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Abstract

The International Committee on Taxonomy of Viruses (ICTV) recognized the Polydnaviridae in 

1991 as a virus family associated with insects called parasitoid wasps. Polydnaviruses (PDVs) 

have historically received limited attention but advances in recent years have elevated interest 

because their unusual biology sheds interesting light on the question of what viruses are and how 

they function. Here, we present a succinct history of the PDV literature. We begin with the 

findings that first led ICTV to recognize the Polydnaviridae. We then discuss what subsequent 

studies revealed and how these findings have shaped views of PDV evolution.
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Introduction

In the recent inaugural issue of The Annual Review of Virology (ARV), Summers (2014) 

examined the question of what viruses are and the ever-changing ways virologists have 

defined them since their discovery in the nineteenth century. In the same issue, we reviewed 

the Polydnaviridae (Strand and Burke, 2014), which was recognized as a family of insect 

viruses by the International Committee on Taxonomy of Viruses (ICTV) in 1991 but has 

largely languished in obscurity in the broader virology literature. Even among insect 

virologists, polydnaviruses (PDVs) have historically received limited attention because their 

life cycle makes them difficult to work with and their unusual biology was a disincentive for 

labs vested in other, primarily model, species. Yet advances in recent years have elevated 

interest in PDVs, precisely because their unusual biology sheds interesting light on virus 

evolution and what the essential qualities of viruses are. These considerations also underlie 

why we were asked to provide a review on PDVs for the 60th anniversary issue of Virology. 

We cannot avoid overlap here with other recent summaries including the aforementioned 
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ARV article (Beckage and Drezen, 2012; Burke and Strand, 2012a; Strand and Burke, 2012; 

Strand and Burke, 2013; Gundersen-Rindal et al., 2013; Herniou et al., 2013; Strand and 

Burke, 2014). However in keeping with an anniversary issue, we orient this paper a bit 

differently by discussing the PDV literature in largely historical order. We begin with the 

findings that first led ICTV to recognize PDVs as viruses. We then discuss what later studies 

found and how these results have progressively shaped views of PDV evolution.

Early years: formal recognition of PDVs as a virus family

The study of PDVs began in the late 1960s and 1970s when particles resembling viruses 

were observed by electron microscopy (EM) in the reproductive tracts of a few insect 

species called parasitoid wasps (Hymenoptera) (Rotheram, 1967; Vinson and Scott, 1975; 

Stoltz et al., 1976). These insects are well known to entomologists because of their 

widespread abundance, high species diversity, and importance as biocontrol agents for many 

pest species in agriculture and forestry. In contrast, they are generally not familiar to other 

life scientists including virologists because of their small size and specialized habits. In brief 

then, parasitoid wasps are defined as insects that are free-living during their adult stage, 

which reproduce by laying eggs on or in the bodies of other arthropods referred to as hosts 

(Godfray, 1994; Pennacchio and Strand, 2006). Wasp progeny develop into adults by 

feeding parasitically on a single host and the host usually dies as a consequence of being 

parasitized. Most parasitoid wasps are also specialists that parasitize only one or a few host 

species.

The Hymenoptera is one of the largest insect orders (>200,000 species) and is divided into 

several superfamilies and many families. Most of these taxa consist primarily or exclusively 

of parasitoids. Studies in the late 1970s and early 1980s, however, suggested that PDVs are 

only associated with wasps in one superfamily, the Ichneumonoidea, which is divided into 

two families named the Braconidae and Ichneumonidae (Krell and Stoltz, 1979; 1980; Stoltz 

and Vinson, 1979). Studies during this period also noted that PDV particles from braconid 

and ichneumonid wasps morphologically differ from one another with the former having 

cylindrical, often tailed nucleocapsids surrounded by a single envelope that resembled some 

non-occluded baculoviruses (see below), and the latter having fusiform nucleocapsids with 

two envelopes (Stoltz and Vinson, 1979).

Despite their dissimilar morphology, early studies also showed that PDVs from braconids 

and ichneumonids share several features including a common life cycle. Both persist in all 

cells of braconid or ichneumonid wasps as integrated proviruses (Stoltz, 1990; Fleming and 

Summers, 1991). Both also only replicate in pupal and adult stage female wasps in nuclei of 

cells located in the ovaries called calyx cells. Replication produces large numbers of virions 

that are released by lysis of calyx cells in the case of braconids or budding in the case of 

ichneumonids. Virions are then stored at high density in the lumen of the reproductive tract 

(Stoltz and Vinson, 1979). Nucleic acid analysis showed that virions from braconid and 

ichneumonid wasps contain multiple circular, double-stranded DNAs that are non-equimolar 

in abundance. The number and size of DNA segments was noted to vary between wasp 

species (Krell and Stoltz, 1979; Stoltz and Vinson, 1979; Krell et al., 1982) with subsequent 
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studies estimating aggregate sizes for these DNAs to range from ~150 kb to more than 600 

kb (see below).

