codon that would result in a truncated protein of 31 amino acids in transcripts encoded by SF1
and SF2. However, this deletion restores the SF3 open reading frame, resulting in a protein sim-
ilar to that encoded by Col-0 SF1 with the addition of 15 amino acids in the N-terminal exten-
sion of ICA1 (S9 Fig and S11 Table). Thus, alternative splicing enables the natural intragenic
suppression of an otherwise ICA1 loss-of-function allele.

Discussion

Modulation of fundamental processes related to protein biosynthesis
might regulate thermo-sensory growth responses in plants
Temperature regulation of plant growth and development has been described until now mostly
in the context of transcriptional regulation [14,23]. However, in this study we have demon-
strated that ICA1, which encodes a member of the universally present Thg1 superfamily that is
known to be involved in the tRNAHis maturation [34–36], is required for normal plant growth
specifically at high ambient temperatures. Consequently, ICA1 appears to be an essential factor
that is necessary for the regulation of thermo-sensory growth responses in A. thaliana. Both,
natural and induced, ICA1 loss-of-function alleles show strong temperature-sensitive pleiotro-
pic effects on plant growth throughout vegetative and reproductive development. These pleio-
tropic phenotypes are consistent with a function for ICA1 in a basic molecular process like the
tRNAHis maturation mediated by Thg1 proteins. In agreement with this ICA1 function, our re-
sults suggest that most growth defects caused by ICA1 loss-of-function alleles could be due to
indirect ICA1 effects on proteins involved in cell cycle processes and containing high histidine.
In addition, the quantitative and reversible nature of the growth defects caused by ICA1 loss-
of-function alleles further suggest the precise modulation of this fundamental biological pro-
cess depending on temperature. Interestingly, a similarly strong temperature-sensitive growth
phenotype has been previously shown in the Bur-0 strain to be caused by a mutation in the
IIL1 locus that encodes an enzyme involved in leucine biosynthesis [3]. Therefore, thermal re-
sponses in Arabidopsis growth are likely regulated not only by direct transcriptional regulation,
but also by modulation of other fundamental biological processes related to the general regula-
tion of protein biosynthesis.

Thg1 family members share a conserved role in cell cycle regulation
We have characterized at the cellular and organismal level the first plant member of the highly
conserved Thg1 superfamily, ICA1, showing its crucial developmental effects in A. thaliana.
The strong ICA1 pleiotropic effects found at the organism level appear determined by its effect
at the cellular level, since ICA1 is required for plant cell cycle progression and cell division.
Consistent with a role in growth rather than cellular differentiation, the cell division disruption
caused by ICA1 did not affect the general pattern of vegetative and reproductive organs, but
mostly alters their sizes. The yeast homologue of ICA1 (Thg1p) was identified as a protein in-
teracting with the replication origin recognition complex, and defective alleles led to defects in
cell division similar to those that we have found in Arabidopsis [53]. In addition, the human
homologue, referred to as ICF45, was isolated in a cDNA library screen as a factor expressed in
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a cell-division dependent manner [54]. Together these findings indicate that Thg1 proteins dis-
play a conserved function in cell division in most eukaryotes, from uni- to
multicellular organisms.

Despite the primary molecular function described for Thg1 proteins are to provide mature
tRNAHis [36], several observations have suggested additional potential functions. First, the
Thg1 proteins are also present in organisms in which the 5’ G is already encoded in their ge-
nome, suggesting that this enzyme may have another ancestral function [34]. Second, the Thg1
proteins share a striking structural similarity with nucleic acid polymerases [38,55,56]. Third,
they are unique in their ability to use both NTPs and dNTPs as substrates in the 3’-5’ polymeri-
zation reaction that they catalyze [57]. Fourth, Thg1 proteins have been shown to interact with
the origin recognition complex, which has a primary role in DNA replication [53]. Based on
these observations, it has been suggested that Thg1 proteins may also have a function in DNA/
RNA repair [34,58]. In agreement with this hypothesis, ICA1 loss-of-function alleles display
hypersensitivity to DNA damage. Hence, further investigations on the potential role of Thg1
superfamily in DNA/RNA repair and its link to cell cycle regulation are warranted.

