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Abstract

Cord blood transplantation, an alternative to traditional stem cell transplants (bone marrow or 

peripheral blood stem cell transplantation), is an attractive option for patients lacking suitable stem 

cell transplant donors. Cord blood units have also proven to be a valuable donor source for the 

development of cellular therapeutics. Virus-specific T cells and regulatory T cells are two cord 

blood derived products that have shown promise in early phase clinical trials to prevent and/or 

treat viral infections and graft-versus-host disease (GvHD), respectively. Here we describe how 

current strategies utilizing cord blood-derived regulatory T cells and virus-specific T cells have 

been developed to improve outcomes for cord blood transplant recipients.
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Introduction

Umbilical Cord blood (UCB) has been shown to be a valuable alternative donor graft source 

for allogeneic hematopoietic stem cell transplantation (HSCT). Worldwide, there are about 

600,000 CB units stored for clinic use. While the main application of UCB is as an 

allogeneic stem cell source, these units may be also used as a donor source of cells (1)for the 

development of novel cell therapeutics. The unique immunological properties of UCB 

present both challenges and opportunities for these applications. The naiveté of the UCB 

immune system necessitates novel manipulations for the development of antigen specific T 

cells. In contrast, the unique properties linked to materno-fetal tolerance make UCB an 

excellent source of regulatory T cells. In this manuscript we review the utilization of UCB-

derived cells as a source of both multi-virus-specific T cells (mTC), for the treatment and 

prevention of viral infections, and natural regulatory T cells (Treg), for the suppression and 

treatment of GVHD.

Adoptive Transfer of Regulatory T cells (nTregs)

Regulatory T cells (Treg) help modulate responses mediated by effector T cells to avoid an 

autoimmune response in vivo. (2) Individuals that are born with a functional deficiency of 

naturally occuring Tregs (nTreg) develop severe auto-immunity syndrome known as IPEX 

(immunodysregulation polyendocrinopathy enteropathy X-linked syndrome). (3) Tregs are 

CD4+ CD25hi T cells that express the FoxP3 transcription factor and more recently, have 

also be shown to express low levels of CD127, the interleukin (IL)-7 α-chain receptor. (4, 5) 

Notably, Tregs depend on IL-2 secreted by other T cells for survival and proliferation. (2) 

More recently, the results from several groups have improved our understanding of Treg 

biology as well as the potential clinical application of these cells not only to reduce the risk 

of acute graft versus host disease (GVHD) after allogeneic transplantation, (6–12) but also 

to suppress graft rejection after solid organ transplantation (13) and the treatment of auto 

immune diseases. (14)

The clinical application of Tregs requires approaches that have typically utilized CD25 

positive selection from peripheral blood or umbilical cord blood (UCB) donor sources as 

follows: 1) Treg infusion with or without the administration of IL-2 to promote Treg 

expansion in vivo, 2) ex vivo expansion/activation of Tregs prior to infusion, and 3) ex vivo 

expansion/induction of the Treg (iTreg) phenotype followed by infusion. (15) Currently, in 

clinicaltrials.gov there are over 10 clinical trials evaluating the adoptive transfer of Tregs for 

the treatment or prevention of GVHD after HSCT or graft rejection after solid organ 

transplantation or for the treatment of autoimmune diseases (e.g. type 1 diabetes and 

Crohn’s disease). Among the numerous studies that have evaluated Tregs clinically, one 

study using UCB-derived Tregs has been reported with promising results. (16, 17)

The choice to develop an UCB-derived Treg strategy was based on pre-clinical studies that 

demonstrated a distinct population of CD4+CD25hi T cells in UCB, responsible for 

maternal-fetal tolerance. (18) This population could be easily delineated and after 

expansion/activation in culture these cells were reproducibly suppressive. (19) In contrast to 

peripheral blood, only one selection step based on CD25 expression is required to expand 
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Tregs from UCB and the expansion culture does not require sirolimus to prevent T effector 

outgrowth. After CD25 selection, the resultant cell population is ~60% 

CD4+CD25+FoxP3+CD127-. The expansion methodology has undergone an evolution over 

time. (16) Patients undergoing a double UCB transplant for hematological malignancies 

received partially HLA matched UCB derived Tregs obtained from a third unit (partially 

matched with the patient and hematopoietic stem cell graft). In the first 23 patients, CD25+ 

T cells were cultured in the presence of beads coated with anti-CD3/anti-CD28 and 

supplemental IL-2. After passing lot release UCB-derived Tregs were infused the day after 

UCB transplantation in order to monitor for infusion-related side effects. Important 

observations from this initial study were the favorable profile of ex vivo expanded UCB-

derived Tregs with no infusion related severe adverse events. There were no deleterious 

effects clinically, and there was a reduction in the risk for the development of grade 2–4 

acute GVHD (Figure 1). After a minimum follow up of 2 years, no adverse effects on 

treatment failure and mortality were identified in the Treg recipients compared to historical 

controls. (20) There was a suggestion of an increased risk of viral reactivation specifically 

within the first 30 days, but the historical comparison was limited as viral testing was not 

available during most of the time the historical controls were treated and could represent an 

observation bias. Nevertheless, cautious monitoring for viral reactivation in such Treg 

adoptive transfer studies is warranted.

