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Abstract

The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular 

functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many 

viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus 

replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell 

tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that 

target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral 

infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in 

either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein 

predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting 

the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases 

can block herpesvirus lytic infection and may reduce malignancies associated with latent 

herpesvirus infections.
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Introduction

The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates multiple key 

cellular functions including protein synthesis, cell growth, glucose metabolism, and 

inflammation. Viruses are obligatory intracellular pathogens and they usurp host functions 

for viral gene transcription and translation, genome replication, and progeny virion 

production. Viruses also suppress host cell stress responses induced by accumulation of viral 

proteins, free DNA ends associated with virus replication, nutrient and energy depletion, or 
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hypoxia. To manipulate the intracellular environment for optimal viral replication, viruses 

including the human herpesviruses, have evolved multiple ways to hijack cellular signaling 

pathways that are critical for maintaining normal cellular functions such as mitogen-

activated protein kinase (MAPK), NF-κB, JAK/STAT, and PI3K/Akt pathways. There are 

eight human herpesviruses-herpes simplex virus (HSV)-1 and -2, varicella zoster virus 

(VZV), cytomegalovirus (CMV), Epstein–Barr virus (EBV), human herpesvirus (HHV)-6 

and HHV-7, and Kaposi sarcoma-associated herpesvirus (KSHV, HHV-8). Each of these 

viruses replicate in the nucleus and have dual life cycles- lytic replication and latent 

infection. They encode from about 70 (in the case of VZV) to over 200 (in the case of CMV) 

proteins, and differ in cell tropism, replication kinetics, and disease manifestations. Like 

other viruses, human herpesviruses exploit the PI3K/Akt pathway to optimize virus entry, 

replication, latency, reactivation, and modulation of host innate immune responses 

(reviewed in (Alwine, 2008; Bhatt and Damania, 2012; Buchkovich et al., 2008; Cooray, 

2004; Diehl and Schaal, 2013; Dunn and Connor, 2012; Tsalikis et al., 2013; Walsh and 

Mohr, 2011)). Here we highlight recent findings on the ability of human herpesviruses to 

modulate the PI3K/Akt signaling pathway, the effects of mutations in PI3K on herpesvirus 

infections in humans, and potential strategies to inhibit PI3K to treat herpesvirus infections 

and virus-associated malignancies.

The PI3K/Akt pathway

PI3K is activated when extracellular stimuli such as cytokines, growth factors, or viruses 

bind to cell surface receptors such as G protein coupled receptors (GPCRs), B cell receptors 

(BCR), or integrins that have tyrosine kinase activity (Fig. 1). This results in translocation of 

the PI3K complex, which usually consists of a p85 regulatory domain and a p110 catalytic 

domain, from the cytoplasm to the plasma membrane. Binding of the phosphorylated 

tyrosine residues on receptors or adapter proteins to the p85 regulatory subunit of PI3K 

relieves its inhibitory activity on the p110 catalytic domain of PI3K (Cuevas et al., 2001) 

and allows p110 to phosphorylate membrane-bound phosphatidylinositol 4,5-bisphosphate 

(PIP2) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). This results in 

recruitment of pleckstrin homology domain containing proteins, including phosphoinositide-

dependent protein kinase 1 (PDK1) and the proto-oncoprotein serine/threonine kinase Akt to 

PIP3 to the plasma membrane. PDK1 phosphorylates Akt at threonine 308, and the 

mammalian target of rapamycin (mTOR) complex 2 (mTORC2) phosphorylates Akt at 

serine 473 site to fully activate Akt. PIP3 also binds to its receptor on the endoplasmic 

reticulum (ER), leading to calcium release from the ER, and activation of calcium signaling 

which is important for cytoskeletal organization, filopodia formation, and cell-cell fusion.