Braconid and ichneumonid wasps use their ovipositors to inject eggs containing the proviral 

genome, PDV particles, and other secretions into the body cavity of the hosts they parasitize, 

which are primarily larval stage Lepidoptera (moths and butterflies). Experiments in the late 

1970s and 1980s showed that PDVs rapidly infect host cells and discharge their DNAs into 

nuclei, which is followed by expression of viral genes (Stoltz and Vinson, 1979; Fleming et 

al., 1983; Blissard et al. 1986). Experiments further demonstrated that survival of wasp 

offspring depends on infection of the host by PDVs and associated viral gene expression 

because wasp offspring die in the absence of infection by its associated PDV. This is 

because most PDVs disable immune defenses, which prevent hosts from killing wasp 

offspring (Edson et al. 1981; Guzo and Stoltz, 1987; Davies et al., 1987). PDVs were noted 

to also alter the growth of hosts (Stoltz and Vinson, 1979; Beckage and Riddiford, 1982). 

Yet, parallel studies showed that PDVs do not replicate in the hosts of wasps (Theilmann 

and Summers, 1986). The molecular basis for altering host physiology in the absence of 

replication was not understood in these early studies. The biological significance of these 

traits, however, was interpreted to mean that PDVs are only transmitted vertically through 

the germline of wasps, and wasp survival depends on the genes replication-defective PDV 

virions deliver to hosts. The reliance of PDVs and wasps on one another for survival further 

suggested they form a mutualistic association (Stoltz and Vinson, 1979; Edson et al., 1981; 

Fleming, 1992).

In summary, the first studies of PDVs referred to them as nuclear secretions or particles, 

which implicitly suggested they could be either non-viral or viruses. Thereafter, the 

literature up to the early 1990s strongly concluded PDVs were viruses because they: 1) 

replicate in the calyx cells of wasps, 2) morphologically look like viruses, 3) package 

nucleic acid, 4) are infectious, and 5) contain genes that are transcribed after infection of 

hosts (Stoltz and Vinson, 1979; Fleming, 1992) (Fig. 1). That no other known viruses 

packaged segmented, circular dsDNA genomes or exhibited a mutualistic association with 

another organism (wasps) further suggested PDVs were a new family (Fig. 1). Thus, based 

on their “poly-DNA” genomes, the family Polydnaviridae was proposed in 1984 along with 

a description of its key characters (Stoltz et al., 1984). ICTV ultimately adopted this 

proposal while recognizing two genera: the Bracovirus (BV) associated with wasps in the 

family Braconidae and the Ichnovirus (IV) associated with wasps in the family 

Ichneumonidae (Francki, 1991).

1990s-early 2000s: Experimental struggles and phylogenetic insights from 

wasps

Studies in the 1990s and early 2000s identified several PDV genes transcribed in hosts and 

provided new information on the physiological roles of PDVs in parasitism (Strand and 

Noda, 1991; Strand et al., 1992; Harwood et al., 1994; Li and Webb, 1994; Strand, 1994; 

Shelby and Webb, 1994; Doucet and Cusson, 1996; Asgari et al., 1996; Strand et al., 1997; 

Johner and Lanzrein, 2002; Chen et al., 2003; Glatz et al., 2003: Beck and Strand, 2003). 

Additional information was generated about the DNAs packaged into BV virions including 

Strand and Burke Page 3

Virology. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their integration in the genome of wasps, their amplification, and packaging into virions 

(Albrecht et al., 1994; Gruber et al., 1996; Pasque-Barre et al., 2002; Belle et al., 2002; Beck 

et al., 2007). Studies of IVs also showed that some DNA segments packaged into virions 

undergo a recombination process that produces nested segments (Xu and Stoltz, 1993; Cui 

and Webb, 1997). Overall though, the experimental study of BVs and IVs struggled to make 

headway for several reasons. The most serious of these was that replication only occurs in 

the ovaries of very small wasps (most 5 mm or less in size) with also no permissive cell 

lines available for propagating PDVs. These factors greatly constrained the availability of 

material for study and the types of experiments that could be conducted. They also rendered 

many standard genetic and molecular virology methods available at the time useless for 

characterizing PDV genes.