Allelic variation at ICA1 accounts for natural variation in thermo-sensory
growth responses of Arabidopsis thaliana
The characterization of Arabidopsis wild accessions revealed several instances of temperature-
sensitive growth arrest, which is largely determined by ICA1 allelic variation. Natural loss-of-
function alleles of ICA1 have arisen multiple times independently, since we found three differ-
ent ICA1 natural loss-of-function mutations in global and regional collections from distinct
geographic locations. Overall, the low frequency of such alleles (3 out of more than 300 ana-
lyzed strains) and their restriction to individual populations, suggest that ICA1 loss-of-function
is deleterious in most natural environments and locations. This is further supported by the
buffering of a potentially deleterious mutation through alternative splicing found in Petro-1
and Dobra-1 accessions. However, ICA1 loss-of-function alleles show high frequency at the
local population level, thus suggesting that they are neutral in these populations. Therefore,
this cryptic genetic variation at ICA1 is, most likely, conditionally neutral under natural condi-
tions. Nevertheless, the quantitative and reversible nature of the temperature dependency, both
at the organism phenotypic level and at the level of gene expression, as well as the presence of
splice variants that encode potentially non-functional proteins in significant proportions
(~70%, S11 Table), also suggest that ICA1 effects might be regulated in a quantitative manner
to modulate plant growth in relation to temperature. Accordingly, we speculate that the fine
tuning of plant growth by the reversible growth arrest caused by natural ICA1 loss-of-function
alleles might reflect an alternative mechanism to respond to abiotic stress, which could be local-
ly advantageous under certain unfavorable high temperatures.

Gene duplication may account for the temperature conditionality of ICA1
phenotypes
Even though ICA1 is required for growth at high ambient temperature but not at standard tem-
perature, the precise mechanism accounting for the temperature sensitivity of the phenotypes
caused by ICA1 loss-of-function alleles remains unknown. It is possible that this conditionality
is an indirect effect derived from the temperature regulation of any downstream molecular
component that is necessary for ICA1 effects on cell division. Alternatively, the temperature
sensitivity of ICA1 effects might be the result of functional divergence of Thg1 proteins, be-
cause A. thaliana carries two genes encoding members of the Thg1 superfamily that may act re-
dundantly [37]. Most likely, this duplication accounts for the viability of ICA1 loss-of-function
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genotypes, in comparison with the lethality of null alleles in the single copy Thg1 gene of yeast
[36]. However, the strong phenotypes of ICA1 loss-of-function alleles at high temperature indi-
cate that the two close paralogs are not fully redundant but show certain functional diversifica-
tion. Future studies will further elucidate the relative contribution of functional divergence of
plant Thg1 encoding genes to the temperature sensitivity of ICA1 growth phenotypes.

Materials and Methods

Plant material and growth conditions
A. thaliana accessions Col-0, Sij-4, Petro-1 and Dobra-1 and the T-DNA insertions lines for
At2g31580 (SALK035242 andWisc DsLox Hs 036_12H, in intron 1 and exon 8, and referred
to as ica1-1 and ica1-2, respectively) were obtained from Arabidopsis Biological Resource Cen-
ter. The Iberian collection used for the phenotypic screen has been previously described [51].
Frc-0 and Don-0 local populations were sampled in this study by collecting six and nine indi-
viduals respectively. Genetic diversity of the two populations was analyzed by genotyping a ge-
nome-wide set of 249 SNPs as previously described. [59].

Plants for phenotyping, crossing and propagation were grown on soil, at 23°C, in growth
rooms under long days (LD, 16-h-light/8-h-dark cycles). Temperature dependent phenotypic
analyses were done under short days (SD, 8-hr-light/16-hr-dark cycles) at 23°C and 27°C (for
most of the experiments with Sij-4) or in long days at 21°C or 28°C (for most of the experi-
ments with Don-0). For DNA damage assays and transcriptome analyses, sterilized seeds were
plated on 0.5x MS media supplemented with 1% sucrose, and plates were placed in growth
chambers (Percival Scientific, Canada) in SD at the required temperatures. For transformation,
to accelerate flowering, Sij-4 was vernalized by imbibing seeds in water and placing them at
4°C in the dark for at least 4 weeks before planting.