Activated Akt induces phosphorylation of multiple downstream targets. Phosphorylation of 

cell cycle inhibitors p21Cip1 and p27Kip1 inactivates these proteins and enhances progression 

of cells from the G1 to S phase of the cell cycle. Phosphorylation and inactivation of 

glycogen synthase kinase (GSK)-3β by Akt promotes cell growth. Akt phosphorylation of 

pro-apoptotic proteins BAD, Bim, caspase 9, and phosphorylation of the transcription factor 

FOXO1results in inactivation of these proteins and inhibits apoptosis. Similarly, increased 

expression of the anti-apoptotic proteins X-linked inhibitor of apoptosis protein (XIAP), 

Bcl-xL, Bcl-2, and myeloid cell leukemia 1 (Mcl-1) by Akt enhances cell survival. 
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Phosphorylation and inactivation of the tuberous sclerosis protein 2 (TSC2) results in 

mTOR1 activation which in turn phosphorylates and inhibits the translational inhibitor 

eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and activates S6K1 to 

stimulate protein synthesis (Hassan et al., 2013; Hemmings and Restuccia, 2012; 

Vanhaesebroeck et al., 2012).

PI3Ks are divided into three subclasses on the basis of structure, regulation, and lipid 

substrate specificity. Class I PI3Ks are often involved in the pathogenesis of human cancers 

and are extensively targeted by viruses (Engelman, 2009; Walsh and Mohr, 2011). Class I 

PI3Ks are heterodimers consisting of a p110 catalytic subunit (p110α, β, δ, or γ) and a 

regulatory subunit (p50, p55, p85, or p101). PI3K p110α and p110β are ubiquitously 

expressed, whereas p110δ and p110γ are primarily found in white blood cells (Okkenhaug, 

2013).

PI3K/Akt activity is tightly controlled at multiple steps. PI3K signaling is negatively 

regulated by several phosphoinositide phosphatases, including the tumor suppressor 

phosphatase and tensin homolog (PTEN) which dephosphorylates the 3-phosphate from the 

inositol ring of PIP3 (Stambolic et al., 1998), inositol polyphosphate-4-phosphatase, type II 

(INPP4B) which dephosphorylates the 4-position phosphate from the inositol ring of PIP2, 

the PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2) which 

dephosphorylates Akt at Ser 473 (Brognard et al., 2007), and the protein phosphatase 2 

(PP2A) which dephosphorylates Akt at Thr 308 (Andjelkovic et al., 1996; Kuo et al., 2008).

Enhanced PI3K/Akt signaling has been identified in many human cancers including 

mutation or amplification of the genes encoding catalytic subunits of PI3K p110α and p110δ 

the gene product of PIK3CA and PI3KCD, respectively) (Angulo et al., 2013; Lucas et al., 

2014; Perez-Tenorio et al., 2007; Samuels et al., 2004), loss of function of PTEN (Perez-

Tenorio et al., 2007), and/or INPP4B (Balakrishnan and Chaillet, 2013; Bertucci and 

Mitchell, 2013; Gewinner et al., 2009), or mutation and/or amplification of the proto-

oncogenes AKT1 and AKT2 (Ruggeri et al., 1998; Staal, 1987). Therefore, the PI3K/Akt 

pathway is an important target for drug development for treatment of human malignancies as 

well as for virus infections.

Herpesviruses modulate the PI3K/Akt pathway

Herpesviruses enhance their replication by modulating the intracellular environment through 

altering cell signaling pathways to control transcription and translation, regulate cell cycle 

progression, inhibit apoptosis, evade host defense systems, and alter cellular metabolism. 

Herpesvirus activation of the PI3K/Akt pathway manipulates many of these activities to 

favor virus replication or latency. Activation of PI3K/Akt signaling can occur at multiple 

steps during the virus life cycle including (a) entry and virus glycoprotein binding, (b) 

release of tegument proteins after virus delivery into the cell, (c) virus replication, and (d) 

virus latency and reactivation.
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Entry of herpesviruses in cells induces activation of PI3K/Akt

Human herpesviruses infect different cell types including epithelial and endothelial cells, 

macrophages, and lymphocytes. These viruses can enter cells by viral glycoprotein binding 

to receptors and fusion of viral and cellular membranes either at the cell surface or after 

endocytosis. The envelope of human herpesviruses contains several glycoproteins, including 

gB and gH/gL which are shared by all herpesviruses and are essential for mediating 

membrane fusion. Additional glycoproteins are important for entry of specific viruses such 

as gD for HSV, gp350 and gp42 for EBV, and UL128, UL130, and UL131A for CMV.