In contrast, important insights were generated during this period by studying the 

phylogenetics of wasps that carry PDVs. In the case of braconids, all BV-carrying species 

were shown to reside in a small number of subfamilies that form a monophyletic assemblage 

called the microgastroid complex (Whitfied, 1992). This complex was also estimated to 

have diverged ~75 million years ago (MYA) from other subfamilies of braconids, which 

lack BVs (Whitfield, 2002). More recent data estimate the microgastroid complex diverged 

~100 MYA and contains ~50,000 species, which makes it among the largest natural taxa of 

animals on Earth (Murphy et al. 2008; Theze et al., 2011; Rodriguez et al. 2013). Studies of 

ichneumonids estimated that 14,000 species in two subfamilies carry IVs (Quicke et al., 

2009). It remains unclear whether these subfamilies form a monophyletic assemblage, but 

higher order data clearly indicated that IV-carrying ichneumonids and BV-carrying 

braconids are distantly related (Quicke et al., 2009; Heraty et al., 2011). These results were 

meaningful to the PDV literature for two reasons. First, they established that all BV-carrying 

species evolved from a common ancestor 100 MYA, which also suggested the BV-wasp 

association is ancient. Second, they suggested BVs and IVs evolved independently (i.e. the 

Polydnaviridae is not a natural taxon). This conclusion was consistent with the different 

morphologies of BV and IV particles, but if correct also meant the shared life cycle of BVs 

and IVs reflected convergent evolution driven by their similar roles in parasitism of hosts by 

wasps (Webb and Strand, 2005; Strand, 2010).

Mid-2000s: Sequencing the DNAs in particles further muddy the PDV 

waters

Molecular data from PDVs that could corroborate findings from the phylogenetic study of 

wasps were not available until the mid-2000s when technical advances finally made it 

possible to sequence, assemble, and analyze the complex population of DNAs present in BV 

and IV particles from different wasp species (Espagne et al., 2004; Webb et al., 2006; 

Lapointe et al., 2007; Tanaka et al., 2007; Desjardins et al., 2008; Chen et al., 2011). These 

sequencing results showed that the DNAs in BV and IV particles mirrored wasp phylogeny 

with gene content from closely related species being more similar to one another than to 

more distantly related species. Comparisons between BVs and IVs further showed they 

largely package different genes, which fully supported an independent origin. Yet consistent 

with their similar life cycle, sequencing also identified several architectural features besides 
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segmentation that DNAs in BV and IV particles shared. These included low coding 

densities, a strong A:T bias, and the presence of many genes that have diversified through 

duplication events into multimember families.

The most important finding, however, was that almost no genes with homology to known 

viral genes were present on the DNAs in BV or IV particles including none with predicted 

functions in DNA replication, transcription, or virion formation (Espagne et al., 2004; Webb 

et al., 2006; Lapointe et al., 2007; Tanaka et al., 2007; Desjardins et al., 2008; Chen et al., 

2011). Instead, most genes were either orphans or shared homology with genes from insects 

or other eukaryotes. Several of these genes were also related to factors in eukaryotic 

signaling pathways, which suggested they were virulence factors that caused some of the 

physiological alterations that occur in parasitized hosts. Subsequent studies supported this 

by demonstrating experimentally how certain BV and IV gene products interact with host 

immune molecules or cells (Beck and Strand, 2005; Thoetkiattikul et al., 2005; Beck and 

Strand, 2007; Ibrahim and Kim, 2008; Labropoulou et al., 2008; Kwon and Kim, 2008; 

Cooper et al., 2011; Magkrioti et al., 2011; Bitra et al., 2012; Gueguen et al., 2013), while 

implicating other genes in altering host growth, metabolism or endocrine physiology 

(Provost et al., 2004; Falabella et al., 2006; Kim et al., 2013; Presad et al., 2013).

That many of the genes present in BV and IV particles shared homology with genes present 

in insects was initially interpreted to mean they derived from wasps (see Stoltz and Krell, 

2012). Comparative and phylogenetic data analyses, however, revealed a much more 

complex picture by showing that the genes in BV and IV particles have been acquired at 

different times in evolutionary history and from different sources (Huguet et al., 2012). 

Some are recent acquisitions from wasps (Desjardins et al., 2008; Burke and Strand, 2014), 

whereas others have been acquired by horizontal gene transfer from organisms outside of the 

Arthropoda or are ancient and of uncertain ancestry (Huguet et al., 2012; Burke and Strand, 

2012a; Serbielle et al., 2013; Herniou et al., 2013). In keeping with this variable origin and 

history of gene acquisition, many genes have introns and other features associated with 

eukaryotic ancestry while several others are small and intronless as seen for genes of viral 

origin.

Overall then, the DNAs in BV and IV particles largely differ from one another in gene 

content although both contain primarily if not exclusively genes with demonstrated or 

hypothesized roles in altering the physiology of parasitized hosts (Fig. 2). This supported the 

independent origins of BV and IVs, explained why neither entity replicates outside of wasps, 

and further supported that BV and IV particles function as replication-defective gene 

delivery vectors that wasps use to parasitize hosts. The larger message, however, was that 

BV and IV particles showed no evidence of viral ancestry (Fig. 2). This supported the 

perspective that BVs and IVs are not viruses and should not be recognized by ICTV 

(Federici and Bigot, 2003; Whitfield and Asgari, 2003).
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Late 2000s: transcriptome and functional data establish a viral origin for 