For measurements of hypocotyl elongation in response to high temperature, F2 (Sij-4 x Col-
0) seeds were grown at 23°C and 27°C in SD, after 2 days of stratification at 4°C in darkness.
Two week-old F2 seedlings were then collected and photographed. Early leaf development phe-
notype was scored based on ICA1 loss-of-function leaf phenotype and the hypocotyl length
was measured with ImageJ64 for Mac.

Positional cloning
F1 plants derived from reciprocal crosses between Sij-4 and Col-0 were tested at 27°C SD to
evaluate ICA1 phenotype. The initial mapping was performed using 96 plants with ICA1-Sij-4
phenotype collected from a F2 (Sij-4 x Col-0) population and 300 ICA1-Don-0 phenotype
plants derived from a F2 (Don-0 x Ler) family. For fine mapping we used 2500 and 1500 mu-
tant plants respectively from F2 (Sij-4 x Col-0) and F2 (Sij-4 x Ler) populations. Genetic mark-
ers used for fine mapping are given in S11 Table. Analyses of available sequences from Sij-4,
Bur-0, C24, Col-0 and Ler-0 (1001 genome project; http://1001genomes.org/) were performed
to identify nucleotide polymorphisms in mapping intervals. The final mapping interval (5.9
Kb) was then fully sequenced in Sij-4 and a 5.3 Kb region containing the ICA1 gene was se-
quenced in Don-0 to identify sequence variants.

Generation of constructs and transgenic lines
For ICA1 complementation in Sij-4, a construct containing 4.7 Kb genomic DNA encompass-
ing the entire coding region of ICA1 from Col-0 (35S::ICA1gDNA-Col) driven by 35S CaMV
promoter was cloned into the Gateway entry vector pDONR207 and moved into pFK210
through LR reaction. Constructs in pFK210 were then electroporated into Agrobacterium
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tumefaciens GV3001 and transformed into Sij-4 plants by floral dipping [60]. Similarly, com-
plementation of Don-0 and the ica1-2 T-DNAmutant was done using a 5.3 Kb Ler genomic
fragment containing the complete ICA1 coding region and the intergenic adjacent sequences
cloned in the binary vector pCAMBIA3300.

To generate a construct containing the S81P mutation (35S::ICA1gDNA-Col-S81P), the
35S:: ICA1gDNA-Col construct was used as template to introduce a T to C conversion (corre-
sponding to TAIR10 position 13444655, Chr 2) by site-directed mutagenesis, according to
QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies). The 35S::amiR-ICA1
construct was designed using primers listed in S12 Table according to Schwab et al [61] and
cloned into pFK210 for transformation.

Microscopy
To investigate the cell cycle of plants carrying ICA1 loss-of-function alleles, a pCyclinB1;1::
CyclinB1;1-GFP stable transgenic line in Col-0 background (kindly donated by Peter Doerner,
University of Edinburgh, UK) was crossed with Sij4. Two week-old F2 young seedlings derived
from that cross were dissected to obtain shoot apices and early leaves for fluorescence micros-
copy analysis. The pCyclinB1;1::CyclinB1;1-GFP signal was then observed by fluorescence mi-
croscopy and compared between plants showing ICA1-Sij-4 and ICA1-Col phenotypes.
Nucleus and cell sizes of abaxial epidermal cells from the first pair of true leaves were measured
using the nucleus marker pAR98 (pATML1::H2B-mYFP) and the plasma membrane marker
pAR169 (pATML1::mCitrine-RCI2A)[46] respectively. Plasma membrane marker pAR169 was
introduced by plant transformation in Sij-4 and Col-0 plants to compare between ICA1-Sij-4
and ICA1-Col cells. For nuclear marker pAR98, a stable transgenic line in Ler background was
crossed with Sij-4, and the F2 plants were used to compare between ICA1-Sij-4 and ICA1-Ler
cells. The nuclear area was measured manually using more than 15 nuclei per genotype using
ImageJ. The surface of 5,10 or 40 day-old first true leaves was visualized using low-temperature
SEM according to Feiler et al [62].

