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Abstract
Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon

in the human genome. To investigate the interplay between the L1 retrotransposition ma-

chinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chroma-

tography and tandemmass spectrometry to identify cellular proteins that interact with the L1

first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting can-

didate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show

that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in

HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an

engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-

mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1

retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP

co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic

foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the ac-

cumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight

about how ZAPmay inhibit L1 retrotransposition. Together, these data suggest that ZAP in-

hibits the retrotransposition of LINE and Alu elements.

Author Summary

Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotranspo-
son in the human genome. L1s comprise ~17% of human DNA and it is estimated that
an average human genome has ~80–100 active L1s. L1 moves throughout the genome via
a “copy-and-paste”mechanism known as retrotransposition. L1 retrotransposition is
known to cause mutations; thus, it stands to reason that the host cell has evolved mecha-
nisms to protect the cell from unabated retrotransposition. Here, we demonstrate that the
zinc-finger antiviral protein (ZAP) inhibits the retrotransposition of human L1 and Alu
retrotransposons, as well as related retrotransposons from mice and zebrafish. Biochemi-
cal and genetic data suggest that ZAP interacts with L1 RNA. Fluorescent microscopy
demonstrates that ZAP associates with L1 in cytoplasmic foci that co-localize with stress
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granule proteins. Mechanistic analyses suggest that ZAP reduces the expression of full-
length L1 RNA and the L1-encoded proteins, thereby providing mechanistic insight for
how ZAP may restricts retrotransposition. Importantly, these data suggest that ZAP ini-
tially may have evolved to combat endogenous retrotransposons and subsequently was co-
opted as a viral restriction factor.

Introduction
Long INterspersed Element-1 (LINE-1, also known as L1) sequences comprise ~17% of human
DNA and represent the only class of autonomously active retrotransposons in the genome [1].
L1s mobilize (i.e., retrotranspose) throughout the genome via an RNA intermediate by a copy-
and-paste mechanism known as retrotransposition [reviewed in 2]. The overwhelming majori-
ty of human L1s are retrotransposition-deficient because they are 5' truncated, contain internal
rearrangements (i.e., inversion/deletion events), or harbor point mutations that compromise
the functions of the L1-encoded proteins (ORF1p and ORF2p) [1,3]. Despite these facts, it is es-
timated that the average diploid human genome contains ~80–100 L1 elements that are capable
of retrotransposition [4–6]. It is estimated that a new L1 insertion occurs in approximately 1
out of 200 live human births [reviewed in 7]. On occasion, L1 retrotransposition events can dis-
rupt gene expression, leading to diseases such as hemophilia A [8], Duchenne muscular dystro-
phy [9], and cancer [10,11]. Indeed, L1-mediated retrotransposition events are responsible for
at least 96 disease-producing insertions in man [reviewed in 12].

A full-length human L1 is ~6 kb in length and encodes a 5' UTR that harbors an internal
RNA polymerase II promoter that directs transcription from at or near the first base of the ele-
ment [13–15]. The 5' UTR is followed by two open reading frames (ORFs) that are separated
by a short 63 bp inter-ORF spacer, and a 3' UTR that ends in a variable length poly adenosine
(poly(A)) tract [16,17]. The first L1 ORF encodes an ~40 kDa protein (ORF1p) that has nucleic
acid binding [18–22] and nucleic acid chaperone activities [22,23]. The second L1 ORF en-
codes a much larger ~150 kDa protein (ORF2p) [24–26], which exhibits single-strand endonu-
clease (EN) [27] and reverse transcriptase (RT) [28,29] activities. Experiments in cultured cells
have revealed that activities associated with both ORF1p and ORF2p are required for efficient
L1 retrotransposition [27,30].

During a cycle of L1 retrotransposition, a full-length L1 is transcribed and the resultant bicis-
tronic L1 mRNA is exported to the cytoplasm where it undergoes translation. Notably, L1 RNA
is translated in a cap-dependent manner by an unconventional termination-reinitiation
mechanism that facilitates translation of both L1 ORFs [31–34]. Following translation,
ORF1p and ORF2p preferentially bind to their respective encoding L1 mRNA template (a phe-
nomenon known as cis-preference [35,36]) to form an L1 ribonucleoprotein particle (RNP)
[18,19,26,37,38]. Components of the L1 RNP gain access to the nucleus by a process that does
not strictly require cell division [39], although L1 retrotransposition seems to be enhanced in di-
viding cells [40,41]. Once the L1 RNP has entered the nucleus, the L1 RNA is reverse transcribed
and inserted into genomic DNA by a process known as target-site primed reverse transcription
(TPRT) [27,42,43]. Briefly, the ORF2p endonuclease generates a single-strand endonucleolytic
nick in genomic DNA at a thymidine rich consensus sequence (e.g., 5'-TTTT/A, 5'-TCTT/A,
5'-TTTA/A, etc.) [27,44,45]. The resulting 3' hydroxyl group then is used by the ORF2p reverse
transcriptase as a primer to initiate (-) strand L1 cDNA synthesis from the L1 mRNA template
[27,44]. The completion of L1 integration requires elucidation, but likely involves host proteins
involved in DNA repair and/or replication [45–48]. Notably, the L1-encoded proteins also can
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work in trans to retrotranspose other cellular RNAs such as Short Interspersed Elements
(SINEs) (e.g., Alu [49] and SINE-R/VNTR/Alu (SVA) elements [50–52]). L1 also can
mobilize uracil-rich small nuclear RNAs (e.g., U6 snRNA [48,53,54], small nucleolar RNAs (e.g.,
U3 snoRNA [55]), and messenger RNAs, which results in the formation of processed pseudo-
genes [35,36]).

Since L1 retrotransposition can be mutagenic, it stands to reason that the host cell employs
multiple mechanisms to restrict L1 mobilization [reviewed in 56]. For example, cytosine meth-
ylation of the L1 5' UTR suppresses L1 expression [57,58]. In addition, piwi-interacting RNAs
(piRNAs) suppress L1 expression in germ line cells [reviewed in 56, 59, and 60]. Finally, emerg-
ing studies have demonstrated that several cellular proteins restrict L1 retrotransposition.
These proteins include several APOBEC3 family members [61, reviewed in 62], TREX1 [63],
MOV10 [64–66], hnRNPL [67], SAMHD1 [68], RNase L [69], and the melatonin receptor 1
(MT1) [70].

To gain a more complete understanding of the interplay between the L1 retrotransposition
machinery and the host cell, we used liquid chromatography-tandem mass spectrometry
(LC-MS/MS) to identify proteins that co-immunoprecipitate with L1 ORF1p in HeLa cells, rea-
soning that some of these proteins may affect L1 retrotransposition. We next analyzed the ef-
fects of ORF1p-interacting proteins on L1 retrotransposition by overexpressing a subset of
them in a cultured cell retrotransposition assay [30,71]. Here, we report that the zinc-finger an-
tiviral protein ZAP [72] interacts with L1 RNPs and inhibits L1 retrotransposition in cultured
cells. ZAP also inhibits human Alu retrotransposition and the retrotransposition of mouse and
zebrafish LINE elements. Molecular genetic and biochemical analyses suggest that ZAP inhibits
retrotransposition by suppressing the accumulation of full-length L1 RNA and L1-encoded
proteins in the cell.

Results

Identification of L1 ORF1p-interacting proteins
To identify proteins that interact with L1 ORF1p, we transfected HeLa cells with a human L1
construct, pJM101/L1.3FLAG, which expresses a version of ORF1p containing a FLAG epitope
at its carboxyl-terminus (ORF1p-FLAG) (Fig 1A). The pJM101/L1.3FLAG construct exhibits
robust retrotransposition activity in HeLa cells, albeit at a lower efficiency (~50%) than the un-
tagged L1 construct, pJM101/L1.3 (S1A Fig).

Briefly, HeLa cells were transfected with pJM101/L1.3FLAG or pJM101/L1.3, a similar con-
struct that lacks the FLAG epitope sequence (Fig 1A). Whole cell lysates from transfected cells
then were incubated with anti-FLAG coated agarose beads to immunoprecipitate ORF1p-
FLAG (see Methods). Immunoprecipitated fractions were analyzed by SDS-PAGE and proteins
were visualized by silver staining (Fig 1B). The analysis of silver-stained gels revealed a promi-
nent band of ~40 kDa (the theoretical molecular weight of ORF1p) in the pJM101/L1.3FLAG
immunoprecipitation lane (Fig 1B; asterisk), which was not apparent in the pJM101/L1.3 lane.
Western blot analysis with an antibody specific to L1.3 ORF1p (amino acids 31–49) confirmed
the enrichment of ORF1p-FLAG in the pJM101/L1.3FLAG lane (Fig 1C and S1B Fig; bottom
panel). We also observed a complex pattern of bands between ~25 kDa and ~150 kDa that was
present in the pJM101/L1.3FLAG lane that was not evident in the pJM101/L1.3 lane (Fig 1B;
black vertical bars). A similar pattern of protein bands was produced on silver-stained gels
from pJM101/L1.3FLAG immunoprecipitation reactions using different wash and/or lysis con-
ditions (S1B and S1C Fig, respectively).

To determine the identity of cellular proteins that associated with ORF1p-FLAG, the bands
from the lanes corresponding to the pJM101/L1.3FLAG and pJM101/L1.3 immunoprecipitation
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Fig 1. The identification of host proteins immunoprecipitated with L1 ORF1p-FLAG. (A) Schematic of L1 constructs: pJM101/L1.3 expresses a human
L1 (L1.3) [5] containing anmneoI retrotransposition indicator cassette within the L1 3' UTR. The pJM101/L1.3FLAG construct is identical to pJM101/L1.3, but
contains a single FLAG epitope on the carboxyl-terminus of ORF1p. Both constructs were cloned into a pCEP4mammalian expression vector. A CMV
promoter augments L1 expression and an SV40 polyadenylation signal (pA) is located downstream of the native L1 polyadenylation signal. (B) Results of
immunoprecipitation experiments: Whole cell lysates from HeLa cells transfected with either pJM101/L1.3 or pJM101/L1.3FLAG were subjected to
immunoprecipitation using an anti-FLAG antibody. The proteins then were separated by SDS-PAGE, visualized by silver staining, and subjected to LC-MS/
MS. An ~40 kDa band corresponding to the theoretical molecular weight of ORF1p is visible in the pJM101/L1.3FLAG lane (*). Black bars indicate the
approximate molecular weights of the ORF1p-FLAG interacting proteins. Molecular weight standards (kDa) are shown on the left hand side of the gel. (C)
Validation of the ORF1p-FLAG immunoprecipitation: Western blot experiments using an antibody specific to amino acids 31–49 of L1.3 ORF1p verified the
enrichment of ORF1p-FLAG in pJM101/L1.3FLAG, but not pJM101/L1.3 immunoprecipitation reactions. Cells transfected with the pCEP4 vector served as a
negative control. (D) Validation of putative ORF1p-FLAG interacting proteins: Western blot images of the pJM101/L1.3FLAG and pJM101/L1.3
immunoprecipitation (IP) reactions. The pCEP4 lanes denote whole cell lysates derived from HeLa cells transfected with an empty pCEP4 vector (~ 1.0%
input). Primary antibodies used to probe western blots are indicated to the left of the images. Immunoprecipitation reactions were conducted in either the
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experiments were excised from SDS-PAGE gels and submitted for LC-MS/MS (see Methods).
An LC-MS/MS-identified protein was selected as an ORF1p-interacting candidate if it met the
following criteria: 1) the protein was unique to the pJM101/L1.3FLAG immunoprecipitation,
and 2) the protein was identified by two or more unique peptide sequences (peptide error rate
�0.05; protein probability�0.95) (S1 Table and Methods). Thirty-nine ORF1p-interacting pro-
tein candidates were identified that met these criteria (S1 Table).