BVs

Entering the late 2000s, the aphorism “absence of evidence is not evidence of absence” very 

much applied to the PDV literature. That is, the absence of “viral” genes in particles did not 

alter that replication-like events occur in wasp calyx cells or that BVs and IVs look and, in 

several respects, function like viruses (Fig. 2). So the issue shifted to identifying the genes 

involved in particle formation in calyx cells. The first major breakthrough came from 

producing ovary cDNA libraries for two BV-carrying wasps, Cotesia congregata and 

Chelonus inanitus, Sanger sequencing a subset of clones, and then coupling these data to 

proteomic analyses of the particles (designated as CcBV and CiBV) produced by each 

species (Bezier et al., 2009; Wetterwald et al., 2010). A third, more comprehensive data set 

generated by Illumina sequencing and Orbitrap LC-MS technology was thereafter produced 

for the braconid Microplitis demolitor and its associated BV named MdBV (Burke and 

Strand, 2012b; Burke et al., 2013).

Data from these species identified 42 transcripts specifically expressed in ovaries (=calyx 

cells) during replication with weak (19–41%) but recognizable identity to genes from 

another family of large, enveloped DNA viruses that infect insects called nudiviruses (Wang 

and Jehle, 2009). Although poorly studied, the Nudiviridae is also the sister group to the 

Baculoviridae, which is among the best-studied families of insect viruses (Theze et al., 

2011; Rohrmann, 2013). All baculoviruses examined to date share 37 core genes of which 

about half are required for replication (Herniou et al., 2003; Rohrmann, 2013). These 

include a DNA polymerase (DNApol) that replicates the viral genome, four subunits of a 

novel DNA dependent RNA polymerase (lef-4, lef-8, lef-9, p47), and several structural 

genes with promoter sequences that are specifically recognized by the viral RNA 

polymerase. These include vp39, vlf-1, p74 and pif genes that are capsid or envelope 

components. No functional data are available from nudiviruses but data from six sequenced 

nudivirus genomes indicate they share 20 baculovirus core genes including DNApol, the 

RNA polymerase subunits, and the aforementioned structural genes (Wang and Jehle, 2009; 

Rohrmann, 2013).

Nudivirus-like genes upregulated in calyx cells at the onset of replication include the four 

RNA polymerase subunits, which is then followed by expression of the nudivirus-like 

structural genes (Burke and Strand, 2012a). Three lines of evidence further indicated these 

nudivirus-like genes retain ancestral functions. First, proteins corresponding to all of the 

baculovirus-like capsid and envelope genes were detected in CcBV, CiBV, and MdBV 

particles (Bezier et al., 2009; Wetterwald et al., 2010; Burke et al., 2013). Second, loss of 

function studies in M. demolitor using RNA interference indicated the RNA polymerase 

subunit genes produced a functional enzyme that transcribes predicted structural genes but 

not wasp genes, while vp39, p74, and pif-1 were required to produce functionally normal 

virions (Burke et al., 2013). Third, BV and nudivirus virions have very similar morphology, 

which was first noted in early EM studies at a time when nudiviruses were not yet 

recognized but instead were considered as a type of ‘non-occluded’ baculovirus (Stoltz and 

Vinson, 1979).
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Other results identified unique features of BV replication relative to baculoviruses and 

nudiviruses. These include the absence from transcriptome data sets of any homologs of 

baculovirus/nudivirus genes involved in viral DNA replication except for a helicase in M. 

demolitor. This suggested replication of the DNAs packaged into BV particles relies 

primarily on wasp DNA replication machinery (Burke and Strand, 2012b). While early 

studies suggested that amplification of the DNAs packaged into virus particles also involved 

excision of proviral segments from the genome of calyx cells (Gruber et al., 1996; Savary et 

al., 1999), more recent data indicate this is not the case (Louis et al., 2013). Other data 

showed that multiple variants of a tyrosine recombinase named integrase (int) known from 

nudiviruses but not baculoviruses is part of the BV core gene set. These int genes are 

structurally related to vlf-1, and both exhibit recombinase functions required for proper 

processing of the circularized DNAs that are packaged into virions (Burke et al., 2013). 

Finally, while all of the above nudivirus-like genes are transcribed in wasp calyx cells 

during replication, most of the virulence genes on the DNAs packaged into virions are not 

(Bitra et al., 2011; Burke and Strand, 2012b). Yet many or most of these genes are 

transcribed in the permissive hosts of wasps following infection (Provost et al., 2011; Bitra 

et al., 2011; Chevignon et al., 2014).

Similar approaches with three IV-carrying wasps identified no nudivirus or baculovirus-like 

genes but did identify genes corresponding to structural proteins in IV virions (Volkoff et 

al., 2010). These genes share no recognizable homology with any known viral structural 

gene but they do exhibit features suggestive of being of viral origin (Volkoff et al., 2010). 