Flow cytometry
For measurements of DNA content, 3 week-old plants of Col, Sij-4 and 35S::ICA1gDNA-Col in
Sij-4 background grown at 27°C SD, were chopped with a sharp razor, and the nuclei stained
with propidium iodide according to the manufacturer’s protocol (CyStain UV Precise P; PAR-
TEC). The distribution of DNA content in cell populations was then measured with a flow cy-
tometry analyzer LRS IIb (BD Biosciences). The DNA contents of Sij-4 and 35S::ICA1gDNA-
Col in Sij-4 plants were compared against Col-0 and the significance was tested using a Chi-
square test.

DNA damage assays
The first leaf assay was performed to evaluate DNA damage response with Col-0, Sij-4, 35S::
ICA1gDNA-Col in Sij-4 background and 35S::amiR-ICA1 in Col-0 background grown under
23°C SD as described previously [50]. Briefly, four-day-old seedlings were treated with a DNA
damage reagent, the radiomimetic drug Bleomycin (BLEO, EMDMillipore) and the develop-
ment of the first two leaves was analyzed at early stage. Seedlings were transferred to liquid 0.5
MS medium at day 4, either with or without 1μg/ml or 2μg/ml of BLEO. At day 9, BLEO-treat-
ed seedlings were washed with plain liquid 0.5 MS media and transferred back to 0.5 MS plates.
The phenotype of first true leaves was then scored 24 hours later at day 10.
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Analysis of ICA1 expression and alternative splicing
Leaf tissue from 4 week-old plants grown at 23°C and 27°C under SD was collected and RNA
was isolated with Trizol (Invitrogen). RNA was reverse transcribed using the Roche first strand
cDNA synthesis kit (Roche). For ICA1 expression, RNA was isolated from three week-old
plants grown at 23°C and 27°C under long days analyzed by quantitative PCR using primers
described in S12 Table. To analyze alternative splicing, cDNAs were amplified from Col-0,
Petro-1 and Dobra-1 grown at 23°C or 27°C using full length ICA1 coding region primers de-
scribed in S12 Table, and cloned in to pGEM-T vector (Promega). Clones were sequenced with
pUC/M13F and pUC/M13R primers (Macrogen, South Korea). After quality control, se-
quences were obtained for 48–96 clones as shown in S11 Table (76 and 96 colonies from Col-0
23°C and 27°C respectively; 48 colonies from Dobra-1 and 18 colonies from Petro-1 in 27°C
short day). Sequences were aligned with Seqman (DNAStar Lasergene) to identify alternative
splicing at 23°C and 27°C.

RNA-seq transcript analysis
For transcriptome analysis, about one hundred 6-day-old seedlings of Col-0 or Sij-4 grown at
23°C or 27°C in growth chambers (GR-36, Percival Scientific, Canada) in SD were harvested
around 1.00 PM (5 hours after the beginning of the light regime). The RNA was extracted
using Isolate II RNA plant kit (Bioline Pty Ltd, Australia) and RNASeq was done with Illumina
HiSeq2000 platform by BGI (BGI, China). Three and two biological replicates were used for
Col-0 and the Sij-4 samples respectively. Analysis of differential expression between samples
was conducted using the edgeR Bioconductor package [63]. Paired-end Illumina RNA-Seq
reads of 90bp length were aligned to the TAIR10 reference Arabidopsis genome, using the Sub-
read pipeline's subread-align program with its default parameters [64]. Raw abundance counts
of each gene were subsequently produced by running the Subread pipeline’s featureCounts
program on the SAM file produced in the previous step, using the TAIR10 Arabidopsis genome
annotation file (downloaded from TAIR) and the-p and-R parameters to convert mapped
reads to mapped RNA fragments (a pair of forward and reverse reads) and to output read
counting results for each fragment, respectively. The resulting list of abundance counts for
each gene was used as input data to the edgeR differential expression software. Differential ex-
pression was analyzed by the edgeR BioConductor package using the GLM (generalized linear
model) approach, with replicate number added as a factor to the generalized linear model to
mitigate for a batch effect. In case of Col-0, where three replicates were present, 'replicate 1'
and 'replicate 2 or 3' were used as factors, since replicates 2 and 3 were produced at the same
time and were not subject to a batch effect between the two. As per edgeR defaults, p-values for
differential expression were adjusted for multiple hypotheses testing by Benjamini-Hochberg
p-value correction. To analyze the correlation between changes in expression, log fold changes
from the edgeR output of the differential expression between Col-0 and Sij-4 at 23°C and 27°C
was plotted against each other and the Pearson correlation was calculated. There was no differ-
ence in Pearson correlation between genes that were down regulated or up regulated in Sij-4
suggesting that the observed differences are not associated with the polymorphisms between
Sij-4 and Col-0 affecting the alignment of reads.