To confirm the interactions between LC-MS/MS-identified proteins and ORF1p-FLAG, we
evaluated 13 of the 39 ORF1p-FLAG interacting proteins for which there were commercially
available antibodies and/or cDNA expression clones. Western blot analyses confirmed that
these proteins associated with ORF1p-FLAG (Fig 1D). The 13 ORF1p-interacting proteins are
involved in a variety of cellular processes including antiviral defense (ZAP [72] and MOV10
[73]), nonsense-mediated decay (UPF1 [74]), RNA splicing (hnRNPL [75] and DHX9
[76,77]), and transcription (PURA [78], CDK9 [79], and ILF3 [80]). Notably, gene ontology
[81] and global analyses of RNA binding proteins in human cell lines [82,83] revealed that the
13 validated ORF1p-FLAG interacting proteins are RNA binding proteins (RBPs). Consistent-
ly, immunoprecipitation experiments of ORF1p-FLAG conducted in the presence of RNaseA
disrupted the association between ORF1p and each of the 13 ORF1p-interacting proteins (Fig
1D). Thus, the majority of ORF1p-interacting proteins associate with ORF1p by binding to L1
RNA and/or other RNAs present within the L1 RNP [84].

ORF1p-interacting proteins restrict L1 retrotransposition in HeLa cells
We next investigated whether overexpression of nine of the validated ORF1p-interacting pro-
teins, as well as nine unvalidated ORF1p-interacting proteins, affects L1 retrotransposition
[30,71]. Briefly, HeLa cells were co-transfected with a cDNA plasmid expressing one of the
ORF1p-FLAG interacting proteins and an engineered human L1 construct (pJJ101/L1.3; [85])
marked with a blasticidin retrotransposition indicator cassette (mblastI) (Fig 2A and 2B; top
panel). ThemblastI cassette contains an antisense copy of the blasticidin deaminase gene,
which is cloned into the L1 3' UTR. The blasticidin deaminase gene also is interrupted by an in-
tron in the same transcriptional orientation as L1. This arrangement ensures that the blastici-
din deaminase gene is expressed only when the L1 transcript is spliced, reverse transcribed,
and inserted into genomic DNA. The resulting blasticidin-resistant foci then provide a visual,
quantitative readout of retrotransposition activity [30,45].

To monitor potentially toxic side effects of cDNA overexpression, HeLa cells also were co-
transfected in a parallel assay with a cDNA expression vector and a control plasmid (pcDNA6/
TR) that expresses the blasticidin deaminase gene (Fig 2B; bottom panel). Following blasticidin
selection, the resulting foci provide a visual, quantitative readout of the effect of cDNA overex-
pression on colony formation (Fig 2B; bottom panel). This control is essential to determine if a
cDNA affects L1 retrotransposition or cell viability and/or growth.

We co-transfected HeLa cells with each of the 18 ORF1p-FLAG interacting candidates and
pJJ101/L1.3 (Fig 2C). An empty pCEP4 vector that was co-transfected with pJJ101/L1.3 served
as a normalization control (Fig 2B and 2C). As a negative control, we demonstrated that a plas-
mid that expresses the humanized renilla green fluorescence protein (pCEP/GFP) did not affect
pJJ101/L1.3 retrotransposition. As a positive control, we demonstrated that a plasmid that ex-
presses human APOBEC3A (pK_A3A) reduced pJJ101/L1.3 retrotransposition to ~18% of
control levels (Fig 2C), which is in agreement with previous studies [61,86–88]. Four of the

absence (left) or presence (right) of RNaseA (10 μg/mL). The putative cellular functions of the ORF1p-FLAG interacting proteins are indicated on the right
hand side of the blots.

doi:10.1371/journal.pgen.1005121.g001
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Fig 2. Several of the ORF1p-FLAG interacting proteins inhibit L1 retrotransposition. (A) Schematic of the cultured-cell retrotransposition assay: HeLa
cells were transfected with an engineered human L1.3 construct (pJJ101/L1.3) marked with a blasticidin indicator cassette (mblastI). The pJJ101/L1.3
construct was cloned into a pCEP4 mammalian expression vector. A CMV promoter augments L1 expression and an SV40 polyadenylation signal (pA) is
located downstream of the native L1 polyadenylation signal. ThemblastI cassette is cloned into the L1 3' UTR antisense to the L1 and contains a blasticidin
deaminase gene that is disrupted by an intron in the L1 sense orientation. The blasticidin deaminase gene can only be expressed when the L1 transcript is
spliced, reverse transcribed, and inserted into genomic DNA [30,71]. (B) Schematic of the pJJ101/L1.3 retrotransposition screen: To analyze the effect of the
ORF1p-FLAG interacting proteins on L1 retrotransposition, HeLa cells were co-transfected with equal amounts of pJJ101/L1.3 and a cDNA plasmid
expressing one of the candidate ORF1p-FLAG interacting proteins or a pCEP4 empty vector. To control for potential off-target effects, HeLa cells also were
co-transfected with a control plasmid (pcDNA6/TR) that expresses the blasticidin deaminase gene and a cDNA plasmid expressing one of the candidate
proteins or a pCEP4 empty vector. Both assays were subjected to the same blasticidin selection regimen. The resultant number of blasticidin-resistant
colonies in pcDNA6/TR control assays provides a visual, quantitative readout of the effect of cDNA overexpression on the ability of cells to grow in the
presence of blasticidin. (C) Results of pJJ101/L1.3 retrotransposition screen: HeLa cells were co-transfected with pJJ101/L1.3 and each of the indicated
cDNA expressing plasmids. L1 retrotransposition was assayed in 6-well tissue culture plates. The X-axis indicates the cDNA that was co-transfected with
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cDNA-expressing plasmids that we tested (ZAP-S (ZAP short isoform), hnRNPL, MOV10,
and PURA) each reduced pJJ101/L1.3 retrotransposition to less than 50% of pCEP4 control
levels. Notably, ZAP-S (~30% of control), hnRNPL (~30% of control), MOV10 (~13% of con-
trol), and PURA (~10% of control) inhibited retrotransposition to levels similar to that of
pK_A3A (~18% of control) (Fig 2C). By comparison, the majority of the cDNA-expressing
plasmids (14/18) did not significantly affect pJJ101/L1.3 retrotransposition levels (less than
50% inhibition when compared to pCEP4 control levels) (Fig 2C). Thus, the data suggest that
ZAP-S, hnRNPL, MOV10, and PURA inhibit L1 retrotransposition in cultured cells.

ZAP inhibits L1 retrotransposition
The above data (Fig 2C) imply that ZAP, hnRNPL, MOV10, and PURA may function as host
factors that restrict L1 retrotransposition. Notably, hnRNPL [67], MOV10 [64,65], and PURA
[89] previously were shown to inhibit L1 retrotransposition. However, the effect of ZAP on L1
retrotransposition has not been studied; thus, we sought to determine how ZAP inhibits
L1 retrotransposition.

ZAP is a poly (ADP-ribose) polymerase (PARP) family member [90] initially characterized
as an antiviral protein that inhibits murine leukemia virus (MLV) replication in cultured rat
cells [72]. Previous studies identified two human ZAP isoforms that resulted from alternative
splicing [90] (Fig 3A; top panel). The long ZAP isoform (ZAP-L) is 902 amino acids in length
and contains an amino-terminus CCCH zinc-finger domain and an inactive carboxyl-terminal
PARP-like domain [90]. The short ZAP isoform (ZAP-S) is 699 amino acids in length and
lacks the carboxyl-terminal PARP-like domain [90]. The HA-tagged human ZAP-L isoform re-
stricted pJJ101/L1.3 retrotransposition to ~40% of control levels (Fig 3A; black bars) and the
human ZAP-S isoform restricted pJJ101/L1.3 retrotransposition to ~30% of control levels (Figs
2C and 3A; black bars). Notably, overexpression of ZAP-L or ZAP-S did not dramatically affect
the ability of HeLa cells to form blasticidin-resistant colonies in pcDNA6/TR control assays
(Fig 3A, white bars). Western blot control experiments confirmed the overexpression of ectopic
ZAP-L and ZAP-S compared to untransfected controls ~48 hours post-transfection (S2A and
S2B Fig). Thus, ZAP inhibits L1 retrotransposition in cultured cells and the ZAP-L PARP-like
domain is not required for L1 restriction.

Putative ZAP orthologs are present in several species [90]; thus, we tested whether a rat
ZAP cDNA (rZAP) [72], that is orthologous to human ZAP-S [72,90] could restrict pJJ101/
L1.3 retrotransposition. Overexpression of rZAP efficiently reduced retrotransposition to
~40% of control levels (Fig 3A; black bars). Thus, the ability to restrict L1 retrotransposition is
not limited to human ZAP.

The ZAP zinc-finger domain is necessary and sufficient to inhibit L1
retrotransposition
The ZAP zinc-finger domain binds to RNA and is required for antiviral activity [91,92]. To an-
alyze the role of the ZAP zinc-finger domain in L1 restriction, we tested the effects of a truncat-
ed ZAP-S mutant that expresses the ZAP zinc-finger domain (ZAP-S/1-311; containing amino
acids 1–311) as well as a ZAP-S mutant that lacks the zinc-finger domain (ZAP-S/Δ72–372;
lacking amino acids 72–372) in pJJ101/L1.3 retrotransposition assays (Fig 3A; above graph).

pJJ101/L1.3. The bracketed number next to each cDNA indicates the number of independent experiments. The Y-axis indicates L1 retrotransposition activity
after accounting for cDNA toxicity (see Fig 2B). Retrotransposition activity (black bars) is normalized to the pCEP4 empty vector control. Error bars represent
the standard deviation for each set of experiments. The red dotted line indicates a 50% inhibition of retrotransposition activity.

doi:10.1371/journal.pgen.1005121.g002
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Fig 3. ZAP-S inhibits LINE and Alu retrotransposition. (A) ZAP inhibits L1 retrotransposition: Top panel: Schematics of ZAP constructs. Depicted are the
relative positions of the zinc-finger domains (light gray rectangles), cysteine-histidine (CCCH) zinc-fingers (vertical black bars), and PARP-like domain (dark
gray rectangles) of the ZAP-L and ZAP-S expression constructs. ZAP-L contains a carboxyl-terminal HA tag (blue rectangle labeled HA). The ZAP-S/1-311
construct contains an additional 31 amino acids at the carboxyl terminus. The ZAP-S/Δ72–372 harbors a deletion that removes the CCCH zinc fingers (See
Methods). Middle panel: Results of the retrotransposition assays. The X-axis indicates the cDNA co-transfected with pJJ101/L1.3 or pcDNA6/TR. The Y-axis
indicates pJJ101/L1.3 retrotransposition activity (black bars), or pcDNA6/TR colony formation activity (white bars). All values have been normalized to the
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ZAP-S/1-311 restricted retrotransposition to ~10% of control levels (Fig 3A; black bars),
whereas ZAP-S/Δ72–372 had little effect on retrotransposition (~80% of control levels) (Fig
3A; black bars). The overexpression of the wild type or mutant ZAP-S/Δ72–372 expression
constructs did not adversely affect the ability of HeLa cells to form blasticidin-resistant colonies
in pcDNA6/TR control assays (Fig 3A; white bars). Notably, transfection with ZAP-S/1-311 re-
sulted in an ~50% decrease in the ability of HeLa cells to form blasticidin-resistant colonies;
however, this effect has been accounted for through normalization (Fig 2B) and thus is inde-
pendent of the ability of ZAP-S/1-311 to restrict L1 retrotransposition. Indeed, similar off-
target effects have been reported for A3A cDNA expressing plasmids in HeLa cell-based L1 ret-
rotransposition assays [61]. Western blot control experiments revealed that wild-type ZAP-S
and the two mutant ZAP-S isoforms were expressed at similar levels ~48 hours post-transfec-
tion (S2B and S2C Fig). Thus, the ZAP zinc-finger domain is necessary and sufficient to inhibit
L1 retrotransposition.