In the initial clinical trial, albeit in small numbers, Tregs were detectable in the peripheral 

blood up to 14 days after infusion (21). This detection was based on flow cytometry for the 

expression of HLA antigens that were different between the Treg donor unit and the patient 

and two donor UCB units. For example, the Treg units were HLA-A2 positive, whereas the 

patient and the two donor units were HLA-A2 negative. The length of persistence in the 

peripheral blood was similar to what was observed in the murine models of GVHD. As the 

early contact between donor cells and recipient antigens are critical for the development of 

GVHD, the presence of Tregs early post infusion of the graft is desirable. However, long 

term persistence on Tregs may not be required to suppress GVHD and could potentially lead 

to an increased risk of relapse as seen after in vivo or ex vivo T-cell depletion. In mice, the 

presence of Tregs in lymphoid tissues has been shown (10). While it would be of great 

interest to document whether or not adoptively transferred Tregs persist long term in 

lymphoid tissues, we do not yet have a practical and medically appropriate way to do it as it 

would take a lymph node biopsy.

However, higher Treg doses are desired in order to achieve the target T effector to Treg ratio 

of 1:1. A modified methodology included expansion using K562-based artificial antigen 

presenting cells (aAPC) that express the high affinity receptor for the Fc portion, loaded 

with anti-CD3 antibody, and CD86, the natural ligand of CD28/CTL-4 (KT64/86). The use 

of these aAPC resulted in a greater expansion of Tregs in vitro compared to the bead-based 

methodology. (22, 23) In addition, higher doses of Treg were possible with a single 

restimulation with the KT64/86 aAPCs. This methodological advance ensures that Treg cell 

doses of 100 × 106/kg can be obtained. A phase I dose escalation trial is currently underway 

to test the safety and potential efficacy of high dose UCB-derived Treg expanded using 

aAPC with promising early results (NCT00602693).
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Other promising adoptive Treg strategies are under investigation by several groups 

worldwide generally using adult peripheral blood as the donor source (17). However, 

another promising UCB strategy is under development at the MD Anderson Cancer Center 

applying fucosylation to ex vivo expanded UCB-derived Tregs in order to promote Treg 

engraftment to enhance the anti-GVHD effect (personal communication S. Parmar and E.J. 

Shpall). (24, 25) Their clinical trial is expected to open in 2015.

As therapeutic strategies utilizing Tregs are translated to the clinic, the importance of HLA-

matching (especially when using third party Tregs) and antigen specificity will need to be 

considered in the study design. Murine models of solid organ and skin allografts have shown 

better graft survival and less rejection when antigen-specific Tregs are administered (26, 

27). In this setting, Treg recognition of antigen present on recipient cells resulted in more 

efficient suppression of the alloreactive response. (1) However, in a murine model of 

GVHD, both donor and recipient derived Tregs were able to suppress GVHD.(10) Current 

studies have used partially HLA-matched UCB-derived Treg from a third party donor. (21) 

In addition, a clinical trial for patients after haploidentical donor transplant used Tregs 

derived from the same donor, thus HLA identical to the hematopoietic cell graft (17). While 

there is a theoretical concern that HLA disparity between donor and/or recipient Tregs could 

result in rejection of the adoptively transferred Tregs, the clinical data utilizing partially 

HLA-matched UCB-derived Tregs does not suggest this occurs in vivo. Furthermore, the 

immunological naiveté of cord blood effector cells, the role of neonatal Tregs in feto-

maternal tolerance, and the ease of access to cord blood units make cord blood an attractive 

donor source for Treg expansion and adoptive therapy. However, it still remains to be 

determined whether this “off the shelf” third party Treg approach will effectively prevent 

and/or treat GVHD in patients after HSCT.

In summary, the adoptive transfer of UCB-derived Tregs for the suppression of GVHD is 

promising. The ability to produce large numbers of Tregs from a single UCB unit by either 

bead or aAPC stimulation/expansion has the potential for the development of a 

cryopreserved Treg “off the shelf” product that would be readily available for clinical use. 

Ongoing and planned studies will further define the clinical efficacy of this cell therapy for 

the suppression of acute GVHD as well as other clinical contexts beyond GVHD.