Whether the ancestor of IVs is now extinct or undiscovered is unclear. Comprehensive 

expression studies also indicate that many virulence genes on DNAs in IV particles are 

transcribed in permissive hosts but with small exception such as rep genes (Theilmann and 

Summers, 1988; Rasoolizadeh et al., 2009) are not transcribed in wasps (Volkoff et al., 

2010; Doremus et al., 2014).

Relationships between BVs, nudiviruses and baculoviruses

By 2012, indisputable connections had been established between BVs and nudiviruses. The 

monophyly of macrogastroid braconids combined with other data further supported that all 

BV-carrying wasps descend from a common nudivirus-wasp ancestor, and that nudiviruses 

diverged from baculoviruses ~300 MYA (Theze et al., 2011). Interest thus turned to asking 

more questions about how BVs evolved and what features underlie their unique biology 

relative to their ancestors. All baculoviruses and nudiviruses replicate and package a single 

large circular dsDNA (>100 kb) genome into virions (Wang and Jehle, 2009; Rohrmann, 

2013). Like other large DNA viruses, baculoviruses and nudiviruses also exhibit high 

diversity in gene content outside of core genes due to repeated acquisition and loss of genes 

from exogenous sources that are selectively advantageous for specialization onto different 

hosts. In turn, different lineages of baculoviruses and nudiviruses have evolved in response 

to host speciation. BVs obviously differ from baculoviruses and nudiviruses in regard to the 

multiple, circular dsDNAs they replicate and package as well as the genes on these DNAs. 

Yet they are similar in the sense that all BVs share a set of core genes required for 

replication, while exhibiting overall high diversity in gene content due to virulence genes 
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that have been acquired from diverse sources and at different times that have functions in 

parasitism of hosts.

Most baculoviruses and nudiviruses are virulent pathogens that establish systemic, fatal 

infections by introducing their circular genomes into the nuclei of infected cells (Rohrmann, 

2013). In the case of baculoviruses, the viral genome persists as an episome in infected cells 

with early genes like DNApol and the RNA polymerase subunits being transcribed followed 

by expression of structural genes that result in replication of the genome and virion 

formation. Virions are then released by either lysis or budding to infect other cells. On the 

other hand, a few nudiviruses such as HzNV-1 and -2 are known that preferentially infect 

the reproductive systems of insects and in vitro establish persistent infections by integrating 

into the genome of infected cells (Wang and Jehle, 2009; Burand et al., 2012). HzNV-1 can 

also be reactivated to produce lytic infections (Wu et al., 2010; 2011). This finding 

suggested to labs studying BVs that a nudivirus ancestor may have initially established a 

persistent infection in a braconid wasp by integrating its circularized dsDNA genome into 

the germline as a linear proviral DNA (Drezen et al., 2012; Strand and Burke, 2012; 2013). 

Thereafter, rearrangements must have occurred that separated the nudivirus-like replication 

genes from virulence genes located on multiple DNAs. Changes further limited the 

expression and function of replication genes (and thus virus replication) to wasp calyx cells, 

while allowing delivery of a species-specific set of genes to the hosts of wasps via 

replication-defective virions. Understanding the nature of these alterations required finding 

and characterizing the different components of BV proviral genomes.

BAC clone sequencing identifies some features of BV proviral genomes

Most textbooks state that a provirus is a virus genome that is integrated into the DNA of a 

host cell. The biology of BVs obviously differs from most viruses but in keeping with the 

above definition BV proviral genomes consist of the core genes which have functions in 

formation of virions plus the DNAs and associated genes that are amplified, circularized, 

and packaged into virions (Strand and Burke, 2012). The DNAs in virions are also usually 

referred to in the PDV literature as proviral segments when integrated in the genome of 

wasps and as the encapsidated form of the genome when packaged in virions. The first 

insights into BV proviral genome architecture actually preceded the transcriptome studies 

that identified the nudivirus-like genes. It came from screening bacterial artificial 

chromosome (BAC) libraries made against two wasp species in the genus Glyptapanteles 

(Glyptapanteles indiensis, G. flavicoxis) that produce BVs named GiBV and GfBV 

(Dejardins et al., 2007; 2008). These data showed that the circularized DNA segments in 

particles reside as linear DNAs in the genomes of wasps, which are organized into 6 loci 

(Dejardins et al., 2007; 2008). Two of these loci contained multiple segments arranged 

tandemly while the other loci contained one or two segments. Subsequent BAC clone 

sequencing from two species in the genus Cotesia (Cotesia congregata, C. sesamiae) plus 

additional data from Microplitis demolitor show the same general organizational features 

although the total number of proviral loci and the number of proviral segments per locus 

differ between species (Bezier et al., 2013; Burke et al., 2014). Despite differences in gene 

content, the overall similarity in architecture of proviral segment loci between GfBV, GiBV 

CcBV, and MdBV also suggested shared ancestry.
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Within species comparisons indicate adjoining proviral segments in a given locus are more 

similar to one another than to more distantly related segments. This suggested proviral 