ZAP restricts the retrotransposition of various non-LTR retrotransposons
To determine if ZAP-S was able to restrict other non-long terminal repeat (non-LTR) retro-
transposons, we tested whether ZAP-S expression affected human Alu retrotransposition.
Unlike L1, Alu is a 7SL-derived non-autonomous retrotransposon that does not encode its
own proteins [93]. Instead, Alu elements must parasitize L1 ORF2p in trans to mediate their
retrotransposition [49]. Briefly, HeLa cells were co-transfected with a full-length L1 element
(pJM101/L1.3Δneo), an Alu retrotransposition reporter plasmid (pAluneoTet), and a ZAP-S ex-
pression plasmid. Notably, ZAP-S potently reduced Alu retrotransposition to ~25% of control
levels (Fig 3B). In contrast, the expression of the L1 restriction-deficient ZAP-S/Δ72–372 mu-
tant did not negatively affect Alu retrotransposition (Fig 3B). Thus, ZAP-S is able to restrict the
mobility of the two most prolific retrotransposons present in the human genome.

We next tested if human ZAP-S could restrict the retrotransposition of a natural mouse L1
(pGF21) [94], a zebrafish LINE-2 (pZfL2-2) [95], or a synthetic mouse L1 (pCEPsmL1) [96]
that has been extensively mutagenized to alter 24% of the nucleic acid sequence without dis-
rupting amino acid sequence. Human ZAP-S inhibited the retrotransposition of human L1
(pJM101/L1.3; ~43% of control levels), natural mouse L1 (pGF21; ~24% of control levels), zeb-
rafish L2 (pZfL2-2; ~19% of control levels), and synthetic mouse L1 (pCEPsmL1; ~70% of
control levels) (Fig 3C). The restriction-defective ZAP-S mutant, ZAP-S/Δ72–372, did not sig-
nificantly affect the retrotransposition activity of these retrotransposons (Fig 3C). Notably, the

pCEP4 empty vector control (100%). The numbers above the bar graphs indicate the number of independent experiments performed with each cDNA
expression construct. Error bars represent standard deviations. Bottom panel: A single well of a representative six-well tissue culture plate, displaying
blasticidin-resistant colonies from the pJJ101/L1.3 retrotransposition assay (top, black rectangle) and the pcDNA6/TR control assay (bottom, white
rectangle). (B) ZAP inhibits Alu retrotransposition: The X-axis indicates the cDNA co-transfected with pJM101/L1.3Δneo and pAluneoTet. The Y-axis
indicates the retrotransposition efficiency. All values are normalized to the pCEP4 empty vector control (100%). Control assays using a plasmid that
expresses the neomycin phosphotransferase gene (pcDNA3) were conducted similarly to pcDNA6/TR control assays as outlined in Fig 2B. Representative
images of G418-resistant HeLa foci from the Alu retrotransposition assay are shown below the bar graph. The results are the average of three independent
experiments. Error bars indicate standard deviations. (C) ZAP inhibits the retrotransposition of mouse and zebrafish LINE elements. The X-axis indicates the
cDNA that was co-transfected with human L1 (pJM101/L1.3 (black bars)), mouse L1 (pGF21 (dark grey bars)), zebrafish L2 (pZfL2-2 (light grey bars)), or
synthetic mouse L1 (pCEPsmL1 (white bars)). The Y-axis indicates the retrotransposition efficiency. Representative images of G418-resistant HeLa cell foci
are shown below the bar graph. Control assays using a plasmid that expresses the neomycin phosphotransferase gene (pcDNA3) were conducted similarly
to pcDNA6/TR control assays outlined in Fig 2B. All values are normalized to the pCEP4 empty vector control (100%). Error bars indicate standard
deviations. (D) The depletion of ZAP enhances L1 retrotransposition: Top panels: Western blots of whole cell lysates derived frommock HeLa cell
transfections or HeLa cells transfected with indicated siRNAs. Blue arrows point to the approximate location of ZAP-L and ZAP-S. Bottom panel: The bar
graph depicts pLRE-mEGFP1 retrotransposition activity following siRNA treatment. The X-axis indicates the siRNA. The Y-axis indicates the pLRE-mEGFP1
retrotransposition efficiency normalized to the control siRNA (set to 1). Retrotransposition efficiency values are reported as the mean from four independent
experiments. Error bars indicate the standard deviations. Asterisks indicate statistically significant differences from the control siRNA experiments (two-tailed
t test/p<0.05).

doi:10.1371/journal.pgen.1005121.g003
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milder inhibition of ZAP-S on pCEPsmL1 may be due to the elevated efficiency of pCEPsmL1
retrotransposition, the increased steady-state level of pCEPsmL1 mRNA and proteins, and/or
the GC-rich nature of pCEPsmL1 [96]. Thus, ZAP-mediated restriction of retrotransposition is
not specific to human non-LTR retrotransposons.

Depletion of endogenous ZAP enhances L1 retrotransposition
To test if endogenous ZAP restricts L1 retrotransposition, we used small interfering RNA
(siRNA) to deplete endogenous ZAP from HeLa cells. Following siRNA treatment, cells were
transfected with an L1 plasmid (pLRE3-mEGFPI) tagged with an EGFP indicator cassette
(mEGFPI), which allows retrotransposition activity to be detected by EGFP fluorescence [97].
As a negative control, HeLa cells were transfected with the L1 retrotransposition-defective plas-
mid pJM111-LRE3-mEGFPI, which carries two missense mutations that adversely affect
ORF1p RNA binding [22,30,98]. Treatment of HeLa cells with an siRNA pool against ZAP re-
sulted in an ~80% and ~ 90% reduction of ZAP-L and ZAP-S protein levels, respectively, when
compared to HeLa cells treated with a non-targeting control siRNA pool (Fig 3D; top left
panel). ZAP siRNA treatment led to an approximately two-fold increase in pLRE3-mEGFPI
retrotransposition activity when compared to assays conducted in the presence of a control
siRNA (Fig 3D; bottom panel and S2D Fig). We further demonstrated that siRNA-mediated
depletion of endogenous MOV10 (Fig 3D; top right panel) from HeLa cells resulted in an ap-
proximately two-fold increase in pLRE3-mEGFPI retrotransposition (Fig 3D; bottom panel
and S2D Fig), which is in agreement with previous studies [64,65]. These data suggest that en-
dogenous ZAP may restrict L1 retrotransposition.

ZAP-S inhibits the accumulation of full-length LINE-1 mRNA
To investigate how ZAP restricts L1 retrotransposition, we analyzed the effect of ZAP-S expres-
sion on the accumulation of the L1 RNA. HeLa cells were co-transfected with pJM101/
L1.3Δneo and either ZAP-S or ZAP-S/Δ72–372. Polyadenylated RNA from whole cell extracts
then was analyzed by northern blot using RNA probes complementary to sequences within the
L1.3 5' UTR (5UTR99) and ORF2 (ORF2_5804) (Fig 4A). Co-transfection with ZAP-S resulted
in a reduction of full-length polyadenylated L1 RNA levels (~13% of pCEP4 control) compared
to cells co-transfected with either the restriction-defective ZAP-S/Δ72–372 (~47% compared to
pCEP4 control) or an empty pCEP4 control vector (Fig 4B; black arrow in blot; black bars in
graph). Interestingly, ZAP-S expression did not have a pronounced effect on the accumulation
of smaller L1 RNA species, which may have resulted from cryptic splicing and/or premature
polyadenylation (Fig 4B; top panel: blue and yellow arrows, bottom panel: blue and yellow
bars) [99–101]. Finally, control experiments revealed that ectopic ZAP-S expression did not af-
fect endogenous actin RNA levels (Fig 4B). Thus, ZAP-S expression reduces the accumulation
of full-length L1 mRNA in cultured cells.

ZAP-S inhibits the accumulation of ORF1p and ORF2p
We next examined the effect of ZAP-S expression on the accumulation of ORF1p and ORF2p.
We co-transfected HeLa cells with either ZAP-S or ZAP-S/Δ72–372 and the L1 plasmid,
pJBM2TE1, which expresses an L1.3 element marked with a T7 gene10 epitope tag on the car-
boxyl-terminus of ORF1p and a TAP epitope-tag on the carboxyl-terminus of ORF2p (Fig
4C). Following co-transfection, HeLa cells were treated with puromycin to select for cells ex-
pressing pJBM2TE1. Both whole cell lysates (WCL) and RNP fractions were collected 5 days
post-transfection and subjected to western blot analyses to monitor ORF1p and ORF2p
expression levels.
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Fig 4. The effect of ZAP-S on L1 RNA and L1 protein expression. (A) Schematic of pJM101/L1.3Δneo: Bold black lines indicate the approximate location
of probes (5UTR99 and ORF2_5804) used in the northern blot experiments. pJM101/L1.3Δneo is expressed from a pCEP4 vector. A CMV promoter
augments L1 expression and an SV40 polyadenylation signal (pA) is located downstream of the native L1 polyadenylation signal. (B) Results of northern
blots: Top panel: HeLa cells were co-transfected with pJM101/L1.3Δneo and either the indicated ZAP-S expression plasmids or an empty pCEP4 vector.
Northern blot images depict the effect of ZAP-S overexpression on polyadenylated L1 RNA levels. The constructs transfected into HeLa cells are indicated
above each lane. UTF indicates untransfected HeLa cells and serves as a negative control. Probes (5UTR99 and ORF2_5804) are indicated in the top left
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Expression of ZAP-S led to a decrease in the level of ORF1p and ORF2p in both WCL and
RNP fractions, whereas the expression of the restriction-defective ZAP-SΔ/72-372 mutant or
an empty pcDNA3 vector did not dramatically affect ORF1p or ORF2p expression levels (Fig
4D). The reduction in ORF1p and ORF2p was most evident in the RNP fraction, likely because
both ORF1p and ORF2p are enriched in RNPs [19,26,37,38,102]. Control experiments revealed
that ZAP-S expression did not affect the level of eIF3 protein (Fig 4D) and that ZAP-S and
ZAP-S/Δ72–372 are expressed at similar levels in whole cell lysates (Fig 4D: top WCL panel).
By comparison, ZAP-SΔ/72-372 is present at much lower levels in the RNP fraction compared
to wild-type ZAP-S (Fig 4D; bottom RNP panel), suggesting that the zinc-finger domain is re-
sponsible for ZAP-S localization to the RNP fraction.

To determine if ZAP-S affects the expression of non-L1 proteins, we examined the effect of
ZAP-S on EGFP expression. We co-transfected ZAP-S with an L1 plasmid (pLRE3-EF1-
mEGFPΔIntron) [103] that expresses the L1 element, LRE3 and an intact copy of the EGFP
gene (S3A Fig). In this case, LRE3 and EGFP are under the control of convergent promoters,
which allows the simultaneous expression of LRE3 and EGFP from pLRE3-EF1-mEGFPΔIn-
tron. Thus, EGFP expression is not dependent on retrotransposition. Forty-eight hours post-
transfection, flow cytometry was used to isolate EGFP-positive cells (i.e., cells expressing
pLRE3-EF1-mEGFPΔIntron) (S3C Fig). Western blotting demonstrated a marked reduction in
ORF1p when compared to EGFP levels in cells that were co-transfected with ZAP-S (S3B Fig).
By comparison, ORF1p and EGFP were present at comparable levels in cells that were co-
transfected with either an empty pCEP4 vector or the restriction-deficient ZAP-SΔ/72-372 mu-
tant (S3B Fig). Control experiments revealed that ZAP-S did not affect endogenous tubulin
protein levels (S3B Fig). Thus, ZAP-S expression appears to preferentially restrict the expres-
sion of L1 ORF1p.

