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Abstract
Drug-target interaction (DTI) is a key aspect in pharmaceutical research. With the ever-in-

creasing new drug data resources, computational approaches have emerged as powerful

and labor-saving tools in predicting new DTIs. However, so far, most of these predictions

have been based on structural similarities rather than biological relevance. In this study, we

proposed for the first time a “GO and KEGG enrichment score”method to represent a cer-

tain category of drug molecules by further classification and interpretation of the DTI data-

base. A benchmark dataset consisting of 2,015 drugs that are assigned to nine categories

((1) G protein-coupled receptors, (2) cytokine receptors, (3) nuclear receptors, (4) ion chan-

nels, (5) transporters, (6) enzymes, (7) protein kinases, (8) cellular antigens and (9) patho-

gens) was constructed by collecting data from KEGG. We analyzed each category and

each drug for its contribution in GO terms and KEGG pathways using the popular feature

selection “minimum redundancy maximum relevance (mRMR)”method, and key GO terms

and KEGG pathways were extracted. Our analysis revealed the top enriched GO terms and

KEGG pathways of each drug category, which were highly enriched in the literature and

clinical trials. Our results provide for the first time the biological relevance among drugs, tar-

gets and biological functions, which serves as a new basis for future DTI predictions.

Introduction
Drug-target interaction (DTI) studies are of great importance for drug research and develop-
ment (R&D), as they give rise to a better understanding of how drug molecules interact with
their targets and predict possible adverse drug reactions (ADRs). Over the past decade, statis-
tics have revealed a significant decrease in the rate that new drug candidates are translated into
effective therapies in the clinic [1], and drug repositioning has grown in importance. The
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application of known drugs and compounds for new indications would require even more DTI
information. Because the experimental examination of DTI is both time- and labor-consuming,
it is necessary to develop computational approaches in this field.

The use of in silicomethods as a complement can help researchers to quickly obtain useful
information. In recent years, a great deal of effort has been expended on the prediction of
DTIs, and a number of methods have been developed.

Text-mining approaches emerged as a simple and convenient tool to search published liter-
ature for the associations between drugs and genes [2], but they tend to produce redundancy
due to multiple gene and chemical names. Later, molecular docking approaches were widely
applied in DTI studies. Cheng et al. used molecular docking to identify drugs and their targets
[3], and Li et al. developed reverse ligand-protein docking to automatically search for com-
pound-protein interactions [4]. Despite these advantages, docking and reverse docking are
only suitable for proteins with known 3D structures, which limits their applications. Other
computational methods predict DTIs by similarities in phenotypic side effects [5] or chemical
structures [6] or by connections between chemicals with chemicals/proteins [6]. Moreover,
several network-based algorithms have been applied for DTI prediction. Prado-Prado et al. de-
veloped multi-target QSAR (Quantitative Structure–Activity Relationship) models with 3D
structural parameters and artificial neural network algorithms for the prediction of acetylcho-
linesterase and its inhibitors [7]. Cheng et al. employed network-based inference methods to
identify new targets for known drugs [8].

Despite the advancement in computational methods in DTI prediction, the above methods
are primarily based on the structural similarities of drugs rather than biological relevance. Re-
cently, several studies have reported the feasible prediction of drug targets and drug reposition-
ing using drug-involved pathway analysis. For example, Kotelnikova et al. found one signaling
pathway that was associated with glioblastoma by retrieving references and databases and
searching for compounds that affected multiple proteins in this pathway [9]. Cramer et al.
found using molecular pathway analysis that bexarotene, an anticancer drug, may be used to
treat Alzheimer’s disease [10]. Li et al. developed a prediction model for drug repositioning
using targets and pathways based on causal chains connecting drugs to diseases [11]. In view of
this, investigation of the association between pathways and drugs is helpful for discovering tar-
gets of drug compounds, thereby obtaining new drug effects. These studies made progress in
the investigation of drugs with biological functions.

DrugBank (http://www.drugbank.ca/, version 4.1, accessed July 19, 2014) [12,13] contains
7,685 drug entries and 4,282 non-redundant proteins that are linked to these drug entries. The
large quantity of DTI pairs is worthy of further investigation. KEGG (Kyoto Encyclopedia of
Genes and Genomes) provides a drug target-based classification system in which drugs are
classified into several classes according to their target proteins in KEGG DRUG (http://www.
genome.jp/kegg/drug/) [14].