DNAs have primarily evolved through tandem duplication events over evolutionary time 

followed by sequence divergence (Desjardins et al., 2008; Bezier et al., 2013; Burke et al., 

2014). A second conserved feature gleaned from these studies is that direct repeats 

containing the tetramer AGCT flank each segment, which earlier studies identified as the 

site where each segment circularizes for packaging into nucleocapsids (Savary et al., 1997; 

Annaheim and Lanzrein, 2007). A study published in 2011 also showed that MdBV DNAs 

rapidly integrate into the genome of host cells following infection via an inverted repeat 

present in circularized segments (Beck et al., 2011). Thus, to distinguish between these two 

features, we named the conserved repeats flanking each proviral segment in the genome of 

M. demolitor wasp integration motifs (WIMs), and the inverted repeat that identifies the site 

of integration of circularized segments into the genome of a host cell as host integration 

motifs (HIM) (Beck et al., 2011). Analysis of MdBV proviral segments showed that most 

contain a HIM (Burke et al., 2014), while database analyses show that HIMs are also present 

in proviral segments of CcBV, GiBV, and GfBV.

Largely absent, however, from these proviral segment domains were the nudivirus-like 

genes identified in transcriptome studies with only one structural gene (odv-e66-like) found 

between locus 1 and 2 in C. congregata (Bezier et al., 2009). In contrast, BAC clone 

sequencing did identify an 18 kb domain in the genome of C. congregata that contained 10 

nudivirus-like genes, including several that are structural components of CcBV virions, plus 

5 other nudivirus-like genes outside of this cluster that were flanked by wasp DNA (Bezier 

et al., 2009). All of these nudivirus-like genes were also intronless.

The collective picture from these data is that BV proviral genomes consist of two functional 

components: proviral segments organized into multiple loci that are packaged into virions 

and nudivirus-like core genes that are required for virion formation (Fig. 3). The close 

proximity of several nudivirus-like genes to one another suggested this domain may be part 

of the original site of integration of a nudivirus into the genome of the ancestor of 

microgastroid braconids (Bezier et al., 2009). Finding a nudivirus-like gene in proximity to 

one of the proviral segments in C. congregata also suggested that proviral segment loci and 

nudivirus-like core genes are physically linked in the genomes of wasps (Belle et al., 2003; 

Bezier et al., 2009; Herniou et al., 2013) (Fig. 3).

Whole genome sequencing of wasps indicates BV proviral genomes are 

dispersed

The strength of the preceding BAC data is they identified how proviral segments are 

organized while also showing that some nudivirus-like genes are clustered. Their weakness 

is they provided too little genomic context to ascertain how physically close or distant 

different proviral loci and nudivirus-like genes are to one another in the genomes of wasps. 

BAC clone sequencing also failed to identify many of the nudivirus-like genes identified in 

transcriptome studies, including several particularly important factors for replication like 

most of the RNA polymerase subunit genes. Thus, the only way to generate an overall 

picture of proviral genome architecture was whole genome sequencing of wasps.
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This was recently done for Microplitis demolitor with assembly of its ~258 Mb genome 

revealing three key findings (Burke et al., 2014). First, these data showed that the eight loci 

containing MdBV proviral segments are flanked by large distances of wasp genomic DNA, 

which indicates each locus is physically distant from the other. Second, they identified all of 

the nudivirus-like genes previously described in transcriptome studies (Burke and Strand, 

2012a). All of these genes are intronless. Twenty of these genes reside in a 75 kb cluster 

flanked by wasp genes with introns, which indicates the M. demolitor genome contains a 

nudivirus-like gene cluster. A subset of these genes are also present in the same order and 

orientation as the nudivirus cluster identified in C. congregata genome. However, most of 

the remaining nudivirus-like genes including helicase, all of the RNA polymerase subunits, 

and several structural genes required for virion formation are located singly on different 

scaffolds in the M. demolitor genome. Third, almost none of these nudivirus-like genes 

reside in proximity to any proviral segment locus, which indicates the MdBV proviral 

genome is overall highly dispersed (Fig. 4).

The conserved synteny of predominantly structural genes in the nudivirus-like cluster of M. 

demolitor and C. congregata lends further support this domain represents the initial 

integration site for the nudivirus ancestor while suggesting that maintenance of these genes 

in a cluster is functionally important for virion formation. These data also indicate the 

MdBV and CcBV nudivirus-like clusters have remained stable since divergence 53 Mya, 

which suggests dispersal of the other nudivirus-like genes occurred relatively early in BV 

evolution. In contrast, whether the dispersed nudivirus-like genes identified in M. demolitor 

reside in similar locations in other species will remain unknown until additional comparative 

data are available. Also unknown from the current assembly of the M. demolitor genome is 

whether the different components of the MdBV genome reside on one or multiple wasp 

chromosomes (Fig. 4). Nonetheless, they indicate BV proviral genome components are 

organized in a manner dissimilar from their ancestors or other entities referred to as viruses 

that have a proviral phase.