ZAP co-localizes with ORF1p and L1 RNA in the cytoplasm
ORF1p, ORF2p, and L1 RNA form RNP complexes that appear as discrete cytoplasmic foci
when visualized by fluorescence microscopy [25,26,104]. Notably, previous studies have shown
that ZAP predominantly is localized in the cytoplasm [105] and that ZAP antiviral activity
also is localized to the cytoplasm [72]. To determine if ZAP co-localizes with ORF1p, we co-
transfected HeLa cells with pJM101/L1.3Δneo and a plasmid that expresses a carboxyl-
terminus turbo-GFP tagged ZAP-S protein (ZAP-S-tGFP). Control experiments showed that
ZAP-S-tGFP restricted pJJ101/L1.3 retrotransposition to ~55% of control levels (S4A Fig).
Confocal fluorescence microscopy revealed that ORF1p and ZAP-S-tGFP co-localized in dis-
crete cytoplasmic foci in ~68% of cells that co-expressed both ORF1p and ZAP-S-tGFP (Fig
5A). To test if transfected ORF1p co-localizes with endogenous ZAP, we transfected HeLa cells
with pAD2TE1, which expresses a human L1 (L1.3) containing a T7 gene10 epitope-tag on the

corner of the respective blots. The black arrow indicates the position of the full-length L1 RNA. The blue and yellow arrows indicate shorter L1 RNA species.
The experiment was repeated three times with similar results. Actin served as a loading control. RNA size standards (~kb) are shown at the right of the blot
image. Bottom panel: Quantification of northern blot bands. The X-axis indicates the cDNA expression construct that was co-transfected with pJM101/
L1.3Δneo. The Y-axis indicates relative band intensity normalized to pCEP4 controls (100%). Black bars represent the full-length L1 band. Blue and yellow
bars represent the smaller L1 RNA bands, corresponding to the colored arrows, respectively, in the top panel. The results are the average of three
independent experiments. Error bars represent standard deviations. (C) Schematic of pJBM2TE1: The construct contains a T7 epitope tag on the carboxyl-
terminus of ORF1p and a TAP tag on the carboxyl-terminus of ORF2p. AnmneoI retrotransposition indicator cassette is present in the 3’ UTR. pJMB2TE1 is
expressed from a pCEP4 backbone, which has been modified to contain a puromycin selectable marker. A CMV promoter augments L1 expression and an
SV40 polyadenylation signal (pA) is located downstream of the native L1 polyadenylation signal. (D) ZAP-S decreases the accumulation of the L1-encoded
proteins: HeLa cells were co-transfected with pJBM2TE1 and the plasmids indicated above each lane. UTF indicates untransfected HeLa cells and serves as
a negative control. Depicted are western blots using whole cell lysates (WCL, top panel) or RNP fractions (RNP, bottom panel). Blue arrows indicate the
positions of ORF2p, ORF1p, ZAP-S, and ZAP-S/Δ72–372. The eIF3 protein is used as a loading control. Representative images are shown. The experiments
were repeated three times with similar results.

doi:10.1371/journal.pgen.1005121.g004
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Fig 5. The co-localization of ORF1p and ZAP in cytoplasmic foci. (A) Co-localization of transfected
ORF1p and ZAP-S in HeLa cells: ORF1p (red) expressed from pJM101/L1.3Δneo co-localizes with ZAP-S-
tGFP (green). The experiment was repeated five times with similar results. (B) Co-localization of transfected
ORF1p with endogenous ZAP in cytoplasmic foci in HeLa cells: ORF1p-T7 (green) expressed from
pAD2TE1 co-localizes with endogenous ZAP (red). The experiment was repeated five times with similar
results. (C) Co-localization of transfected ZAP-S-tGFP with endogenous ORF1p in cytoplasmic foci in PA-1
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carboxyl-terminus of ORF1p [26]. Confocal microscopy revealed that endogenous ZAP co-
localized with ORF1p-T7 in cytoplasmic foci in ~91% of cells that contained ORF1p-T7 foci
(Fig 5B). Next, to test if endogenous ORF1p co-localizes with transfected ZAP-S, we transfected
PA-1 cells (a human embryonic carcinoma-derived cell line that expresses endogenous ORF1p
[106,107]) with ZAP-S-tGFP. Confocal microscopy demonstrated that endogenous ORF1p co-
localized with ZAP-S-tGFP in ~89% of PA-1 cells that expressed ZAP-S-tGFP foci (Fig 5C).
Thus, ORF1p and ZAP generally localize to the same region of the cytoplasm.

To test if the ZAP-S zinc-finger domain is critical for the co-localization of ZAP-S with
ORF1p, we co-transfected HeLa cells with pJM101/L1.3Δneo and a tGFP-tagged ZAP-S mutant
that expresses the ZAP-S zinc-finger domain (ZAP-S/Δ310-645-tGFP; lacking amino acids
310–645), or a ZAP-S mutant that lacks the ZAP-S zinc-finger domain (ZAP-S/Δ72-372-tGFP;
lacking amino acids 72–372) (S4A Fig). In control experiments, ZAP-S/Δ310-645-tGFP restrict-
ed pJJ101/L1.3 retrotransposition to ~32% of control levels whereas ZAP-S/Δ72-372-tGFP did
not have a significant effect (~93% of control) on retrotransposition activity (S4A Fig). Confocal
microscopy revealed that ORF1p and ZAP-S/Δ310-645-tGFP co-localized in cytoplasmic foci in
~74% of cells that co-expressed both ORF1p and ZAP-S/Δ310-645-tGFP (Fig 5D). In cells trans-
fected with pJM101/L1.3Δneo and ZAP-S/Δ72-372-tGFP, ORF1p and ZAP-S/Δ72-372-tGFP
co-localized in only ~14% of cells that co-expressed both ORF1p and ZAP-S/Δ72-372-tGFP
(Fig 5C). Thus, the ZAP-S zinc-finger domain is necessary and sufficient for the co-localization
of ZAP-S and ORF1p in cytoplasmic foci.

To determine if ZAP co-localizes with L1 RNA, we co-transfected HeLa cells with pJM101/
L1.3 and either ZAP-S-tGFP, ZAP-S/Δ310-645-tGFP, or ZAP-S/Δ72-372-tGFP. To visualize
L1 RNA, transfected cells were probed with fluorescently labeled oligonucleotide probes com-
plementary to sequences within the L1 5' UTR. As a control, cells were co-transfected with
pJM101/L1.3 and an empty pCEP4 vector. In pCEP4 control experiments, fluorescence mi-
croscopy revealed that ORF1p co-localized with L1 RNA in cytoplasmic foci in ~88% of cells
that contained ORF1p cytoplasmic Foci (Fig 6A and S5A Fig). In HeLa cells co-transfected
with pJM101/L1.3 and ZAP-S-tGFP, L1 RNA co-localized with ORF1p and ZAP-S-tGFP in cy-
toplasmic foci in ~23% of foci-containing cells (Fig 6B and S5A Fig). Thus, ZAP and L1 RNA
co-localize in cytoplasmic foci.

Fluorescence microscopy further revealed that in cells co-transfected with pJM101/L1.3 and
ZAP-S/Δ310-645-tGFP that L1 RNA was detected in ORF1p and ZAP-S/Δ310-645-tGFP foci in
only ~18% of foci-containing cells (Fig 6C and S5A Fig). In contrast, in cells co-transfected with
pJM101/L1.3 and ZAP-S/Δ72-372-tGFP, L1 RNA co-localized with ORF1p in ~77% of cells that
expressed ZAP/Δ72-372-tGFP and contained ORF1p cytoplasmic Foci (Fig 6D and S5A Fig).
Thus, the data suggest that ZAP prevents the accumulation of L1 RNA in cytoplasmic foci.

We next determined the effect of ZAP-S on ORF1p expression using confocal microscopy.
HeLa cells were co-transfected with pJM101/L1.3Δneo and either ZAP-S-tGFP, ZAP-S/Δ310-
645-tGFP, or ZAP-S/Δ72-372-tGFP. As a control, cells were co-transfected with pJM101/
L1.3Δneo and an empty pCEP4 vector. In pCEP4 control experiments, confocal microscopy

cells: ZAP-S-tGFP (green) co-localizes with endogenous ORF1p (red). PA-1 experiments were repeated
twice with similar results. (D-E) The ZAP-S zinc-finger domain is necessary for co-localization with ORF1p in
HeLa cells: ORF1p (red) expressed from pJM101/L1.3Δneo co-localizes with ZAP-S/Δ310-645-tGFP (green)
(panel D). ORF1p (red) expressed from pJM101/L1.3Δneo forms cytoplasmic foci that do not contain ZAP-S/
Δ72-372-tGFP (green) (panel E). The right-most image of each panel represents a merged image. The cell
type is indicated at the top left (yellow), the protein name is listed on the bottom left, and the name of the
primary antibody used (italicized) is annotated at the bottom right. Nuclei were stained with DAPI (blue) and
the scale bar represents 25 μM.

doi:10.1371/journal.pgen.1005121.g005
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Fig 6. The co-localization of ZAP with L1 RNA and ORF1p in HeLa cells. (A) Co-localization of transfected L1 RNA and ORF1p: ORF1p (red) expressed
from pJM101/L1.3 co-localizes with L1 RNA (magenta). (B) Co-localization of transfected L1 RNA and ORF1p with transfected ZAP-S-tGFP in cytoplasmic
foci: ORF1p (red) and L1 RNA (magenta) expressed from pJM101/L1.3 co-localize with ZAP-S-tGFP (green). (C-D) The ZAP-S zinc-finger domain is
necessary for co-localization with ORF1p: ORF1p (red) and L1 RNA (magenta) expressed from pJM101/L1.3 co-localize with ZAP-S/Δ310-645-tGFP (green)
(panel C). ZAP-S/Δ72-372-tGFP (green) diffusely distributes throughout the cytoplasm, while ORF1p (red) expressed from pJM101/L1.3 forms cytoplasmic
foci with L1 RNA (magenta) (panel D). The right-most image of each panel represents a merged image. The name of the protein or RNA is indicated at the
bottom left, and the name of the primary antibody used (italicized) is annotated at the bottom right of each image. Nuclei were stained with DAPI (blue) and
the scale bar represents 25 μM. Experiments were repeated three times with similar results.

doi:10.1371/journal.pgen.1005121.g006
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revealed that ~10.8% of cells expressed ORF1p after ~ 48 hours (S5B Fig). In contrast, only
~2.8% of cells that were co-transfected with ZAP-S-tGFP expressed ORF1p and ~2.8% of cells
that were co-transfected with ZAP-S/Δ310-645-tGFP expressed ORF1p (S5B Fig). Approxi-
mately 8.0% of cells that were co-transfected with ZAP-S/Δ72-372-tGFP expressed ORF1p
(S5B Fig). Thus, the data suggest that the ZAP-S zinc-finger domain is necessary and sufficient
to inhibit the accumulation of ORF1p in HeLa cells.