GO enrichment analysis
The gene lists generated through the analysis of differential expression were used in the online
program GOrilla to identify enriched GO terms [39] and the GOrilla output was summarized
and visualized through REViGO [40]. In order to identify the Histidine rich proteins, we used
three different approaches. First, we used a single list of the Arabidopsis proteins ranked by
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amino acid content (numbers) and analyzed through GOrilla and REViGO as described above.
Second, we took the top 5% of the proteins with high amino acid content and compared this
list using the whole proteome as the background through GOrilla and REViGO. Third, we re-
moved the tail ends of the distribution taking only proteins that fell in between the 10th and
90th percentile in terms of the protein length and analyzed the top 5% of these through a simi-
lar analysis. The analysis was done with all amino acids, with all proteins ranked by length or
with the top 5% of the largest proteins with the entire proteome as controls.

Databases
The sequences of the ICA1 from various strains and the sequences of different splice forms are
available through Genbank accession numbers KP759903-KP759939. The transcriptome data
has been submitted to the NCBI Sequence Read Archive and is available under the accession
number SRP053394.

Supporting Information
S1 Fig. ICA1 phenotypes of adult plants. (A) 5-weeks-old Don-0 plants grown under long-
day at 23°C or 28°C and 9-week-old plants grown at intermediate 26°C. (B) Don-0 plants at re-
productive phase grown at 21 and 26°C. (C) 8-weeks-old Sij-4 plants grown under short-day at
23°C or 27°C. (D) ICA1-Sij-4 phenotype of F1 plants derived from crosses between Sij-4 and
Don-0 grown at 27°C. (E) 4-weeks-old F1 (Sij-4 x Col-0) plants displaying normal development
at 27°C. (F). 4-weeks-old 35S::amiR-ICA1 plants in Col-0 background compared with Col-0 at
27°C. (G) Malformed siliques produced by 35S::amiR-ICA1 plants grown under long-day (LD)
conditions. (H) ICA1 expression level in 5 independent T1 35S::amiR-ICA1 transgenic lines in
Col-0 background, normalized to tubulin. The expression levels are shown relative to that in
Col-0. Error bars indicate ± standard errors based on technical replicates derived from three in-
dependent cDNAs. ���: p<0.0001. Scale bars: A, B & C = 12mm; D & F = 5mm; E = 6mm;
G = 1mm.
(TIF)

S2 Fig. Genetic correlation between leaf and hypocotyl phenotypes in plants segregating
for ICA1. (A) Distribution of hypocotyl length in F2(Sij-4 x Col-0) plants grown at 23°C and
27°C. (B) Distribution of hypocotyl length in F2(Sij-4 x Col-0) grown at 27°C and classified ac-
cording to ICA1 phenotype in leaves. The plants are color coded to differentiate the ICA1-Sij-4
plants (blue) and ICA1-Col-0 plants (red). Short hypocotyls co-segregate with leaf
growth defect.
(TIF)

S3 Fig. T-DNA insertion lines in ICA1. (A) Schematic representation of the T-DNA inser-
tions at the ICA1 locus. (B) Confirmation of T-DNA insertion in ica1-1. Amplified products in
Col-0 and ica1-1 plants with left border T-DNA primer along with primers flanking the inser-
tion site. M:I kb+ ladder (C) Expression of ICA1 in 3 independent ica1-1 plants compared with
Col-0. (D) Phenotypes of ica1-1 T-DNA line grown at different temperature and light condi-
tions. The arrows indicate serrations in first leaves, which are not normally seen. Variable ica1
phenotype is identified in ica1-1 T-DNA lines indicating that this intronic insertion line is a
partial loss-of-function allele. (E) The derived F1 plants between Sij-4 and ica1-1 insertion line
grown at 27°C SD. (F) and (G) Vegetative and reproductive phase phenotypes of ica1-2
T-DNA line compared with Col-0 at 23°C or 27°C, respectively. (H) ica1-2 insertion line and
its transgenic complementation by ICA1-Ler allele at 28°C.
(TIF)
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S4 Fig. ICA1 protein structure in different species. (A) Protein structure and homology be-
tween ICA1 from Arabidopsis and Thg1 from yeast and human. (B) Sequence alignment of the
region containing S81P polymorphism in Sij-4 compared with Col-0 reference strain of Arabi-
dopsis thaliana and the following species: Oryza sativa, Apis mellifera, Drosophila melanoga-
ster, Saccharomyces pombe, Saccharomyces cerevisiae andHomo sapiens. Identical amino acids
are shaded in black, while S81P, equivalent to yeast H34 and to the nucleotide binding site de-
scribed in the human homologue [38] is marked in red color.
(TIF)