What does genome dispersal mean for function?

At present, the literature indicates most nudivirus-like core genes retain their ancestral 

functions despite their dispersal in the genomes of wasps. Genome dispersal is also, 

obviously, not a barrier to high-level replication in calyx cells, which in the case of M. 

demolitor considerably exceeds replication levels of baculoviruses in permissive host cells 

(Burke and Strand, 2012b; Burke et al., 2013). Two features, likely inherited from the 

nudivirus ancestor, make this possible. First, the RNA polymerase subunits, once expressed 

and assembled to form a holoenzyme, specifically transcribe the nudivirus-like structural 

genes through promoter recognition regardless of their location in the wasp genome (Burke 

et al., 2014). Second, currently unknown DNA replication machinery plus the two 

nudivirus-like integrases (int-1, vlf-1) likely use the direct repeat boundaries (WIMs) to 

recognize all proviral segments for proper amplification, processing and packaging into 

virions. In contrast, the absence of these motifs from any of the DNA domains where 

nudivirus-like genes reside results in none being processed and packaged into particles.
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The evolutionary events that produced this dispersed architecture are unclear. The absence 

of nudivirus-like genes in BV proviral segments suggests this feature must have arisen early 

in BV evolution (Drezen et al., 2012). Yet recognition of WIM domains by the nudivirus-

like integrases suggests these flanking motifs derive from the ancestor. One possibility for 

dispersal is the ancestral nudivirus genome duplicated after integration. Another is several 

copies of the genome initially integrated, followed by elimination of conserved replication 

genes from some and elimination of WIMs from others (Strand and Burke, 2012; Gudersen-

Rindal et al., 2013, Herniou et al., 2013; Strand and Burke, 2014). Subsequent duplications 

of proviral segments within loci together with acquisition of genes from diverse sources 

were thereafter selected for in different lineages, as wasps adapted to parasitism of particular 

hosts or complexes of hosts, and hosts reciprocally evolved to resist parasitism. Promoter 

mutation in association with selection may also underlie expression of virulence genes in the 

hosts of wasps and corresponding absence of expression in wasps themselves (Drezen et al., 

2012).

Selection has clearly maintained the conserved roles of the nudivirus-like genes in particle 

formation although their dispersal and current locations in the M. demolitor genome may 

reflect random processes of genome dynamics (Burke et al., 2014). On the other hand, the 

separation of nudivirus-like genes required for virion formation from the proviral segments 

containing virulence genes has also potentially been favored because it is advantageous to 

wasps in their interactions with hosts. In effect, dispersal assures vertical transmission of all 

the genes and proviral segments required to produce virions, but prevents any replication 

machinery from being packaged into particles. Thus, no productive virus infection, which 

would likely be fatal to wasp offspring, can occur in the hosts wasps parasitize.

A number of important functional questions remain unanswered (Strand and Burke, 2014). 

Based on the baculovirus literature, we hypothesize wasp RNA polymerase II transcribes the 

BV integrase and RNA polymerase genes required for virion formation, but what restricts 

expression to only calyx cells is unknown. The absence of any baculovirus/nudivirus-like 

DNA polymerase in the M. demolitor genome further strengthens conclusions that a wasp 

DNA polymerase(s) amplifies proviral DNAs prior to their processing by integrases and 

packaging into particles. However, the wasp polymerase(s) responsible also remains 

unknown. A third functional issue not understood is what are the promoter features on 

proviral segments that prevent them from being transcribed in wasps yet allows them to be 

transcribed in the hosts wasps parasitize.

Concluding remarks

We began this summary by citing Summers (2014) who concludes that the answer to the 

question “What is a virus?” depends on the scientific discourse at a given time. Modern 

virologists still struggle with simple one sentence definitions for what viruses are, yet fully 

recognize that viruses exhibit a broad continuum of interactions with hosts. On one end of 

this continuum are entities with nucleic acid genomes (RNA or DNA) that replicate inside a 

living cell to produce particles that can horizontally transfer the genome to other cells. These 

characteristics are also the essential qualities most virologists today associate with being a 

virus (Cann, 1997; Summers, 2014). At the other end of this continuum are ancient 
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endogenous virus elements (EVEs), which are DNA sequences derived from viruses that 

have integrated and become fixed in the host germline resulting in only vertical inheritance 

(Katzourkakis and Gifford, 2010). Most EVEs in animal genomes are fragments rendered 

non-functional by accumulation of neutral mutations, although a few individual viral genes 

or regulatory elements are known that have been coopted by hosts for new beneficial 

functions (Feschotte and Gilbert, 2012). No virologist though would say such fragments are 

viruses because they lack all of the essential qualities listed above. Entities like BVs, 

prokaryotic gene transfer agents (GTAs), and certain retroviruses and phages that persist for 

long periods as vertically transmitted proviruses fall somewhere between these extremes 

(Roosinck, 2011; Lang et al., 2012; Feschotte and Gilbert, 2012; Strand and Burke, 2013).