Binding of HSV virions to cellular receptors on the plasma membrane induces changes in 

cellular gene expression resulting in activation of PI3K/Akt, NF-κB and JAK/STAT 

signaling (MacLeod and Minson, 2010). Activation of the PI3K/Akt signaling pathway is 

required for HSV entry into cells. Chemical inhibition of PI3K activity with LY294002 

blocked HSV entry and fusion mediated by viral glycoproteins (Tiwari and Shukla, 2010). 

Inhibition of PI3K with wortmannin blocked trafficking of HSV virions to the periphery of 

the nucleus (Nicola and Straus, 2004). PI3K inhibition with LY294002 reduced expression 

of HSV-1 ICP0 and increased the cleavage of caspase-3, caspase-7, and poly ADP-ribose 

polymerase (PARP), implying that PI3K may reduce apoptosis in HSV-infected cells (Hsu, 

Wu et al. 2010). HSV infection triggers Akt phosphorylation within minutes after infection 

(Cheshenko et al., 2013; Hsu et al., 2010; MacLeod and Minson, 2010). Inhibiting Akt 

expression with siRNA or with miltefosine, which blocks Akt phosphorylation, inhibited 

virus-induced release of calcium, HSV entry, and plaque formation (Cheshenko et al., 2013). 

Deletion of HSV glycoprotein D (gD) or gB prevents virus-induced Akt phosphorylation, 

and Akt interacts directly with gB, but not with gD (Cheshenko et al., 2013) (Table 1).

Integrins serve as HSV entry mediators and HSV gH binds to αvβ3 integrin (Parry et al., 

2005). The binding of gH to αvβ3 integrin activates Akt and triggers intracellular calcium 

release (Cheshenko et al., 2007; Cheshenko et al., 2014). Inhibition of integrin αvβ3 

expression with siRNA reduced virus entry, calcium release, and plaque formation. HSV 

deleted for gH binds to cells and activates Akt, but is impaired for calcium signaling and 

virus entry. Activation of Akt by HSV is followed by integrin signaling, release of 

intracellular calcium, and phosphorylation of focal adhesion kinase (FAK) which provides a 

favorable environment for entry of the virus into the cell (Cheshenko et al., 2014). Binding 

of HSV-1 to cells also activates the epidermal growth factor receptor (EGFR)- PI3K 

signaling pathway, resulting in phosphorylation of cofilin and polymerization of actin which 

facilitates virus entry (Zheng et al., 2014).

CMV attachment and receptor binding, like HSV, induces PI3K/Akt signaling. CMV 

infection triggers PI3K activation in serum-starved human embryonic lung fibroblasts within 

the first 30 minutes of infection with UV-inactivated CMV. PI3K activation subsides 2 

hours after infection and resumes 4 hour after infection (Johnson et al., 2001; McFarlane et 

al., 2011). While CMV protein synthesis is dispensable for the first phase of PI3K 

activation, it is necessary for the second phase of activation. Inhibition of PI3K with 

LY294002 delays CMV entry, and reduces immediate-early and early gene expression, and 

viral DNA replication. Infection of cells with CMV results in phosphorylation of platelet-
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derived growth factor receptor (PDGFR)-α which interacts with the p85 subunit of PI3K and 

activates Akt (Soroceanu et al., 2008). Akt activation may be mediated by CMV gB binding 

to cells, since overexpression of gB induces phosphorylation of Akt and PDGFR-α (Cobbs 

et al., 2014). Treatment of cells with CMV neutralizing antibody reduced Akt activation 

(Andreoni et al., 2002). HCMV activates PI3K/Akt and inhibits apoptosis in monocytes by 

upregulating Mcl-1 (Chan et al., 2010).