L1 cytoplasmic foci also co-localize with an array of RNA binding proteins, including mark-
ers of cytoplasmic stress granules (SGs) [26,89,104]. Notably, ZAP also localizes to cytoplasmic
SGs [108]. To determine whether ZAP-S/ORF1p foci co-localize with cytoplasmic SGs we
transfected HeLa cells with pJM101/L1.3Δneo and ZAP-S-tGFP. Confocal microscopy revealed
that ZAP-S-tGFP/ORF1p co-localized with the endogenous SG associated protein eIF3 (S4B
Fig). Additionally, endogenous ZAP also co-localized with the SG marker, G3BP (S4D Fig). In
contrast, ZAP-S-tGFP/ORF1p foci did not co-localize with endogenous tubulin (S4C Fig), and
endogenous ZAP did not co-localize with the processing body associated protein, DCP1α (S4E
Fig). Thus, L1 ORF1p, ZAP, and SG associated proteins partition to the same
cytoplasmic compartment.

Discussion
In this study, we identified 39 cellular proteins that interact with L1 ORF1p and validated 13
of these interactions in biochemical assays. Our data showed that the 13 validated ORF1p-
interacting proteins associate with ORF1p via an RNA bridge (Fig 1D). Notably, 33 out of 39 of
the ORF1p-interacting proteins also were detected in recent studies (S1 Table; [47,67,89]). Im-
portantly, we discovered that ZAP restricts human L1 and Alu retrotransposition. We also
showed that hnRNPL, MOV10, and PURA inhibit L1 retrotransposition, which is in agreement
with previous studies [64–67,89]. Thus, our data both confirm and extend those previous anal-
yses and will help guide future studies that endeavor to determine how L1 retrotransposition
impacts the human genome.

ZAP inhibits the mobility of both human and non-human non-LTR retrotransposons. The
overexpression of the human and rat orthologs of ZAP restricts human L1 retrotransposition
(Fig 3A). Human ZAP-S overexpression restricts the retrotransposition of an engineered
human SINE (Alu) (Fig 3B), an engineered mouse L1 (GF21), and an engineered zebrafish
LINE-2 element (ZfL2-2) (Fig 3C). Although our studies primarily involved the overexpression
of ZAP, we also demonstrated that the depletion of endogenous ZAP in HeLa cells led to an
~2-fold increase in L1 retrotransposition (Fig 3D). This observed increase in L1 retrotransposi-
tion activity is similar to increases in L1 activity that were observed upon depletion of MOV10
and hnRNPL proteins in other studies [64,65,67]. Thus, in principle, physiological levels of
ZAP may be sufficient to influence retrotransposition in certain cell types.

The ZAP CCCH zinc-finger domain is required to both bind and mediate the degradation
of viral RNA [92,109]. Our data indicate that ZAP binding to L1 RNA is critical for L1 restric-
tion. We demonstrated that ORF1p-FLAG and ZAP interact via an RNA bridge (Fig 1D).
Moreover, we showed that overexpression of the ZAP zinc-finger domain more potently inhib-
its L1 retrotransposition than overexpression of wild type ZAP-L or ZAP-S (Fig 3A), and that
the ZAP-S zinc-finger domain is required to inhibit L1 retrotransposition (Fig 3A and S4A
Fig). In addition to our genetic and biochemical data, fluorescence microscopy revealed that: 1)
co-transfected ZAP-S, L1 RNA, and ORF1p co-localize in the cytoplasm of HeLa cells; 2) the
ZAP-S zinc-finger domain is necessary and sufficient for the co-localization of ZAP-S, L1
RNA, and ORF1p; 3) endogenous ZAP co-localizes with transfected ORF1p in HeLa cells; and
4) endogenous ORF1p interacts with transfected ZAP-S in human PA-1 embryonic carcinoma
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cells (Figs 5A–5E and 6A–6D). Thus, the data suggest that ZAP interacts with L1 RNA in order
to mediate L1 restriction.

Notably, the zebrafish ZfL2-2 retrotransposon lacks a homolog to ORF1 and only encodes a
single ORF that contains an apurinic/apyrimidinic endonuclease-like (EN) and a reverse tran-
scriptase (RT) domain [95]. The finding that ZAP-S efficiently restricts ZfL2-2 retrotransposi-
tion further indicates that ZAP-S likely restricts retrotransposition by interacting with LINE
RNA. Although a ZAP consensus RNA target sequence/motif has not yet been identified, evi-
dence suggests that ZAP recognizes long RNA stretches (>500 nucleotides) and/or specific
RNA tertiary structure [91,92]. The ability of ZAP to inhibit non-human LINE elements sug-
gests that ZAP may not recognize a particular LINE linear consensus RNA sequence, but in-
stead may recognize an unidentified structural feature common to certain LINE RNAs [91,92].

Evidence suggests that ZAP prevents the accumulation of viral RNAs in the cytoplasm [72].
ZAP-S overexpression significantly reduced the amount of polyadenylated, full-length L1 RNA
(Fig 4B), which would be expected to inhibit retrotransposition by limiting the supply of L1
mRNA available for translation and as a template for TPRT. Notably, while ZAP-S selectively
inhibited the accumulation of full-length L1 transcripts, it did not dramatically affect the accu-
mulation of shorter, spliced and/or polyadenylated L1 RNAs (Fig 4B) [99–101,110]. Thus, ZAP
does not appear to affect L1 transcription per se, but instead likely affects the post-transcrip-
tional processing of full-length L1 mRNA. In addition to biochemical data, fluorescence mi-
croscopy revealed that L1 RNA was depleted from L1 ORF1p cytoplasmic foci in the presence
of ZAP (S5A Fig). The depletion of RNA from L1 cytoplasmic foci was dependent on the
ZAP-S zinc-finger domain. Based on these data it is likely that ZAP prevents the accumulation
of cytoplasmic L1 mRNA.

Previous studies have shown that ZAP also suppresses the expression of viral proteins [111–
113]. Western blot experiments demonstrated that the overexpression of ZAP-S inhibited the
accumulation of L1 ORF1p and L1 ORF2p in whole cell lysates and RNPs derived from trans-
fected HeLa cells (Fig 4D and S3B Fig). In agreement with western blot experiments, confocal
microscopy experiments showed that tGFP-tagged ZAP-S inhibited the expression of ORF1p
in transfected HeLa cells and that the ZAP-S zinc-finger domain is critical for the inhibition of
ORF1p expression (S5B Fig). ZAP-S expression also inhibited Alu retrotransposition (Fig 3B),
which depends on ORF2p to be supplied in trans by L1 [49]. In contrast to these data, ZAP-S
overexpression did not significantly affect the expression and/or accumulation of EGFP or
other endogenous proteins (e.g., eiF3 and tubulin) (Fig 4D and S3B Fig). Thus, ZAP may
preferentially limit the accumulation of ORF1p and ORF2p by interacting with L1 mRNA.

In sum, our data suggest that ZAP restricts L1 retrotransposition by preventing the accumu-
lation of cytoplasmic L1 RNA. Notably, a recent study suggests that ZAP may interfere with
translation of viral RNA, and that translation inhibition may precede viral RNA destruction
[113]. Although a reduction in L1 RNA could explain the observed decrease in L1 protein ex-
pression, it also is conceivable that the interaction between ZAP and L1 RNA could interfere
with L1 translation (Fig 7).

It remains unclear how ZAP might destabilize full-length L1 RNA to restrict retrotransposi-
tion. Evidence suggests that ZAP recruits exosome components [109] along with other proteins
involved in RNA degradation [111,114] to destroy viral RNA. Interestingly, immunofluores-
cence microscopy experiments revealed that ORF1p and ZAP co-localize with components of
cytoplasmic SGs (S4B and S4D Fig), which contain numerous RNA binding proteins involved
in cytosolic RNA metabolism [reviewed in 115]. Indeed, ZAP previously has been shown to lo-
calize to SGs [108] and SGs have been suggested to play a role in regulating L1 retrotransposi-
tion [104] and viral pathogenesis [reviewed in 116]. The co-localization of ORF1p and
ZAP with SGs also suggests that ZAP may possibly inhibit L1 translation, as SG assembly is
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stimulated by translational arrest [reviewed in 115]. Thus, we propose that ZAP interacts di-
rectly with L1 RNA in the cytoplasm, which likely results in the recruitment in SG components
and/or other cellular factors involved in RNA metabolism to destabilize L1 RNA and/or block
translation (Fig 7).

ZAP exhibits antiviral activity against a variety of viruses such as MLV [72], alphaviruses
[117], filoviruses [118], HIV-1 [111], and hepatitis-B virus [119]. Interestingly, many putative
L1 restriction factors also are involved in antiviral defense (i.e., a subset of APOBEC3 proteins,
TREX1, MOV10, SAMHD1, and RNaseL). L1 elements have been active in mammalian ge-
nomes for ~160 million years [120–122]. Thus, it is tempting to speculate that some host fac-
tors, such as ZAP, may have first evolved to combat endogenous retrotransposons and
subsequently were co-opted as viral restriction factors [90,123–125]. Indeed, identifying host
factors that modulate L1 retrotransposition may prove to be an effective strategy to identify
host antiviral factors.

Methods

Cell culture
HeLa-JVM cells were grown in high-glucose DMEM (Gibco) supplemented with 10% FBS
(Gibco), 100 U/mL penicillin-streptomycin (Invitrogen), and 0.29 mg/mL L-glutamine

Fig 7. A workingmodel for how ZAP restricts L1 retrotransposition.Once a genomic L1 (black rectangle located on the green chromosome) is
transcribed, the resultant bicistronic L1 mRNA is exported to the cytoplasm for translation. L1 ORF1p (blue circles) and ORF2p (yellow circle) bind back to L1
mRNA to form an L1 RNP. The L1 RNP gains access to the nucleus where a new L1 copy is inserted into genomic DNA by the process of TPRT (black
rectangle located on the blue chromosome). In ZAP-mediated restriction, ZAP (red hexagon) interacts with L1 mRNA in the cytoplasm (1), which we propose
leads to the destabilization of L1 RNA (2) and/or a block in translation (?) through the recruitment of other cellular factors (e.g., SG associated proteins, RNA
decay proteins) involved in RNAmetabolism.

doi:10.1371/journal.pgen.1005121.g007
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(Gibco) [30]. HeLa-HA [126] and PA-1 [107] cells were grown in MEM (Gibco) with 10%
FBS, 100 U/mL penicillin-streptomycin, 0.29 mg/mL L-glutamine, and 0.1 mM nonessential
amino acids (Gibco). Cell lines were maintained at 37°C with 7% CO2 in humidified incubators
(Thermo Scientific).

Plasmids
Oligonucleotide sequences and cloning strategies used in this study are available upon request.
All human L1 plasmids contain the indicated fragments of L1.3 (accession no. L19088) [5]
DNA cloned into pCEP4 (Invitrogen) unless otherwise indicated. A CMV promoter augments
expression of all L1 and cDNA expressing plasmids unless noted otherwise. L1 plasmids also
contain an SV40 polyadenylation signal that is located downstream of the native L1 polyadeny-
lation signal. All plasmid DNA was prepared with a Midiprep Plasmid DNA Kit (Qiagen).

The following cDNA expression plasmids were obtained from OriGene: CDK9 (SC119344);
DDX21 (SC108813); GNB2L1 (SC116322); hnRNPDL (SC107613); MOV10 (SC126015);
MATR3 (SC113375); ZAP-S (ZC3HAV1 transcript variant 2) (SC101064); ZAP-S-tGFP (GFP-
tagged ZC3HAV1 transcript variant 2) (RG208070); hnRNPA2B1 (SC313092); IGF2BP3
(SC111161); PURA (SC127792); UPF1 (SC118343).