Here, we adapted this classification database and divided all 2,015 drugs into following nine
classes based on their targets: (1) 657 drugs that target G Protein-coupled receptors (GPCRs)
(e.g., Levodopa, Metoprolol and Phentolamine); (2) 35 drugs that target Cytokine receptors
(CRs) (e.g., Insulin and Afatinib); (3) 228 drugs that target Nuclear receptors (NRs) (e.g.,
Testosterone, Estradiol and Tamoxifen); (4) 257 drugs that target Ion channels (ICs) (e.g., Ni-
fedipine, Phenobarbital and Sertraline); (5) 37 drugs that target Transporters (Ts) (e.g., Hydro-
chlorothiazide and Indapamide); (6) 28 drugs that target Protein kinases (PKs) (e.g., Aspirin
and Methotrexate; PKs are always downstream of GPCR, CR, IC or T in certain signaling path-
ways); (7) 451 drugs that target Enzymes (Es) (e.g., Metformin and Phenformin; Es represents
large biological molecules that are involved in thousands of metabolic processes that sustain
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life); (8) nine drugs that target Cellular antigens (CAs) (e.g., imiquimod); and (9) 313 drugs
that target Pathogens (Ps) (e.g., Penicillin and Levofloxacin).

If the target-based class of a given drug can be identified, its potential target proteins can be
restrained to this class, thereby reducing the search area. In our previous study, a computation-
al method was proposed to identify the target-based classes of drugs [6]. However, that study
was a methodology paper that could not identify factors that contribute to the determination
of drug target-based classes. In this study, we interpreted this system based on biological signif-
icance. It has been demonstrated that pathways may be important factors; additionally, Gene
Ontology (GO) can represent gene product properties [15,16]. The enrichment theory was
used to extract features from each pathway and each GO term to represent each investigated
drug. To analyze these features, a popular feature selection method, the minimum redundancy
maximum relevance (mRMR) [17], was used to evaluate each feature, thereby uncovering the
important pathways and GO terms in this system. Finally, 19 key KEGG pathways and 45 key
GO terms were selected to analyze the correlations between drugs and their target-based
classes.

In this study, a total of 19 functionally enriched KEGG pathways and 45 functionally en-
riched GO terms for drug molecules were investigated for their enrichment in these target-
based classes. In the remainder of this section, we provide a detailed discussion of key KEGG
pathways and GO terms according to their level values in the nine target-based classes. We
demonstrate that this classification scheme provides useful information for the determination
of drug target-based classes.

Materials and Methods

Materials
The codes of 3,610 drug compounds were retrieved from our previous study [6]; this dataset
originated from KEGG DRUG, one of the main databases in KEGG (http://www.genome.jp/
kegg/drug/, accessed September 2012). The drugs were classified into ten classes according to
the information in KEGG DRUG: (1) G protein-coupled receptors (GPCR); (2) Cytokine re-
ceptors (CR); (3) Nuclear receptors (NR); (4) Ion channels (IC); (5) Transporters (T); (6) En-
zymes (E); (7) Protein kinases (PK); (8) Cellular antigens (CA); (9) Cytokines (C); and (10)
Pathogens (P). Because drug compounds belonging to more than one class may produce noise
and make it difficult to obtain key features, these drugs were excluded; after exclusions, a total
of 3,537 classified drug compounds were obtained.

To obtain a high-quality and well-defined dataset, these 3,537 drugs were refined as follows:
(I) Map 3,537 drugs with their PubChem IDs; 2,425 drug compounds had available PubChem
IDs; (II) Exclude those that have no association with any human protein (this definition can be
found in Section 2.2), resulting in 2,016 drugs; and (III) Exclude the class ‘Cytokines’ and the
only drug (‘CID010173277’). Finally, we obtained a dataset S consisting of 2,015 drug com-
pounds that were classified into nine target-based classes: (1) GPCR, (2) CR, (3) NR, (4) IC, (5)
T, (6) E, (7) PK, (8) CA, and (9) P. The distribution of these 2,015 drug compounds is shown
in Table 1. Additionally, the codes of these 2,015 drug compounds and their target-based clas-
ses are available in S1 Table.