BVs are clearly ancient EVEs that benefit wasps, yet do so by continuing to function in 

many respects like a virus, which is what led ICTV to recognize the Polydnaviridae to begin 

with. Current knowledge regarding BVs and IVs supports the need to revise the 

Polydnaviridae, but the essential qualities of BVs (and IVs) remain unchanged from 1991. 

What has changed is that the components, which make up BVs are now known. These 

include definitive evidence that most genes required for replication are of viral origin, while 

genes on proviral segments have a mixture of origins including acquisition by horizontal 

transfer from wasps or other eukaryotes plus some genes and motifs like WIMs that suggest 

they too originated from the nudivirus ancestor. Nudiviruses and baculoviruses also consist 

of genes that are ‘viral’ in the sense that the proteins they encode are required for 

replication, while the majority of genes in their genomes are either of ancient origin and 

uncertain ancestry or are acquisitions from arthropods or other organisms (Rohrmann, 

2013). Thus, what differs between BVs and their ancestors is not so much gene content as 

genome organization (Burke et al., 2014). Nudivirus and baculovirus genes, like those of 

most viruses, reside on a single stretch of DNA that can be replicated, packaged into 

particles and transmitted to another cell. BVs encode the same types of genes, which in 

many cases have the same functions, yet dispersal prevents BVs from existing independently 

of wasps. We previously noted that non-viral microbes like bacteria, which have evolved 

into vertically transmitted mutualists do not persist by integrating into the genome of their 

host, but they do exhibit alterations in genome organization and function that prevent them 

from existing independently (Burke et al., 2014). Long-standing discussions also exist in the 

literature whether such entities are organelles or bacteria with current sentiment supporting 

the latter (Andersson, 2000; McCutcheon and Moran, 2012). Can an entity exhibiting most 

essential qualities associated with viruses be such if derived from genes dispersed in the 

genome of another organism? It undoubtedly depends on the virologist answering the 

question.
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Highlights

• Polydnaviruses were recognized as a virus family in 1991.

• Here we review the polydnavirus literature in largely historical order.

• The early literature established key features of polydnavirus biology.

• Studies in 1990s and early 2000s generated functional and phylogenetic 

insights. y Studies in the mid-2000s raised issues about the origins of 

polydnaviruses.

• Recent studies provide key data on origins, genome structure, and function.
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Fig. 1. 
Key characteristics of PDVs in 1991 when the family Polydnaviridae was formally 

recognized by ICTV. The upper part of the figure shows an adult female wasp whose 

hypothetical genome consists of ten chromosomes. Data at this time indicated that each 

PDV associated with a given wasp species was genetically distinct and persisted as an 

integrated provirus. Based on other known dsDNA viruses with a proviral phase, PDV 

proviral genomes were implicitly assumed to persist as a large, linear dsDNA that was 

integrated in the wasp genome (*). The middle part of the figure shows the nucleus of a 
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calyx cell. Data showed that particles packaging multiple circular dsDNAs were produced in 

calyx cells by unknown means followed by storage of particles in a domain referred to as the 

calyx. The lower part of the figure shows a larval stage lepidopteran host. Data generated 

prior to 1991 showed that wasps inject PDV particles into hosts, which infect different types 

of cells and express genes that cause physiological alterations wasp offspring depend upon 

for survival. Data generated prior to 1991 also showed that no replication of PDVs occurs in 

the hosts of wasps.
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Fig. 2. 
Key characteristics of PDVs as understood in the mid-2000s. Data generated during the 

1990s and 2000s showed that the DNAs in BV and IV particles contained numerous 

virulence genes but almost no genes of recognizable viral origin. Little information was 

generated during this period regarding PDV proviral genomes but data did suggest the 

DNAs in BV particles were excised from the wasp genome and amplified in calyx cells 

before packaging into particles. The genes regulating these events or that were involved in 

Strand and Burke Page 22

Virology. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particle formation remained unknown. In contrast, several studies provided insights about 

the identity and function of the virulence genes that are expressed in the hosts of wasps.
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Fig. 3. 
Key characteristics of BVs as understood in 2013. Sequence data established that BV 

proviral segment loci are organized into multiple loci, which are amplified without excision 

in calyx cells. Multiple nudivirus-like core genes had also been identified and shown to be 

required for virion formation. Proviral segment loci and nudivirus-like genes were 

hypothesized to reside in close physical proximity to one another in the genomes of wasps 

although precise locations remained unknown (hash marks). Experiments also established 

that circularized DNAs in BV virions integrate into the genome of infected host cells.
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Fig. 4. 
Key characteristics of BVs as understood in 2014. Whole genome sequencing of Microplitis 

demolitor established that proviral segment loci and nudivirus like genes are overall widely 

dispersed in the wasp genome on either one or multiple chromosomes.
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