The following cDNA expression plasmids were obtained from Open Biosystems: hnRNPL
(6174088); LARP2 (5164712); LARP4 (5219803); SYNCRIP (5495201).

The following cDNA expression plasmids were obtained from Addgene: rZAP (pcDNA4-
TO-Myc-rZAP; Addgene plasmid#: 17381, kindly provided by Dr. Stephen Goff) (Gao et al.,
2002) and ZAP-L (pcDNA4 huZAP(L); Addgene plasmid#: 45907, kindly provided by Dr.
Harmit Malik) [90].

pJM101/L1.3: is a pCEP4-based plasmid that expresses a human L1 (L1.3) equipped with an
mneoI retrotransposition indicator cassette. L1 expression is augmented by a CMV promoter
located upstream of the L1 5' UTR and an SV40 polyadenylation signal that is located down-
stream of the native L1 polyadenylation signal [5,30,127,128]

pJM101/L1.3FLAG: was derived from pJM101/L1.3 and contains a single FLAG epitope on
the carboxyl-terminus of ORF1p. Dr. Huira Kopera (University of Michigan Medical School)
constructed the plasmid.

pAluneoTet: expresses an Alu element cloned from intron 5 of the human NF1 gene [129]
that is marked with the neoTet reporter gene. The reporter [130] was subcloned upstream of the
Alu poly adenosine tract [49].

pCEP/GFP: is a pCEP4 based plasmid that expresses the humanized renilla green fluores-
cent protein (hrGFP) coding sequence from phrGFP-C (Stratagene), which is located down-
stream of the pCEP4 CMV promoter [33].

pJJ101/L1.3: is a pCEP4 based plasmid that contains an active human L1 (L1.3) equipped
with anmblastI retrotransposition indicator cassette [85].

pJJ105/L1.3: is similar to pJJ101/L1.3, but contains a D702A missense mutation in the RT
active site of L1.3 ORF2 [85].

pJM101/L1.3Δneo: is a pCEP4 based plasmid that contains an active human L1 (L1.3) [35].
pLRE3-EF1-mEGFPΔIntron: is a pBSKS-II+ based plasmid that expresses an active human

L1 (LRE3) that is tagged with an EGFP cassette (mEGFPI) containing an antisense, intronless
copy of the EGFP gene. A UbC promoter drives EGFP expression. An EF1α promoter drives
L1 expression [103].

pAD2TE1: is similar to pJM101/L1.3 except that it was modified to contain a T7 gene10
epitope-tag on the carboxyl-terminus of ORF1p and a TAP epitope-tag on the carboxyl-
terminus of ORF2p. The 30-UTR contains themneoI retrotransposition indicator cassette [26].
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pJBM2TE1: is similar to pAD2TE1 except that the pCEP4 backbone was modified to con-
tain the puromycin resistance (PURO) gene in place of the hygromycin resistance gene.

pLRE3-mEGFPI: is a pCEP4 based plasmid that contains an active human L1 (LRE3)
equipped with anmEGFPI retrotransposition indicator cassette [97,106]. The pCEP4 backbone
was modified to contain a puromycin resistance (PURO) gene in place of the hygromycin resis-
tance gene. The CMV promoter also was deleted from the vector; thus, L1 expression is driven
only by the native 50 UTR [97].

pJM111-LRE3-mEGFPI: is identical to pLRE3-mEGFPI except that it contains two missense
mutations in ORF1 (RR261-262AA), which render the L1 retrotransposition-defective [30].
Mr. William Giblin (University of Michigan Medical School) constructed the plasmid [69].

pGF21: contains an 8.8 kb fragment which includes a full length mouse GF21 L1 element
that contains themneoI indicator cassette [94].

pZfL2-2: is a pCEP4 based plasmid that contains the ZfL2-2 ORF (ZL15, accession no.
AB211150) cloned upstream of themneoI indicator cassette [95].

pCEP4smL1: contains a codon optimized full-length mouse element (derived from L1spa)
containing themneoI indicator cassette [96].

ZAP-S/1-311: encodes the ZAP-S amino acid sequence from 1–311 and the following se-
quence of non-templated amino acids (IIIYTGFLFCCGFFFFFFFLEGVSLCCPGWS).

ZAP-S/Δ72–372: was derived by deleting the SfoI-XhoI fragment from ZC3HAV1 transcript
variant 2 (OriGene, SC101064), and expresses a ZAP-S mutant protein that lacks amino acid
sequence from 72–372.

ZAP-S/Δ310-645-tGFP: expresses a ZAP-S mutant protein that lacks amino acid sequence
from 310–645 and contains a carboxyl terminus tGFP epitope tag.

ZAP-S/Δ72-372-tGFP: expresses a ZAP-S mutant protein that lacks amino acid sequence
from 72–372 and contains a carboxyl terminus tGFP epitope tag.

LARP5: was derived by cloning LARP5 cDNA (Open Biosystems, 40118844) into pcDNA3
(Invitrogen).

LARP1: was constructed by cloning the LARP1 cDNA (Open Biosystems, 3138935) into
pcDNA3 (Invitrogen).

pK_A3A: expresses HA-tagged APOBEC3A and was a generous gift from Dr. Brian
Cullen [131].

pDCP1α-GFP: expresses a GFP-tagged version of DCP1α and was a generous gift from
Dr. Gregory Hannon [132].

pG3BP-GFP: expresses a GFP-tagged version of G3BP and was a generous gift from
Dr. Jamal Tazi [133].

pcDNA6/TR: expresses the blasticidin resistance gene and was obtained from Invitrogen.

Immunoprecipitation of L1 ORF1p
HeLa-JVM cells were seeded in T-175 flasks (BD Falcon) at ~6–8×106 cells/flask and trans-
fected the next day with 20 μg of plasmid DNA using 60 μL of FuGENE HD (Promega). Ap-
proximately 48 hours post-transfection, hygromycin B (Gibco) (200 μg/mL) was added to the
medium to select for transfected cells. After approximately one week of hygromycin selection,
cells were washed 3 times with ice cold PBS and collected with a rubber policeman into 50 mL
conical tubes (BD Falcon). Cells were then pelleted at 1,000×g and frozen at -80°C. To produce
whole cell lysates (WCL), frozen cell pellets were rapidly thawed and then lysed in ~3 mL (1
mL lysis buffer per 100 mg of cell pellet) of lysis buffer (20 mM Tris-HCl (pH 7.5), 150 mM
NaCl, 10% glycerol, 1 mM EDTA, 0.1% IGEPAL CA-630 (Sigma), 1X complete EDTA-free
protease inhibitor cocktail (Roche)) on ice for 30 minutes. WCLs were then centrifuged at
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15,000×g for 15 minutes at 4°C. Supernatants were transferred to a clean tube and protein con-
centration was determined using the Bradford reagent assay (BioRad). For the IP, ~1 mL of the
supernatant (~3 mg total protein) was pre-cleared with ~15 μL (packed gel volume) of mouse
IgG-agarose beads (Sigma) for 4 hours at 4°C. Pre-cleared supernatants were then mixed with
~15 μL (packed gel volume) of EZview Red ANTI-FLAGM2 Affinity Gel (Sigma) and incubat-
ed overnight with rotation at 4°C. The beads then were rinsed 3x with 0.5 mL of lysis buffer,
and then washed 3 times with 0.5 mL of lysis buffer for 10 minutes per wash on ice with gentle
agitation. Protein complexes were eluted from the beads by adding ~70 μL of 2X NuPAGE
LDS Sample Buffer (Novex), supplemented with NuPAGE Sample Reducing Agent (Novex),
directly to the washed beads and incubating for 10 minutes at 70°C. Following incubation,
the beads were pelleted and the sample was transferred to a fresh tube. For SDS-PAGE analysis,
20 μL of the IP were loaded onto a 4–15% gradient midi-gel (BioRad) and run under reducing
conditions. Gels were silver stained using the SilverQuest Silver Staining Kit (Novex) to
visualize proteins.

Protein identification by LC-MS/MS
The Proteomics Facility at the Fred Hutchinson Cancer Research Center (Seattle, WA) con-
ducted protein identification experiments. Excised silver-stained gel slices were destained and
subjected to in-gel proteolytic digestion with trypsin as described [134]. Following gel-slice di-
gestion, the digestion products were desalted using C18-micro ZipTips (Millipore) and were
dried by vacuum centrifugation. The resultant peptide samples were resuspended in 7 μL of
0.1% formic acid and 5 μL were analyzed by liquid chromatography coupled to tandemmass
spectrometry (LC-MS/MS). LC-MS/MS analysis was performed using an LTQ Orbitrap XL
mass spectrometer (Thermo Scientific). The LC system, configured in a vented format [135],
consisted of a fused-silica nanospray needle (PicoTip emitter, 50 μm ID) (New Objective)
packed in-house with Magic C18 AQ 100A reverse-phase medium (25 cm) (Michrom Biore-
sources Inc.) and a trap (IntegraFrit Capillary, 100 μm ID) (New Objective) containing Magic
C18 AQ 200A reverse-phase medium (2 cm) (Michrom Bioresources Inc.). The peptide samples
were loaded onto the column and chromatographic separation was performed using a two
mobile-phase solvent system consisting of 0.1% formic acid in water (A) and 0.1% acetic acid in
acetonitrile (B) over 60 min from 5% B to 40% B at a flow rate of 400 nL/minutes. The mass
spectrometer operated in a data-dependent MS/MS mode over them/z range of 400–1800. For
each cycle, the five most abundant ions from each MS scan were selected for MS/MS analysis
using 35% normalized collision energy. Selected ions were dynamically excluded for 45 seconds.

For data analysis, rawMS/MS data were submitted to the Computational Proteomics Analy-
sis System (CPAS), a web-based system built on the LabKey Server v11.2 [136] and searched
using the X!Tandem search engine [137] against the International Protein Index (IPI) human
protein database (v3.75), which included additional common contaminants such as BSA and
trypsin. Search results were compared between the pJM101/L1.3FLAG lane and the pJM101/
L1.3 lane to generate a list of candidate L1 ORF1p associated proteins unique to the pJM101/
L1.3FLAG immunoprecipitation. The search output files were analyzed and validated by Pro-
teinProphet [138]. Peptide hits were filtered with PeptideProphet [139] error rate�0.05, and
proteins with probability scores of�0.95 were accepted. Suspected contaminants (e.g. keratin)
were filtered from the final L1 RNP candidate list.

L1 retrotransposition assays
The cultured cell retrotransposition assay was carried out essentially as described [30,71]. For
retrotransposition assays with L1 constructs tagged withmblastI, HeLa-JVM cells were seeded
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at ~1–2×104 cells/well in a 6-well plate (BD Falcon). Within 24 hours, each well was transfected
with 1 μg of plasmid DNA (0.5 μg L1 plasmid + 0.5 μg cDNA plasmid or pCEP4) using 3 μL
of FuGENE 6 transfection reagent (Promega). Four days post-transfection, blasticidin (EMD
Millipore) containing medium (10 μg/mL) was added to cells to select for retrotransposition
events. Medium was changed every two days. After ~8 days of selection, cells were washed with
PBS, fixed, and then stained with crystal violet to visualize colonies. To control for transfection
efficiency and off-target effects of cDNA plasmids, in parallel with retrotransposition assays,
HeLa-JVM cells were plated in 6-well plates at 500–1,000 cells/well and transfected with 0.5 μg
pcDNA6/TR (Invitrogen) plasmid + 0.5 μg cDNA plasmid using 3 μL of FuGENE 6 transfec-
tion reagent (Promega). The pcDNA6/TR control assays were treated with blasticidin in the
same manner as for retrotransposition assays.