Entry of EBV and KSHV into cells also induces PI3K/Akt signaling. EBV gp350 binding to 

CD21, the virus receptor on B cells, triggers Akt and GSK-3β activation (Barel et al., 2003). 

The interaction of KSHV glycoproteins with integrins induces phosphorylation of FAK and 

subsequently Src, PI3K, and c-Cbl (Chakraborty et al., 2011; Krishnan et al., 2006; Naranatt 

et al., 2003; Sharma-Walia et al., 2004; Valiya Veettil et al., 2010; Veettil et al., 2006). 

KSHV gB induces phosphorylation of Akt (Sharma-Walia et al., 2004; Zhang et al., 2005). 

PI3K is important for induction of Cdc42 Rho and RhoA GTPases and cytoskeletal changes 

in KSHV-infected cells (Sharma-Walia, Naranatt et al. 2004). PI3K inhibition reduces 

infectivity and cytoskeletal changes associated with KSHV gB, but does not affect virus 

binding to cells (Valiya Veettil, Sadagopan et al. 2010 Tiwari and Shukla 2010). KSHV 

induces phosphorylation of the p85 subunit of PI3K within one minute of infection which 

return to normal levels 30 minutes after infection (Kerur et al., 2010).

Herpesvirus tegument proteins activate PI3K/Akt

Herpesvirus tegument proteins are located between the viral envelope and capsid and are 

released into the cell immediately after virus entry. HSV encodes two tegument proteins, 

VP11/12 and US3 protein kinase, that modulate the PI3K/Akt pathway (Benetti and 

Roizman, 2006; Eaton et al., 2014; Wagner and Smiley, 2011). VP11/12, the most abundant 

HSV tegument protein, is phosphorylated by Lck and interacts with the p85 subunit of PI3K. 

VP11/12 is essential for activation of PI3K/Akt by HSV (Wagner and Smiley 2011). The 

carboxyl terminal region of VP11/12 contains a PI3K p85 subunit binding domain (YTHM) 

and two Src family kinase (SFK) motifs (YETV and YEEI) which together are important for 

activation of Lck and binding to PI3K p85 (Strunk et al., 2013).

HSV US3, one of two HSV encoded protein kinases, does not share sequence homology 

with Akt or activate Akt directly, but serves as an functional homolog of Akt and 

phosphorylates several Akt substrates including GSK-3β, FOXO1, TSC2 (Chuluunbaatar et 

al., 2010). Phosphorylation of TSC2 by US3 at the same sites as those phosphorylated by 

Akt results in activation of mTORC1, which enhances protein translation and HSV 

replication. Phosphorylation of GSK3β by US3 inactivates GSK3β and promotes stable 

microtubule formation and virus spread (Naghavi et al., 2013). Infection of cells with an 

HSV US3 null mutant results in constitutive Akt activation. Deletion of US3 results in 

increased phosphorylation of VP11/12 by SFKs and by the HSV UL13 protein kinase (Eaton 

et al., 2014). Thus, US3 inhibits phosphorylation of VP11/12 by SFKs and UL13 resulting 

in inhibition of VP11/12 signaling and Akt activation. While Akt is activated throughout the 

entire replicative cycle during infection of cells with an HSV US3 null mutant, Akt is only 

activated at early time points after infection with wild-type HSV (Benetti and Roizman, 

2006).
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VZV infection activates Akt and inhibition of PI3K or Akt reduces VZV replication (Rahaus 

et al., 2007; Sen et al., 2014). Infection with VZV results in phosphorylation of downstream 

targets of Akt including mTOR, FOXO1, 4EBP1, and S6K1. Expression of VZV protein 

kinases ORF47 and ORF66 increases Akt activation; conversely VZV deleted for ORF47 

and ORF66 results in reduced phosphorylation of Akt and GSK-3β. The VZV ORF12 

tegument protein associates with the p85 subunit of PI3K and activates Akt at both threonine 

308 and serine 473 (Liu and Cohen, 2013). Activation of Akt by ORF12 protein is important 

for cell cycle progression in VZV-infected cells, since inhibition of Akt activity reduces the 

differences observed in cell cycle progression with wild-type and ORF12 deleted VZV. The 

role of CMV, EBV, and KSHV tegument proteins in activating the PI3K/Akt pathway has 

not been reported.