Adoptive Transfer of Virus-specific T cells (mTC)

In addition to GvHD and relapse, one of the biggest risks of morbidity and mortality after 

stem cell transplant are viral infections, most notably from Cytomegalovirus (CMV), 

Epstein-Barr Virus (EBV), and adenovirus. (28) The risk for viral infections varies and is 

dependent upon the donor source, conditioning regimen and the degree of T cell depletion. 

More than 1/3 of deaths after alternative donor stem cell transplant are attributed to viral 

infection. (28) Antiviral pharmacotherapy drugs do exist but are associated with 

unacceptable side effect profiles and are not always effective. (29, 30) The adoptive transfer 

of ex vivo-expanded virus-specific T cells is an appealing alternative to patients at high risk 

for viral infection, or those who cannot tolerate or have failed conventional 

pharmacotherapies. (31–34)
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The clinical use of virus-specific T cells after stem cell transplant was first reported in 1992 

by Riddell, Greenberg, and colleagues. In this study, CMV-infected fibroblasts were used to 

expand donor-derived CMV-specific T cells prior to infusion. Infused T cells were safe, did 

not cause GvHD, and provided reconstitution of CD8+ CMV-specific T cells in patients 

after HSCT. (32) Over the last twenty years, advances in technology and manufacturing 

have led to less complex T cell expansion procedures, reduced the culture time, and 

eliminated or limited the use of live virus during production. (35) Notably, in some cases the 

virus specific T cells were immediately available as an off-the-shelf product. (36–39) Listed 

in Table 1 are current methods of T cell expansion or selection. However, the limitation of 

all these methodologies is that they all require prior viral exposure. Additional 

methodologies have been used to generate virus-specific T cells from naïve donors, 

especially for EBV, but these methodologies are more extensive than those listed in Table 1 

and often involve multiple selections and manipulations. (40–42)

Significant advantages as well as challenges exist when trying to utilize UCB as a source for 

adoptive cellular immunotherapy. A major advantage is that UCB is a readily available “off 

the shelf” donor source. However, since the units are already collected and cryopreserved, 

any manipulation of the cells will likely need to be done upon thawing – saving aliquots of 

the cells for later use is not an option unless the bags are partitioned into 20% and 80% 

fractions; even still, using both fractions of the unit is only an option in the third party 

setting because in CBT, the 80% fraction would need to be transferred to the recipient as 

part of their cord blood transplant. For this reason, UCB donor-derived donor lymphocyte 

infusion is not an option after cord blood transplantation (CBT) unless it is ex vivo expanded 

at the time of thaw. (43, 44) Another challenge is the naiveté of the cord blood immune 

cells. (45) The majority of UCB T cells express naïve T cell markers such as CCR7, CD62L, 

and CD45RA. Further, UCB denditric cells (DC) were reported to be less potent, (46, 47) 

and to secrete less IL-12, which is critical cytokine for T cell priming. It has also been 

suggested that UCB T cells are less cytotoxic than peripheral blood derived T cells. (48)

For these reasons, the majority of the GMP-compliant expansion and selection methods for 

virus-specific T cells from virus-experienced donors are not an option when virus naïve 

donors (e.g. UCB) are used– at least not yet. The rapid expansion of T cells using 

mononuclear cells is not currently an option because the naïve T cells with T cell receptors 

recognizing viral epitopes are at a lower frequency than memory virus-specific T cells in the 

peripheral blood. In fact, antigen-specific T cells from the naïve population require 

optimized priming conditions, such as the use of professional antigen presenting cells like 

dendritic cells, as well as cytokines that favor the priming of naïve T cells such as IL-7. (49, 

50)

The first report of a virus-specific T cell line derived from UCB came from Sun et al in 1999 

(50) where EBV-specific T cells were expanded from UCB using autologous EBV-

transformed lymphoblastoid cell lines (LCL) in the presence of IL-2. In 2006, Park et al 

reported the in vitro priming of CMV-specific cord blood T cells using UCB dendritic cells 

pulsed with CMV lysate as stimulators in the presence of IL-7 and IL-12. In this study, after 

4 weeks ex vivo expansion, the majority of the T cell product was comprised of CD45RO+ 

memory T cells that secreted IFN-g, IL-2, and TNF-a. However, expansion was relatively 
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limited (2–5 fold) which was problematic for clinical translation. (49) This seminal report 

led us to later report the GMP-applicable expansion of UCB-derived multi-virus T cells 

(mTC) recognizing CMV, EBV, and adenovirus to the numbers required for clinical use. 

(51) Moreover, by utilizing the Grex culture device, these mTC could be expanded to 

clinically relevant numbers (>6×107) using only the 20% fraction of thawed UCB units 

providing a donor-specific mTC product for patients after CBT. (51–53) mTC required the 

priming of naïve T cells with dendritic cells in addition to IL-7 and IL-12, (49) as well as the 

addition of IL-15 to prevent activation-induced cell death (54).