For retrotransposition assays with L1 constructs tagged withmneoI, HeLa-JVM cells were
transfected as described above. Two days after transfection, cells were treated with medium
supplemented with G418 (Gibco) (500 μg/mL) for ~10–12 days. As a control, HeLa cells were
plated at ~2×104 cells/well in a 6-well plate and transfected with 0.5 μg pcDNA3 (Invitrogen)
plasmid + 0.5 μg cDNA plasmid using 3 μL of FuGENE 6 transfection reagent (Promega).
The pcDNA3 control assays were treated with G418 in the same manner as for retrotransposi-
tion assays.

Alu retrotransposition assays
For Alu retrotransposition assays [49], ~4×105 HeLa-HA cells were plated per well of a
6-well plate (BD Falcon) and transfected with 0.67 μg of pJM101/L1.3Δneo + 0.67 μg of pAlu-
neoTet + 0.67 μg of cDNA plasmid using 6 μL FuGENE HD (Promega). Three days post-
transfection, cells were grown in the presence of G418 (500μg/mL) to select for Alu retrotran-
sposition events. As a control, HeLa-HA cells were plated at ~4×105 cells/well in a 6-well
plate and transfected with 0.67 μg of pcDNA3 (Invitrogen) + 0.67 μg of pAluneoTet + 0.67 μg
of cDNA plasmid using 6 μL of FuGENE HD (Promega). The pcDNA3 control assays were
treated with G418 in the same manner as for Alu retrotransposition assays.

siRNA knockdown and pLRE3-mEGFPI retrotransposition assays
In experiments to study the effect of endogenous proteins on L1 retrotransposition, HeLa cells
(~8×105 cells) were plated in 60 mm tissue culture dishes (BD Falcon). The next day, the cells
were transfected with 50 nM of a control siRNA pool (D-001810-10, ON-TARGETplus Non-
targeting Pool, Thermo Scientific) or siRNA against ZAP (L-017449-01-0005, ON-TARGET-
plus Human ZC3HAV1 (56829) siRNA—SMARTpool, Thermo Scientific) or MOV10 (L-
014162-00-0005, ON-TARGETplus Human MOV10 (4343) siRNA—SMARTpool, Thermo
Scientific) using the DharmaFECT 1 transfection reagent (Thermo Scientific). Twenty-four
hours after siRNA treatment, cells were transfected with pLRE3-mEGFPI or pJM111-LRE3-
mEGFPI (5 μg), using 15 μL of FuGENE HD transfection reagent (Roche). After 48 hours, cells
were trypsinized and an aliquot of the cells (~2×106 cells) was used to monitor endogenous
protein levels (72 hours after siRNA treatment) by western blot analysis (see below for list of
primary antibodies). Blots were analyzed using an Odyssey CLx (LI-COR) with the following
secondary antibodies: IRDye 800CWDonkey anti-Rabbit IgG (1:10,000) (LI-COR) and IRDye
680RD Donkey anti-Mouse IgG (1:10,000) (LI-COR). Knockdown efficiencies were calculated
using LI-COR Image Studio Software (v3.1.4) and are the average of three independent experi-
ments. Endogenous tubulin was used as the normalization control. The remaining cells were
re-plated at ~2×105 cells/well of a 6-well plate and cultured in medium supplemented with pu-
romycin (5 μg/ml, Gibco/Life Technologies) to select for cells transfected with pLRE3-mEGFPI.
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After 4 days of puromycin selection, the percentage of GFP positive cells was determined by
flow cytometry using an Accuri C6 flow cytometer (BD Biosciences).

RNP isolation
RNPs were isolated as previously described [37]. Briefly, HeLa-JVM cells were seeded onto 60
mm tissue culture dishes (BD Falcon) and 24 hours later cells were co-transfected with 2.5 μg
of pJBM2TE1 and 2.5 μg of the indicated cDNA plasmid using 15 μL of FuGENE HD (Pro-
mega). Approximately two days after transfection, puromycin (5 μg/mL) was added to culture
medium to select for cells transfected with pJBM2TE1. After ~3 days of puromycin selection (5
days after transfection), cells were lysed in RNP lysis buffer (150 mMNaCl, 5 mMMgCl2, 20
mM Tris-HCl (pH 7.5), 10% glycerol, 1mM DTT, 0.1% NP-40, and 1x complete EDTA-free
protease inhibitor cocktail (Roche)). Following lysis, whole cell lysates were centrifuged at
12,000xg for 10 minutes at 4°C, and then the cleared lysate was layered onto a sucrose cushion
(8.5% and 17% sucrose) and subjected to ultracentrifugation at 4°C for 2 hours at 178,000xg.
The supernatant was discarded and the resulting pellet was resuspended in water supple-
mented with 1x complete EDTA-free protease inhibitor cocktail (Roche). Approximately 20 μg
(total protein) of the RNP sample or ~30 μg (total protein) of the cleared whole cell lysate (su-
pernatant post 12,000xg centrifugation) were then analyzed by western blot. Blots were ana-
lyzed using an Odyssey1 CLx (LI-COR) with the following secondary antibodies: IRDye
800CWDonkey anti-Rabbit IgG (1:10,000) (LI-COR) and IRDye 680RD Donkey anti-Mouse
IgG (1:10,000) (LI-COR).

To simultaneously analyze the effects of ZAP-S on ORF1p and EGFP protein expression,
HeLa-JVM cells were seeded onto 10 cm dishes (~2.7×106 cells/dish) (BD Falcon) and trans-
fected with 10 μg of plasmid DNA (5.0 μg pLRE3-EF1A-mEGFPΔIntron + 5.0 μg cDNA plas-
mid or pCEP4) using 30 μL of FuGENE HD. After 48 hours, cells were harvested with trypsin
and then subjected to flow cytometry to isolate GFP expressing cells. Approximately 1.2–
1.7×106 GFP positive cells were collected for each transfection condition using a MoFlo Astrios
cell sorter (Beckman Coulter). The GFP gate was set using untransfected HeLa-JVM cells. The
sorted cells were lysed as described in the IP procedure and lysates were then subjected to west-
ern blotting using standard procedures. For all other protein expression analyses, HeLa-JVM
cells were seeded at ~4×105 cells/well in 6-well plates and transfected with 2 μg of plasmid
DNA with 6 μL of FuGENE HD. Cells were collected 48 hours after transfection using a rubber
policeman and lysates were prepared as described above. Western blots were visualized using
either the SuperSignal West Femto Chemiluminescent Substrate (Pierce) or SuperSignal West
Pico Chemiluminescent Substrate (Pierce) and Hyperfilm ECL (GE Healthcare).

Northern blots
HeLa-JVM cells were seeded in T-175 flasks (BD Falcon) and transfected with 20 μg of plasmid
DNA (10 μg pJM101/L.13Δneo + 10 μg cDNA plasmid) using 60 μL FuGENE HD. Two days
after transfection, cell pellets were collected and frozen at -80°C. Frozen cell pellets were then
thawed and total RNA was extracted with TRIzol reagent (Ambion), and then poly(A)+ RNA
was prepared from total RNA using an Oligotex mRNA kit (Qiagen). Each sample (~1.5 μg of
poly(A)+ RNA) was subjected to glyoxal gel electrophoresis and northern blotting using the
NorthernMax-Gly Kit (Ambion) according to the manufacturer’s protocol. Following electro-
phoresis, RNA was transferred to BrightStar Nylon membranes (Invitrogen) and then cross-
linked using UV light. For northern blot detection, membranes were prehybridized for ~ 4
hours at 68°C in NorthernMax Prehybridization/Hybridization Buffer (Ambion), and then in-
cubated with a strand specific RNA probe (final concentration of probe ~ 3×106 cpm ml-1)
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overnight at 68°C. For band quantification, northern blot films were analyzed using ImageJ
software [140].

Strand-specific RNA probes were generated using the MAXIscript T3 system (Invitrogen).
The 5UTR99 [100] probe corresponds to bases 7–99 of the L1.3 5' UTR and the ORF2_5804
probe corresponds to nucleotides 5560–5804 of the L1.3 sequence. RNA probe templates for
T3 reactions were generated by PCR using pJM101/L1.3Δneo as a PCR template with the fol-
lowing primer pairs:

• (5UTR99: 5'-GGAGCCAAGATGGCCGAATAGGAACAGCT-3' and 5'-AATTAACCCT
CAAAGGGACCTCAGATGGAAATGCAG-3');

• (ORF2_5804: 5'- GACACATGCACACGTATGTTTATT-3' and 5'- AATTAACCCTCAC
TAAAGGGTGAGTGAGAATATGCGGTGTTT-3').

The T3 promoter sequence (underlined) was added to the reverse primer of each primer
pair. The pTRI-β-actin-125-Human Antisense Control Template (Applied Biosystems) was
used in T3 reactions as a template to generate the β-actin RNA probe. Each northern blot ex-
periment was independently repeated three times with similar results.

Immunofluorescence microscopy
Immunofluorescence microscopy was performed essentially as described [26] with modifica-
tions. Briefly, cells were plated on round glass cover slips (Fisher) in a 12-well plate or into
4-well chambered glass slides (Fisher) and transfected ~24 hours later with 0.5 μg of plasmid
DNA using 1.5 μL of FuGENE 6 transfection reagent. To visualize proteins, approximately 48
hours post-transfection cells were washed with 1x PBS, fixed with 4% paraformaldehyde for 10
minutes and then treated with ice-cold methanol for 1 minute. Next, cells were incubated for
30 minutes at 37°C in 1x PBS + 3% BSA. Cells then were incubated with primary antibodies in
1x PBS + 3% BSA for 1 hour at 37°C. Cells were washed three times with 1x PBS (10 minutes
per wash) and then incubated with appropriate, fluorescently-labeled secondary antibodies di-
luted in 1x PBS for 30 minutes at 37°C. The following secondary antibodies were used for indi-
rect immunofluorescence: Alexa Fluor 488 conjugated Goat anti-Mouse and Goat anti-Rabbit
(Invitrogen) (1:1000), Alexa Fluor 546 conjugated Goat anti-Mouse and Goat anti-Rabbit IgG
(Invitrogen) (1:1000), and Cy5 conjugated Donkey anti-Rabbit IgG (H+L) (Jackson ImmunoR-
esearch) (1:100). To obtain images, a cover slip and/or slide was visually scanned and represen-
tative images were captured using a Leica SP5X confocal microscope (63x/1.4 objective; section
thickness 1 μm).