Activation of the PI3K/Akt pathway by herpesvirus proteins expressed during virus 
replication

While entry of herpesviruses into cells and subsequent release of tegument proteins can 

transiently activate the PI3K/Akt pathway, viral protein synthesis is required to sustain 

activation of PI3K/Akt. HSV 2 UL39 encodes the large subunit of HSV ribonucleotide 

reductase (ICP10) which contains an amino terminal serine–threonine protein kinase domain 

(ICP10PK). ICP10PK functions as a constitutively activated growth-factor receptor that 

activates PI3K/Akt and Ras/ERK pathways (Laing et al., 2008; Laing et al., 2010; Smith, 

2005). While ICP10PK mediated PI3K activation was initially believed to responsible for 

preventing apoptosis in HSV-2 infected cells (Laing et al., 2008; Laing et al., 2010; Perkins 

et al., 2002a; Perkins et al., 2002b), more recent studies indicate that ICP10PK protects cells 

from apoptosis by binding to caspase-8 and disrupting its interaction with FADD, which is 

independent of activation of PI3K (Dufour et al., 2011). These observations are supported 

by the fact that the HSV-2 homolog of UL39 in HSV-1 (ICP6) does not have similar serine-

threonine kinase activity and does not activate Akt, but also binds caspase-8 and blocks 

apoptosis (Chung et al., 1989; Dufour et al., 2011).

While activation of Akt by CMV can be detected 96 hours after infection, long term 

activation requires the expression of CMV proteins during viral replication. Expression of 

CMV major immediate-early protein 1 (IEP72) or 2 (IEP86) activates PI3K and Akt and 

inhibits apoptosis (Cobbs et al., 2008; Yu and Alwine, 2002). PI3K activity is required for 

upregulation of the anti-apoptotic protein c-FLIP by CMV IEP86 (Chiou et al., 2006).

EBV encodes two immediate-early proteins BRLF1 and BZLF1 which are essential for lytic 

replication and reactivation from latency. Overexpression of BRLF1, but not BZLF1, in 

normal human fibroblasts activates PI3K/Akt signaling (Darr et al., 2001). Activation of 

PI3K/Akt signaling is required for BRLF1 activation of the BZLF1 and BMRF1 early 

promoters, but not the SM early promoter, in epithelial cells.

KSHV G-protein-coupled receptor (vGPCR), transmembrane protein K1, and viral IL-6 

(vIL-6) all activate PI3K/Akt. KSHV vGPCR activates multiple signaling pathways 

including ERK, p38, NF-AT, and PI3K (Bais et al., 1998; Cannon and Cesarman, 2004; 

Montaner et al., 2001; Pati et al., 2003; Smit et al., 2002). Expression of KSHV vGPCR 

results in translocation of Akt to the plasma membrane and increased levels of bcl-2 mRNA 

Liu and Cohen Page 6

Virology. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and protein which inhibits apoptosis (Abboud et al., 2013). Activation of PI3K/Akt by 

vGPCR results in inactivation of GSK-3β and activation of NF-AT which is a transcription 

factor that mediates expression of inflammatory cytokines (Bais et al., 1998; Cannon and 

Cesarman, 2004; Montaner et al., 2001; Pati et al., 2003; Smit et al., 2002). PI3K/Akt 

activation by GPCR also results in phosphorylation of TSC-2, mTOR, 4EPB1, and S6K1 to 

enhance translation and cell proliferation (Sodhi, Chaisuparat et al. 2006). Constitutive 

activation of Akt by vGPCR has an essential role in KSHV sarcomagenesis (Sodhi et al., 

2004). KSHV K1, which is a functional mimic for BCR signaling, has a carboxyl terminal 

ITAM motif and recruits Lyn, Syk, and the p85 subunit of PI3K to constitutively activate 