Associations between chemicals and proteins
To investigate which GO terms or pathways can determine drug target-based classes, a bridge
was required to associate drugs and GO terms or KEGG pathways. Human proteins are suit-
able because they link drug compounds and both GO terms or KEGG pathways. The linkage of
proteins and GO terms or KEGG pathways can be easily obtained by checking whether the
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protein is annotated in a certain GO term or KEGG pathway. The linkage of proteins and drug
compounds can be retrieved from STITCH (Search Tool for Interactions of Chemicals, http://
stitch.embl.de/) [18], a large-scale source providing associations between chemicals and be-
tween chemicals and proteins. These associations include both known and predicted associa-
tions. Chemicals and proteins are linked according to evidence gathered through experiments,
databases or the literature. The information that is provided by STITCH has been used to in-
vestigate various compound-related problems [6,19–24]. In the obtained file (protein_chemi-
cal.links.detailed.v4.0.tsv.gz), each association contained one chemical and one protein and
scores measuring the strength of the association from different aspects. Here, we focused on
whether a given chemical and a given protein occur in the file as an association. This informa-
tion was used to refine the investigated dataset (see Section 2.1) and encode each drug com-
pound in S (see Section 2.3).

Encoding method
To indicate the association between drug compounds and GO terms or KEGG pathways, we
employed the enrichment theory of GO terms and KEGG pathways to represent each drug
compound. For a certain drug compound d, let G(d) be a protein set containing human pro-
teins that have associations with d that can be easily obtained using the information that is
mentioned in Section 2.2.

GO enrichment. Given one drug d and one GO term GOj, the GO enrichment score is de-
fined as the—log10 of the hypergeometric test P value [25–27] of G(d) and GO term GOj,
which can be calculated by

SGOðd;GOjÞ ¼ �log10
�Xn
k¼m
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where N,M, n andm are the total number of proteins in humans, the number of proteins that
are annotated to the GO term GOj, the number of proteins in G(d), and the number of proteins
both in G(d) and annotated to the GO term GOj, respectively. If the GO enrichment score is
high for one drug and one GO term, they have a strong association. A total of 17,904 GO terms
were adopted to extract 17,904 GO enrichment scores.

Table 1. The distribution of the drug compounds in dataset S.

Class code Target-based class Target-based class abbreviation Number of drug compounds

1 G protein-coupled receptors GPCR 657

2 Cytokine receptors CR 35

3 Nuclear receptors NR 228

4 Ion channels IC 257

5 Transporters T 37

6 Enzymes E 451

7 Protein kinases PK 28

8 Cellular antigens CA 9

9 Pathogens P 313

Total — — 2,015

doi:10.1371/journal.pone.0126492.t001
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KEGG enrichment. Similar to the definition of the GO enrichment score, given as one
drug d and one KEGG pathway Pj, the KEGG enrichment score [27] is defined as follows:

SKEGG ðd;PjÞ ¼ �log10
�Xn
k¼m
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! � ð2Þ

where the meanings of N and n are same as those in Eq 1, andM andm are the number of pro-
teins in the KEGG pathway Pj and the number of proteins both in G(d) and Pj, respectively.
Similarly, drug d and pathway Pj have a strong association if the KEGG enrichment score be-
tween them is high. A total of 279 KEGG pathways were used to extract 279 KEGG
enrichment scores.

It can be observed from the above two paragraphs that the number of features in GO terms
was much larger than that in KEGG pathways. To fairly analyze the contribution of GO terms
and KEGG pathways, we constructed two datasets, SKEGG and SGO, from S, where each sample
in SKEGG was represented by 279 KEGG enrichment scores, and each sample in SGO was repre-
sented by 17,904 GO enrichment scores.

mRMR
As described in Section 2.3, each drug was represent by 279 features of enrichment scores in
the KEGG pathway or 17,904 GO enrichment scores. These scores indicate the associations
between drugs and their corresponding GO terms or KEGG pathways. However, not all GO
terms or KEGG pathways play the same role in the determination of drug target-based classes.
Some of these terms and pathways may indicate key contributions, while others have few asso-
ciations. To analyze these features (i.e., GO terms and KEGG pathways), a popular feature
selection method (mRMR) was employed. This method was first proposed by Peng et al. [17]
and to date has been used to analyze various complicated biological systems [28–35] because it
has two excellent criteria: Max-Relevance and Min-Redundancy. One of the main outputs of
the mRMR program is the MaxRel feature list, in which features are sorted based on their con-
tribution to the classification. The detailed procedure is as follows: Let x be a variable represent-
ing the samples’ class labels and y be another variable representing the values of all samples
under a certain feature. Then, the association between the samples’ class labels and the feature
can be measured by the mutual information (MI) of x and y as computed by

Iðx; yÞ ¼ ∬pðx; yÞlog pðx; yÞ
pðxÞpðyÞ dxdy ð3Þ

where p(x) and p(y) denote the marginal probabilities of x and y, respectively, and p(x, y) de-
notes the joint probabilistic distribution of x and y. MI is considered an ideal stochastic depen-
dence measurement [36], as it can detect not only linear but also non-linear dependencies and
can capture the heterogeneity of association [37]. The MaxRel feature list sorts features accord-
ing to the values as calculated by Eq 3, in that features with high values as calculated by Eq
3would receive high places in the MaxRel feature list.