To date, 9 patients have been treated at the Center for Cell and Gene Therapy (Baylor 

College of Medicine and Texas Children’s Hospital) with UCB-derived mTC. All infusions 

were well tolerated and not associated with the development of GvHD. (55) Importantly, 

reserving the 20% fraction of the UCB unit for mTC manufacture did not result in delayed 

engraftment, with a median time-to-neutrophil engraftment of 21 days. Clinically, three 

patients had viral reactivation or infection: 1 patient had CMV reactivation and adenovirus 

infection, and 2 patients had EBV reactivation. All three patients resolved their viral 

infections and we were able to detect the adoptively transferred virus-specific T cells in the 

peripheral blood by interferon gamma ELISPOT assay and/or deep T cell receptor 

sequencing. (55)

To further extend the application of CB-derived mTC as a therapeutic, these cells were 

transduced with a retrovirus vector expressing a chimeric antigen receptor (CAR) targeting 

CD19, present on many B cell malignancies including ALL and CLL. The resultant T cell 

product had antiviral specificity through the endogenous T cell receptor and anti-leukemic 

specificity through the CD19-CAR. (56) This approach is now being used clinically in the 

peripheral blood setting to prevent and treat virus infection and leukemia relapse after 

HSCT, and a similar study for patients after CBT is planned. (57)

In summary, the adoptive transfer of UCB-derived mTC to prevent and treat viral infection 

after CBT is feasible and early phase studies suggest that the approach has an excellent 

safety profile. A subsequent study is currently evaluating the administration of UCB-derived 

mTC generated without gene-modified autologous APC for expansion (NCT01923766), as 

well as strategies to decrease the mTC manufacturing time and to extend the virus panel 

beyond CMV, EBV, and adenovirus.

Conclusions

Adoptive immunotherapy from cord blood cells has gained momentum in recent years due 

to new technological advances as well as the increased use of cord blood as a graft source. 

While UCB has some disadvantages, the fact that this donor source is immediately available, 

well characterized, and contains mostly naïve lymphocytes also makes it an ideal candidate 

for immunotherapy. In the case of Tregs, the high expression of CD25 makes UCB an ideal 

starting cell population, and in the case of virus-specific T cells, the ability to manufacture 

antiviral therapies personalized to the recipients of cord blood transplants, including 

minorities, is extremely beneficial. There is continued interest in UCB as a unique donor 

source and with the results from current as well as planned clinical studies using UCB-
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derived Tregs and mTC (Table 2) it will be possible to better define the clinical efficacy 

profile and application of these novel cell therapies even beyond the HSCT/CBT setting.
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Figure 1. 
the cumulative incidence of garde II-IV acute GVHD by 100 for patients who received ex 

vivo expanded Tregs (---)and historical controls (⚊). (Adapted from Brunstein et al, 

2011;117(3):1061–70).
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Table 1

Current selection or expansion strategies for virus-specific T cells

Method Culture period 
(including release 
testing)

Intermediaries Reference(s)

Rapid multi-virus T cells 13–20 days None Papadopoulou et al 2014 (29); Gerdemann et al 
2013 (58); Gerdemann et al 2012 (35)

Peptide-specific expansion 21–30 days Dendritic cells Micklethwaite et al 2007 (59)

Gamma-selection 1–2 days None Peggs et al 2011 (34)

Tetramer selection 1–2 days none Cobbold et al. 2005 (60); Mackinnon et al 2008 
(61); Luo et al 2010 (62)

Multi-virus T cells with engineered 
adenoviral vector

1–3 months 
(including LCL 
generation)

EBV-LCL, monocytes 
or dendritic cells

Leen et al 2006 (31), Micklethwaite et al 2008 
(33); Hanley et al 2010 (63)
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Table 2

UCB Adoptive T cell and Treg therapies in clinical trial

Cord Blood Therapy Method Intermediaries Cord Blood Source Clinical Trial Number

Tregs (15,19,20,21) CD25 selection, CD3/
CD28 bead and KT64/86 
stimulation

Genetically modified K562 Third party NCT00376519

Tregs (20,21) CD25 selection, KT64/86 
stimulation

Genetically modified K562 Third party NCT02118311

mTC (55) T cell stimulation with 
Ad5f35pp65-transduced 
APCs

DCs, EBV-LCL Donor-derived (20% fraction) NCT00880789

mTC T cell stimulation with 
overlapping peptide-
pulsed APCs

DCs, EBV-LCL Donor-derived (20% fraction) NCT01923766

DLI (64) CD3 selection, CD3/
CD28 bead stimulation

None 5% of donor UCB Not available

DLI (65) CD3 selection, CD3/
CD28 bead stimlulation

None UCB Donor-derived NCT01630564
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