PI3K/Akt (Prakash et al., 2005; Tomlinson and Damania, 2004; Xue et al., 2014). KSHV K1 

activation of Akt is associated with phosphorylation and inhibition of FOX01, GSK3β, and 

BAD which are important for inhibition of apoptosis, and phosphorylation of mTOR which 

may increase translation and endothelial cell transformation (Wang et al., 2006). K1 also 

inhibits expression of PTEN, which inhibits the activity of PI3K. KSHV vIL-6 binds to its 

receptor gp130 to activate PI3K/Akt and the JAK2/STAT3 pathway which contributes to 

reprogramming of endothelial cells to lymphatic cells (Morris et al., 2008; Morris et al., 

2012). Expression of the KSHV immediate-early protein Rta, which is required for 

reactivation from latency, also activates Akt (Li et al., 2012).

Activation of PI3K during herpesviruses latency and reactivation

Herpesviruses establish latency in different cell types with limited or no expression of viral 

proteins. The PI3K/Akt pathway is activated in cells latently infected with human 

herpesviruses, and is important for both latency and reactivation. Additional signaling 

pathways are also important for EBV and KSHV that infect B cells to allow latent infection 

in these proliferating cells as well as to inhibit apoptosis.

HSV latently infected neurons express no viral proteins, but do express the latency-

associated transcript (LAT) which is important for virus reactivation. Mouse neuroblastoma 

cells stably expressing LAT have higher levels of phosphorylated and total Akt and are more 

resistant to apoptosis after serum starvation compared with cells not expressing LAT (Li et 

al., 2010). Maintenance of HSV-1 latency requires persistent PI3K activation which is 

established by binding of nerve growth factor to the TrkA receptor tyrosine kinase (RTK) 

(Camarena et al., 2010). The p110α subunit of PI3K is essential to activate PDK1 and 

maintain HSV-1 latency; treatment of latently infected neurons with inhibitors of PI3K 

results in HSV-1 reactivation.

Primary B cells latently infected and transformed with EBV express EBV nuclear antigens 

(EBNAs) and latent membrane proteins (LMPs) and have activated PI3K/Akt (Wlodarski et 

al., 2005). LMP1 is a functional homolog of constitutive CD40 signaling, and LMP2A is a 

mimic for constitutive BCR signaling; these viral proteins activate multiple cell signaling 

pathways required to initiate and maintain B cell transformation and virus latency. LMP1 is 

a transmembrane protein with intracellular carboxyl terminal activating regions CTAR1 and 

CTAR2. The CTAR domains associate with TNF receptor–associated factors (TRAFs) to 

activate multiple signaling pathways including PI3K/Akt, NF-κ B, MAPK, JNK, AP1, and 

JAK/STAT that regulate cell growth and transformation (Brinkmann and Schulz, 2006; 
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Eliopoulos and Young, 2001; Lam and Sugden, 2003; Mainou et al., 2007; Soni et al., 

2007). The CTAR1 domain of LMP1 associates with the p85 subunit of PI3K to activate 

PI3K (Dawson et al., 2003) and contributes to transformation of rodent fibroblasts and 

growth of EBV-positive nasopharyngeal carcinoma cells in soft agar (Mainou et al., 2005; 

Shair et al., 2008). Similarly, survival and growth of LMP-1 transgenic B lymphocytes and 

lymphoma cells requires activation of Akt signaling (Shair et al., 2007). LMP1 activation of 

PI3K/Akt results in inactivation of FOXO3α, reduction of expression of DNA damage-

binding protein 1 (DDB1), and repression of the DNA repair response which may increase 

genomic instability and the risk of transformation (Chen et al., 2008). Activation of 

PI3K/Akt by LMP1 is required for interleukin (IL)-10 production and phosphorylation of 

GSK-3β and S6K1 (Lambert and Martinez 2007).