Analysis of Drug Target-Based Classification System

PLOSONE | DOI:10.1371/journal.pone.0126492 May 7, 2015 5 / 12



Results and Discussion

Results of mRMRmethod
The mRMRmethod was used to analyze the GO terms and KEGG pathways (http://research.
janelia.org/peng/proj/mRMR/). For convenience, it was executed with default parameters on
the datasets SKEGG and SGO. As a result, we obtained two MaxRel feature lists that sorted fea-
tures from the KEGG pathways and GO terms according to the values as calculated by Eq 3.
These two lists are available in S2 and S3 Tables, respectively, although the list of GO terms
only includes the first 500 GO term features due to the computational time. Additionally, the
MI value for each listed feature is also available in S2and S3 Tables. Because features with high
MI values have strong associations for the determination of drug target-based classes, we se-
lected 19 features from KEGG pathways with MI values larger than or equal to 0.05 and 45 GO
term features with MI values greater than or equal to 0.1. These KEGG pathways and GO
terms are termed hereafter as key KEGG pathways and key GO terms.

Mean value of the key KEGG pathways and GO terms for each class
In Fig 1, we plotted the enrichment scores of all 2,015 drug compounds on key KEGG path-
ways and GO terms. On the left side, there was a cluster corresponding to GPCR, but other
small clusters were not very clear. It was difficult to analyze the key KEGG pathways and GO
terms based solely on their enrichment scores for drug compounds, as each class contained
multiple drug compounds. Therefore, it was necessary to refine their values as follows: For
each key KEGG pathway and one target-based class, we calculated the level value, which was
defined as the average of the enrichment scores under this KEGG pathway for all of the drug
compounds in this class. Similarly, we defined the level value of each key GO term and each
target-based class. The level values of nine target-based classes on the key KEGG pathways and
GO terms can be found in S4 Table. In addition to the level values of nine classes and the MI
value, we also calculated the traditional Analysis of variance (ANOVA) p value. The ANOVA
p values in nine out of 19 KEGG pathways and 40 out of 45 GO terms were smaller than 0.05.
Both the MI and ANOVA results suggested that the enrichment scores of key KEGG pathways
and GO terms were significantly different among different classes of drugs.

For certain key KEGG pathways or GO terms, the high level value of one target-based class
indicated that the drugs in this class may have high enrichment, thereby implying that this fea-
ture may provide key contributions for the identification of drugs in this class from other
drugs. To clearly show the mean value for different target-based classes for certain key KEGG
pathways or GO terms, we plotted a heat map for the key KEGG pathways or GO terms, as
shown in Fig 2. The following sections provide a detailed discussion of Fig 2.

Different level values of the GO and KEGG enrichment of nine drug
categories
KEGG DRUG provides a drug information resource based on chemical structures and classifies
drugs into nine categories based on their targets. In this study, to better understand the mecha-
nisms of existing drugs and provide clues for drug interaction and the future prediction of
DTIs, we associated drug targets with biological functions by analyzing the distribution of both
2,015 drugs and their nine categories in 19 KEGG pathways and 45 GO terms. The nine drug
categories show different enrichment levels in GO terms and KEGG pathways, implying the di-
versity in the biological function enrichment of each drug category.

Specifically, the GPCR category included 657 drug compounds that target G protein-cou-
pled receptors (GPCRs). GPCRs are seven-transmembrane domain receptors and constitute a
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large protein family that binds to signaling molecules outside the cell and activates signal trans-
duction pathways and cellular responses inside the cell. GPCRs are common drug targets and

Fig 1. The heat map of the enrichment scores of all 2,015 drug compounds on key KEGG pathways and GO terms. In the heat map, rows are KEGG
pathways and GO terms, and columns are drugs. The drug classes are the same as in Table 1. The matrix is row-wise normalized, and warmer colors
represent higher enrichment scores. On the left side, there is a cluster corresponding to GPCR, but other small clusters are not very clear.