S5 Fig. ICA1 expression analysis in natural accessions. (A) Relative ICA1 expression levels in
Ler and Don-0 grown at different temperatures under LD. (B) Relative ICA1 expression levels
in Col-0 and Sij-4 accessions and in ICA1-Sij-4 and ICA1-Col plants selected from a F2 (Sij-4 x
Col-0) grown under SD at 27°C, based on leaf phenotypes. Mean expression levels ± standard
deviations are shown. ACTIN2 and TUB2/3 were used as internal controls for expression analy-
ses in A and B, respectively. Ler and Don-0 did not differ statistically (ns: p>0.05), whereas dif-
ferences between ICA1-Col and ICA1-Sij-4 were significant (�: p<0.05).
(TIF)

S6 Fig. Correlation plots of fold changes in gene expression at 23°C and 27°C. Log fold
changes in gene expression between Col-0 and Sij-4 at 23°C and 27°C are plotted against each
other and the R2 for the correlations are shown for all genes that were detected to be expressed
(All genes) or for genes that are detected to be differentially expressed between Col-0 and Sij-4
at 23°C (DE at 23°C) or 27°C (DE at 27°C). Negative and positive log fold values indicate lower
and higher Sij-4 expression in relation to Col. All correlations are significant (p<0.0001) sug-
gesting that the directionality of changes in gene expression remain the same across tempera-
tures and the differences are more pronounced at one or the other temperature.
(TIF)

S7 Fig. Flow cytometry analysis of DNA content. Proportion of nuclei with different DNA
content in Col-0, Sij-4 and 35S::ICA1gDNA-Col in Sij-4 background. Mean values ± standard
deviations are shown. The p-values obtained through Chi-square analysis are shown above. ns:
p>0.05; �:p<0.0001.
(TIF)

S8 Fig. Geographic distribution of natural ICA1mutations. (A) Distribution of different
ICA1 alleles across the globe. (B) Location of populations with high frequency of ICA1 loss-of-
function alleles from the Iberian Peninsula.
(TIF)

S9 Fig. Restoration of the ICA1 reading frame in Dobra-1/Petro-1 allele. (A) Partial se-
quences of splice form 1 (SF1) and SF2 in Col-0 and Dobra-1/Petro-1 spanning the first intron
and their predicted impacts on protein sequence. The protein sequence resulting from Dobra-
1/Petro-1 allele, carrying a single bp (T) deletion that causes a frame shift, is shown in red. (B)
Sequence of splice form 3 (SF3) in Col-0 showing the frame shift due to the partial intron re-
tention and the corresponding protein sequence. The single bp (T) deletion of Dobra-1/Petro-
1 restores the reading frame in SF3, which results in a protein similar to that encoded by SF1
with 15 additional amino acids. Intron sequences are shown in small blue letters and the addi-
tional amino acids are shown in red.
(TIF)

S1 Table. List of genes detected to be differentially expressed between Col-0 and Sij-4 at
27°C at a false discovery rate of less than 0.05. logFC: log fold change; logCPM: log counts
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per million; LR: likelihood ratio; p-value: p-value for the differential expression; FDR: False
Discovery Rate. A negative log fold change indicates that the gene is down regulated in Col-0
compared to Sij-4 and vice versa.
(XLS)

S2 Table. List of genes detected to be differentially expressed between Col-0 and Sij-4 at
23°C at a false discovery rate of less than 0.05. logFC: log fold change; logCPM: log counts
per million; LR: likelihood ratio; p-value: p-value for the differential expression; FDR: False
Discovery Rate. A negative log fold change indicates that the gene is down regulated in Col-0
compared to Sij-4 and vice versa.
(XLS)