LMP1 activation of Akt has an important role in preventing apoptosis. Activation of 

PI3K/Akt by LMP1 inhibits apoptosis mediated by TRAIL and increases expression of the 

anti-apoptotic c-FLIP protein (Li et al., 2011). Akt inhibits translocation of the pro-apoptotic 

protein Bax from the cytoplasm to the mitochondria; Bax localization in the mitochondria 

results in cytochrome release and apoptosis (Tsuruta et al., 2002). LMP1 activation of Akt/

PI3K and FOXO3 induces expression of miR-21 (Yang et al., 2013) and upregulates Mcl-1 

both of which reduce apoptosis (Kim et al., 2012).

EBV LMP2A is a transmembrane protein expressed during latency. LMP2A mimics BCR 

signaling and is important for EBV latency and virus-induced oncogenesis (Fotheringham et 

al., 2012; Scholle et al., 2000; Swart et al., 2000). LMP2A associates with Syk and Lyn 

tyrosine kinases and with scaffold protein Shb to activate Ras, PI3K and Akt (Fukuda and 

Longnecker, 2007; Matskova et al., 2007; Swart et al., 2000). The ITAM motif of LMP2A is 

required for activation of Akt (Morrison and Raab-Traub, 2005). Activation of Akt increases 

the level of XIAP (Hatton et al., 2011) and BclxL (Portis and Longnecker, 2004) which 

increase survival of EBV-infected B cells. LMP2A activation of Akt in nasopharyngeal 

carcinoma cells results in activation of mTOR and phosphorylation of 4EBP1 which 

enhances translation of cellular proteins (Moody et al., 2005). LMP2A activation of Akt also 

increases survival of epithelial cells (Scholle, Bendt et al. 2000) and inhibits apoptosis 

mediated by TGF-β in epithelial and Burkitt lymphoma cells (Fukuda, 2004). Activation of 

PI3K/Akt by LMP2A is important for phosphorylation of FOXO1 and GSK-3β, and for 

translocation of β-catenin to the nucleus of epithelial cells which may inhibit their 

differentiation (Morrison et al., 2003). EBV latent EBNA-2 may also contribute to 

P13K/Akt activation by induction of the p55α regulatory subunit of PI3K (Spender et al., 

2006).

Other mechanisms can lead to activation of Akt in EBV-infected cells. EBV encodes 

microRNA miR-BART7-3p that targets PTEN, enhances activation of Akt, and increases 

cell migration of nasopharyngeal carcinoma cells (Cai et al., 2014). Hypermethylation of the 

promoter of INPP4B, a phosphatase that inhibits PI3K/Akt signaling, enhances the 

PI3K/Akt pathway in EBV-positive nasopharyngeal carcinoma cells (Yuen et al., 2014).

PI3K/Akt has an important role in EBV reactivation from latency. Inhibition of PI3K 

reduces EBV reactivation induced by BCR signaling in EBV-positive Burkitt lymphoma cell 
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lines (Iwakiri and Takada 2004, Goswami, Gershburg et al. 2012). Similarly, blocking PI3K 

impairs TGF-β-induced reactivation of EBV in Burkitt lymphoma cells (Oussaief et al., 

2009) and methotrexate-induced EBV reactivation in lymphoblastoid cell lines (Feng et al., 

2004).

Activation of Akt/PI3K by KSHV is important for survival of latently infected primary 

effusion lymphoma cells (Uddin et al., 2005) and monocytes (Gonnella et al., 2013), and for 

tubule formation in endothelial cells (Wang and Damania, 2008). Akt activation contributes 

to increased expression of XIAP, phosphorylation of FOXO1 and GSK-3β, prevention of 

cytochrome c release from mitochondria, and inhibition of cleavage of caspase-3, caspase-9, 

and PARP in KSHV-positive primary effusion lymphoma cells (Uddin et al., 2005).