doi:10.1371/journal.pone.0126492.g001

Analysis of Drug Target-Based Classification System

PLOSONE | DOI:10.1371/journal.pone.0126492 May 7, 2015 7 / 12



were estimated to serve as targets of approximately 40% of modern medical drugs [38]. Based
on our analysis, class 1 drugs were highly enriched in the hsa04080 “neuroactive ligand-recep-
tor interaction pathway” with a level value 9.88. The hsa04080 (neuroactive ligand-receptor in-
teraction) pathway contains many GPCRs, including growth hormone secretagogue receptor
(GHSR), gonadotropin-releasing hormone receptor (GNRHR), leucine-rich repeat-containing
G protein-coupled receptor 7/8 (LGR7/8), corticotrophin-releasing hormone receptor 1/2
(CRHR1/2), gastrin-releasing peptide receptor (GRPR), neuromedin U receptor 1/2 (NMUR1/
2) and tachykinin receptor 1/2/3 (TACR1/2/3), indicating the indispensable function of GPCR
signaling in neuronal cells [39,40].

Similarly, the CR category included 35 drug compounds that target cytokine receptors
(CRs). CRs are a family of either membrane-bound or soluble receptors that binds cytokines
and can be classified into several subfamilies. The drugs in the CR category were highly en-
riched in the hsa04014 “Ras signaling pathway” (level value = 9.89), hsa04015 “Rap1 signaling
pathway” (level value = 9.54) and hsa04151 “PI3K-Akt signaling pathway” (level value = 9.37).
These results suggest that these drugs tend to act on the same pathway. The cell surface CRs
(EGFR, FGFR1/2/3/4, NGFR, insulin receptor (INSR) and IGF1R) play crucial roles in signal-
ing transduction. Ras and Ras-like small GTPase Rap1 are upstream of many protein kinases,
including Raf1 AKT and PIK3C. Rap1 signaling functions in integrin activation, cell shape de-
termination, and adherens junction formation [41]. Furthermore, for the PI3K-Akt signaling
pathway, CRs, including EGFR, FGFR1/2/3/4, NGFR, and INSR and PK proteins such as AKT,
MAP2K1/2, and PDPK1, are involved in this pathway.

Comparatively, drugs that target transporters (Ts) and pathogens (Ps) do not have highly
enriched functions. Ts are a family of membrane proteins that are involved in the movement of

Fig 2. The heat map of the level values of each target-based class on key KEGG pathways and GO terms. The rows are drug classes, and the columns
are KEGG pathways and GO terms. Darker colors represent higher mean values, i.e., average enrichment scores.

doi:10.1371/journal.pone.0126492.g002
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ions, small molecules or macromolecules to cross a biological membrane [42]. Ps include a
wide range of infectious agents, such as a virus, bacterium, prion, fungus or protozoan [43].
Their top enriched functions are hsa04080 neuroactive ligand-receptor interaction, but the
level values are low (1.75 and 0.87). These results suggest that although these drugs share the
same class of targets, they vary in biological functions due to different enriched pathways.

Potential application of our method in drug interaction and DTI prediction
Our analysis revealed enriched GO and KEGG pathways of nine drug categories. Among
these pathways, some GO terms or KEGG pathways are highly enriched by several drug
categories. For example, hsa04080 neuroactive ligand-receptor interaction pathway was en-
riched by GPCR (level value = 9.88) and IC (level value = 6.62) category drugs, and the
hsa04151 PI3K-Akt signaling pathway was enriched by CR (level value = 9.37) and PK (level
value = 7.10) category drugs. PI3K-Akt signaling pathways are crucial to many aspects of cell
growth and survival under both physiological and pathological conditions, such as cancer [44].
These results indicate that although many drugs have different targets, they are involved in the
same biological pathway and are likely to have potential synergistic drug interactions.

For DTI prediction, two major methods are extensively used: the traditional drug discovery
method, in which new drugs are predicted for a certain target, and the chemical biology meth-
od, in which new potential targets are predicted for a given drug [45]. Here, our analysis not
only provides the overall distribution of each drug category for KEGG pathways and GO terms
but also provides a reference to each drug. This information can help predict new DTIs.

Conclusion
This study analyzed a drug target-based classification system using the enrichment theory of
gene ontology and the KEGG pathway. The minimum redundancy maximum relevance meth-
od was used to analyze the contribution of each GO term and KEGG pathway to determine
drug target-based classes. The analysis results suggest that some GO terms and KEGG path-
ways are important for the identification of drug target-based classes. We hope that these find-
ings promote the comprehension of this classification system and the study of drug-
target interactions.
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