S3 Table. List of genes detected to be differentially expressed between Col-0 and Sij-4 only
at 27°C and not at 23°C at a false discovery rate of less than 0.05. logFC: log fold change;
logCPM: log counts per million; LR: likelihood ratio; p-value: p-value for the differential ex-
pression; FDR: False Discovery Rate. Computational description of genes is also included. A
negative log fold change indicates that the gene is down regulated in Col-0 compared to Sij-4
and vice versa.
(XLS)

S4 Table. GO terms enriched in genes down regulated in Sij-4 at 27°C. p-values are for the
enrichment not corrected for multiple testing. Only the GO-terms that gave p-values beyond
the default threshold of<10–3 are given. FDR q-value is the correction of the above p-values
using Benjamini and Hochberg correction. N: Total number of genes; B: Total number of genes
associated with a specific GO term; n: Number of genes in the target list; b: number of genes in
the intersection. Cell cycle associated GOs are highlighted.
(XLS)

S5 Table. REViGO treemap output for GO terms.Only the GO-terms that gave p-values be-
yond the default threshold of<10–3 are used in this analyses. Table shows the output for genes
that are down regulated in Sij-4 compared to Col-0 specifically at 27°C.
(XLS)

S6 Table. Chi-square analysis of the expression changes among genes associated with differ-
ent phases of cell cycle. Overlapping set of genes that showed differential expression between
Sij-4 and Col-0 at 27°C with the published data from [41], was compared through Chi-square
analysis. The chi-square value was calculated for each phase of the cell cycle by analyzing
whether the up regulation/down regulation in Sij-4 deviates from the expectation based on the
proportion of up regulated or down regulated genes in the total list of differentially
expressed genes.
(XLS)

S7 Table. GO terms enriched among proteins with high Histidine content based on a single
ranked list of proteins sorted by their His content. FDR q-value is the correction of the above
p-value using Benjamini and Hochberg correction. N: Total number of genes; B: Total number
of genes associated with a specific GO term; n: Number of genes in the target list; b: number of
genes in the intersection. Cell cycle associated GOs are highlighted.
(XLS)

S8 Table. REViGO tree map output of the GO terms enriched in proteins with high Histi-
dine content based on a single ranked list of proteins sorted by their His content.
(XLS)

Allelic Variation at ICA1Modulates Thermo-Sensory Growth Response

PLOS Genetics | DOI:10.1371/journal.pgen.1005085 May 7, 2015 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005085.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005085.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005085.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005085.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005085.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005085.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005085.s017


S9 Table. Analysis of biological processes enriched among proteins with high content for
each amino acid. Table shows the top three terms identified through REViGO analysis for GO
terms enriched among proteins with high content of each amino acids. First column represents
the enrichment of processes among the top 5% of proteins with high content for each amino
acid compared with all proteins. The 5% largest proteins are used as a control. The second col-
umn represents the same analysis, but with a ranked list based on the content for each amino
acid. A ranked list of all proteins based on the total length was used here as a control. The last
column represents a similar analysis, but restricted for proteins within the 10th to 90th percen-
tile based on their length. The cell cycle process is highlighted.
(XLS)

S10 Table. Changes in gene expression among genes known to be peaking around the G2/
M transition based on the data from [45]. logFC: log fold change; logCPM: log counts per
million; LR: likelihood ratio, p-value: p-value for the differential expression; FDR: False Discov-
ery Rate.
(XLS)

S11 Table. Alternatively spliced forms of ICA1. Table shows ICA1 splicing forms across dif-
ferent genotypes and temperatures. The actual number of clones and the corresponding per-
centages are given. The predicted lengths of the proteins in Col-0 (SF1 to SF22), Dobra-1
(SF24) as well as Petro-1 (SF1 to SF4) are included. The effect of temperature and accession
was tested through nominal logistic regression with the splice variants (SF1, SF2, SF3 or others)
as the response and the temperature (23°C or 27°C) and/or accession (Col-0 or Dobra-1) as ef-
fects and found to be not significant for either effects or their interaction (p>0.05).
(XLS)

S12 Table. Primers used in this study.
(XLS)
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