Combined RNA FISH (fluorescence in situ hybridization)/
immunofluorescence
Cells were plated on round glass cover slips (Fisher) in a 12-well plate and transfected ~24
hours later with 0.5 μg of plasmid DNA using 1.5 μL of FuGENE 6 transfection reagent. Ap-
proximately 48 hours after transfection, cells were fixed with 4% paraformaldehyde for 10 min-
utes and then permeabilized with 0.2% Triton X-100 in 1x PBS for 7 minutes. Following
permeabilization, coverslips were incubated for 5 minutes in FISH (fluorescence in situ hybrid-
ization) wash buffer (2x SSC, 10% formamide) for 5 minutes. To visualize L1 RNA, coverslips
were then incubated with 300 nM FISH probes (sequences below) in FISH hybridization buffer
(2x SSC, 10% formamide, 1% dextran sulphate) for ~4 hours at 37°C. Following hybridization,
cells were incubated for 30 minutes in FISH wash buffer at 37°C and then incubated with
FISH wash buffer + 3% BSA for an additional 30 minutes at 37°C. To visualize L1 ORF1p by
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immunofluorescence, coverslips then were incubated with αORF1p antibodies (1:2000) in 1x
PBS + 3% BSA for 1 hour at 37°C. Cells were washed three times with 1x PBS (10 minutes per
wash). Cells were incubated with Alexa Fluor 546 conjugated Goat anti-Rabbit IgG (Invitro-
gen) (1:1000) in 1x PBS + DAPI (50 ng/mL) for 30 minutes at 37°C. Coverslips were mounted
on slides with VECTASHIELD mounting media (Vector Laboratories). Combined RNA FISH/
immunofluorescence samples were imaged with a Zeiss Axioplan2 microscope (63x objective;
Axiovision 4.8 software). RNA FISH/immunofluorescence images (Fig 6A–6D) were globally
processed using the Photoshop CS6 (version 13.0 x64) Levels tool to adjust input levels. The L1
RNA was labeled using 21 Quasar670-labelled anti-sense oligonucleotide probes complimenta-
ry to sequences within the L1.3 5' UTR (probes were designed and produced by Biosearch
Technologies, Petaluma, CA). The sequences of the 21 L1 probes are as follows: 5'-aaat
caccgtcttctgcgtc-3', 5'-ggtacctcagatggaaatgc-3', 5'-cactccctagtgagatgaac-3', 5'-ccctttctttgactca
gaaa-3', 5'-aatattcgggtgggagtgac-3', 5'-cttaagccggtctgaaaagc-3', 5'-caggtgtgggatatagtctc-3', 5'-
tgctagcaatcagcgagatt-3', 5'-ttgcagtttgatctcagact-3', 5'-tttgtttacctaagcaagcc-3', 5'-cagaggtggagccta
cagag-3', 5'-ctgtctttttgtttgtctgt-3', 5'-cacttaagtctgcagaggtt-3', 5'-ctctcttcaaagctgtcaga-3', 5'-ttgag
gaggcagtctgtctg-3', 5'-ctgcaggtctgttggaatac-3', 5'-ttctaacagacaggaccctc-3', 5'-cctttctggttgttagtttt-
3', 5'-gatgggttttcggtgtagat-3', 5'-gtctttgatgatggtgatgt-3', 5'-tttgtggttttatctacttt-3'.

Primary antibodies
Polyclonal antibodies against peptide sequences 31–49 of L1.3 ORF1p (αORF1p) were raised
in rabbits and affinity-purified (Open Biosystems). αCDK9 (2316), αUPF1 (9435), and αGFP
(2955) were obtained from Cell Signaling Technology. αhnRNPL (NBP1-67852), αILF3
(EPR3627), αLARP1 (NBP1-19128), αMATR3 (NB100-1761), αNCL (NB100-1920SS), and
αDHX9 (NB110-40579) were obtained from Novus Biologicals. αFAM120A (ab83909), αPURA
(ab79936), and αHA tag (ab9110) were obtained from Abcam. αMOV10 (SAB1100141),
αZAP (Anti-ZC3HAV1 (HPA047818)), and αTubulin (T9026) were obtained from Sigma.
αZC3HAV1 (16820-1-AP) was obtained from Proteintech. αeIF3 (p110) (sc-28858) was ob-
tained from Santa Cruz Biotechnology. αT7-Tag mouse monoclonal (69522–3) was obtained
from Novagen. αTAP rabbit polyclonal (CAB1001) was obtained from Thermo Scientific.

Supporting Information
S1 Fig. Supporting data for Fig 1. (A) The FLAG epitope on ORF1p is compatible with retro-
transposition: Constructs were tested in a transient HeLa cell retrotransposition assay [30,71].
The X-axis indicates the L1 plasmid. The Y-axis indicates the retrotransposition efficiency. Ret-
rotransposition assays were normalized to pJM101/L1.3 (100%). The pJM105/L1.3 plasmid
serves as a negative control and harbors a point mutation in the ORF2p RT domain that ren-
ders the element inactive [30]. Representative results from a single experiment are depicted
below the graph. The assay was repeated two times with similar results. (B) Immunoprecipita-
tion reactions conducted using various wash conditions: Top panel: HeLa cells were transfected
with pCEP4, pJM101/L1.3, or pJM101/L1.3FLAG and were subjected to lysis using two differ-
ent salt concentrations (500 mMNaCl (left gel) or 150 mMNaCl (right gel)). Shown are the
images of silver stained gels from immunoprecipitation reactions. The black rectangles indicate
the cropped image depicted in Fig 1B. Molecular weight standards (~kDa) are shown on the
left side of the gel. Bottom panel: Image of full western blot used in Fig 1C. The black rectangle
indicates the cropped lanes depicted in Fig 1C. Molecular weight standards (~kDa) are shown
on the left side of the gel. (C) Immunoprecipitation reactions under different lysis buffer condi-
tions: Silver stained gels of IP fractions from untransfected HeLa (HeLa UTF) or HeLa cells
transfected with pJM101/L1.3FLAG. Lysis buffer contained either 0.1% CHAPS (left gel) or
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1.0% Triton X-100 (right gel). Black arrows correspond to the approximate location of ORF1p-
FLAG; black bars indicate the approximate location of proteins enriched in the pJM101/
L1.3FLAG lane. Molecular weight standards (kDa) are shown on the left side of the gels.
(TIF)

S2 Fig. Supporting data for Fig 3. (A-C) Transfected ZAP is expressed in HeLa cells: Western
blots of whole cell lysates demonstrate the expression of ZAP-L (panel A) and ZAP-S and
ZAP-S/Δ72–372 (panels B and C) 48 hours post-transfection. UTF indicates untransfected
HeLa cells. The antibodies are indicated at the right side of the blots. Blue arrows indicate the
approximate locations of the ZAP proteins. Tubulin serves as a loading control. Molecular
weight standards (kDa) are shown on the left side of the blots. (D) The depletion of endogenous
ZAP enhances L1 retrotransposition: Flow cytometry was used to determine the percentage of
EGFP-positive, live-gated cells for each siRNA transfection condition (noted above the plots).
The X-axis depicts the scattering at 533 nm; the Y-axis depicts the scattering at 585 nm.
The EGFP-positive gate was set using the retrotransposition-deficient negative control,
pJM111-LRE3-mEGFPI [30,69].
(TIF)

S3 Fig. Supporting data for Fig 4. ZAP-S preferentially suppresses the expression of ORF1p.
(A) A schematic of the pLRE3-EF1-mEGFPΔIntron: pLRE3-EF1-mEGFPΔIntron expresses a
human L1 (LRE3) that is tagged with anmEGFPI expression cassette that lacks an intron. The
human elongation factor-1 alpha (EF1α) promoter (arrow) augments L1 transcription. The
ubiquitin C (UbC) promoter (upside down arrow) drives EGFP transcription. (B) ZAP-S inhib-
its ORF1p expression: Western blots were conducted using whole cell lysates derived from cells
co-transfected with pLRE3-EF1-mEGFPΔIntron and the ZAP-S expression plasmid or pCEP4
indicated above each lane. UTF indicates whole cell lysates from untransfected HeLa cell. Anti-
bodies are indicated on the right side of each blot. Tubulin is used as a loading control. Western
blot images depict a representative experiment that was repeated three times with similar re-
sults. Notably, upon extended exposure times ORF1p was able to be visualized in the ZAP-S
lane. (C) ZAP-S does not inhibit EFGP expression and/or accumulation: HeLa cells were co-
transfected with pLRE3-EF1-mEGFPΔIntron and the indicated expression plasmids (noted
above the plots). Flow cytometry was used to determine the percentage of EGFP-positive, live-
gated cells for each condition. UTF indicates untransfected HeLa cells. The EGFP-positive gate
was set using the UTF sample as a negative control. The X-axis depicts the percentage of EGFP
positive cells. The Y-axis indicates the side scattering profile (SSC). Approximately 1.2–1.7 x
106 GFP positive cells were collected and analyzed for each transfection condition.
(TIF)

S4 Fig. Supporting data for Fig 5. (A) ZAP-S-tGFP inhibits retrotransposition in HeLa cells:
Top panel: Schematics of tGFP-tagged ZAP constructs. Depicted are the relative positions of
the zinc-finger domains (light gray rectangles), cysteine-histidine (CCCH) zinc-fingers (verti-
cal black bars), and tGFP tag (green rectangles) ZAP-S expression constructs. Bottom panel:
Results of pJJ101/L1.3 retrotransposition assays. The X-axis indicates the cDNA co-transfected
with pJJ101/L1.3 or pcDNA6/TR. The Y-axis indicates pJJ101/L1.3 retrotransposition activity
(black bars). All values have been normalized to the pCEP4 empty vector control (100%). The
numbers above the bar graphs indicate the number of biological replicates performed with
each cDNA expression construct. Error bars represent standard deviations. (B-E) ORF1p and
ZAP co-localize with stress granules in HeLa cells: HeLa cells were co-transfected with pJM101/
L1.3Δneo and ZAP-S-tGFP; proteins were visualized by direct immunofluorescence. ORF1p
co-localizes with ectopic ZAP-S-tGFP and eIF3 in cytoplasmic foci (panel B). ORF1p co-
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localizes with ectopic ZAP-S-tGFP (panels A and B), but not with tubulin (panel C). GFP-
tagged G3BP co-localizes with endogenous ZAP in cytoplasmic foci (panel D). GFP-tagged
DCP1α forms cytoplasmic punctate structures, which do not appear to co-localize with endog-
enous ZAP (panel E). The right-most image in each panel represents a merged image. The cell
type is indicated at the top left (yellow), the protein name is listed on the bottom left, and the
name of the primary antibody used (italicized) is annotated at the bottom right. Nuclei were
stained with DAPI (blue) and the scale bar represents 25 μM.
(TIF)

S5 Fig. Supporting data for Fig 6. (A) Fluorescence microscopy was used to determine the
percentage of cells that contained L1 RNA in cytoplasmic ORF1p foci. The X-axis indicates the
plasmid that was co-transfected with pJM101/L1.3. The Y-axis of the graph depicts the per-
centage of cells where L1 RNA was detected in cytoplasmic ORF1p foci. Experiments were re-
peated three times. A total of ~60 visual fields (~1600 cells) were examined amongst all three
experiments and ~33–41 ORF1p foci containing cells were evaluated for each experimental
condition. Error bars represent standard deviations. (B) Confocal microscopy was used to de-
termine the number of ORF1p-expressing cells ~48 hours post transfection. The X-axis indi-
cates the plasmid that was co-transfected with pJM101/L1.3Δneo. The Y-axis of the graph
depicts the percentage of cells that express ORF1p. Experiments were repeated twice. Each ex-
periment contained two biological replicates and ~1100–1500 cells were enumerated amongst
all experiments for each condition. Error bars indicate standard deviations.
(TIF)

S1 Table. L1 ORF1p-interacting protein candidates identified by LC-MS/MS. ORF1p-
interacting proteins were selected based on the criteria that the protein was unique to the
pJM101/L1.3FLAG IP and was identified by two or more unique peptides (peptide error
�0.05; protein probability�0.95). Column 1 = protein name. Column 2 = protein mass. Col-
umn 3 = total number of identified peptides. Column 4 = number of unique peptides. Column
5 = the percentage of amino acid coverage for each of the respective proteins. Columns 6–
8 = whether the proteins were identified in the indicated studies [47,67,89]. Green highlighting
indicates ORF1p-interacting candidates that were verified by western blot (Fig 1D). "Y" in col-
umns 6–8 indicate that the protein was identified as a significant L1-interacting protein by sta-
tistical and/or direct biochemical methods; “n.s.” in column 7 indicates that the protein was
identified in the study, but that it did not reach the significance threshold set by the authors.
(TIF)
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