The KSHV latency associated proteins include LANA (ORF73), v-cyclin (ORF72), v-FLIP 

(ORF71), Kaposins, LANA2, vIRF3, and K10.5. Inhibition of PI3K activity results in 

increased cytoplasmic localization of LANA2 which may reduce the ability of LANA2 to 

block apoptosis (Munoz-Fontela et al., 2005). KSHV v-FLIP induces secretion of cytokines 

which activate Akt (Sharma-Walia et al., 2012). Inhibition of Akt activity inhibits KSHV 

reactivation from latently infected primary effusion lymphoma cells induced by treatment 

with a p53 activator or a Cdk1 inhibitor, but enhances KSHV reactivation induced by 

treatment with phorbol ester (TPA) (Li et al., 2012; Peng et al., 2010). Inhibition of PI3K 

reduces KSHV reactivation induced by BCR signaling in KSHV-positive Burkitt lymphoma 

cell lines, and this effect is associated with reduced expression of KSHV Rta (Kati et al., 

2013).

Thus the PI3K/Akt pathway is critical for maintaining HSV, EBV, and KSHV latent 

infection; inhibition of PI3K/Akt reduces EBV and KSHV reactivation induced by BCR 

signaling, but enhances reactivation of HSV and of KSHV induced by treatment with other 

stimuli.

PI3K and immunodeficiencies

Recently two immunodeficiencies have been reported in association with mutations in the 

p110 catalytic or p85 regulatory subunits of PI3K. Two groups have reported patients with 

severe herpesvirus infections who have heterozygous gain-of-function mutations in 

PIK3CD, which encodes PI3Kδ (Angulo et al., 2013; Lucas et al., 2014a). These patients 

presented with fatal varicella-zoster virus pneumonia, persistent CMV viremia, CMV 

lymphadenitis, persistent EBV viremia, EBV-positive B cell lymphomas, or other infections 

including severe otitis, sinusitis, pneumonia, and bacterial meningitis. They also had 

prominent lymphadenopathy, nodular lymphoid hyperplasia, increased levels of IgM, and 

impaired responses to vaccination. In each patient a dominant gain-of-function mutation in 

one allele of PIK3CD resulted in constitutive activation and phosphorylation of Akt and 

increased activation of mTOR. The patients had reduced CD4 T cells, reduced naïve T cells, 

reduced memory B cells, increased effector memory T cells, increased senescent CD8 

effector T cells, and enhanced activation-induced T cell death. Treatment of one patient with 

sirolimus reduced lymphoid hyperplasia, and increased naïve T cells (Lucas et al., 2014a), 

while hematopoietic stem cell transplant was curative in another patient (Angulo et al., 

2013). The disease is referred to as APDS (activated PI3K-delta syndrome (Angulo et al., 
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2013)) or PASLI (p110delta-activating mutation causing senescent T cells, 

lymphadenopathy, and immunodeficiency (Lucas et al., 2014). Additional patients have 

been described with EBV-negative lymphomas and with infections due to pathogens other 

than herpesviruses (Crank et al., 2014; Hartman et al., 2014; Kracker et al., 2014).

Patients with heterozygous gain-of-function mutations in PIK3R1, which encodes the p85 

regulatory subunit of PI3K, were reported with an immunodeficiency syndrome with 

recurrent bacterial upper and lower respiratory tract infections (Deau et al., 2014; Lucas et al 

2014b). One patient had persistent asymptomatic CMV and EBV viremia as well as 

gastroenteritis due to enterovirus. Like patients with mutations in PIK3CD, patients with 

mutations in PIK3R1 also have increased phosphorylation of Akt, increased mTOR 

signaling, increased IgM, reduced naïve T cells, reduced memory B cell function, increased 

senescent CD8 T cells, and enhanced activation-induced T cell death. The disease is referred 

to as APDS2 (activated PI3Kdelta syndrome 2).

PI3K/Akt pathway in herpesvirus associated malignancies

EBV and KSHV are oncogenic viruses associated with B cell and epithelial cell 

malignancies. PI3K/Akt is activated in EBV-positive post-transplant lymphoproliferative 

disease, Hodgkin lymphoma, nasopharyngeal carcinoma, and gastric carcinoma (Alsayed et 

al., 2008; Chen, 2012). Similarly, the PI3K/Akt pathway is activated in Kaposi's sarcoma 

and primary effusion lymphoma (Bhatt et al., 2010; Sodhi et al., 2004; Uddin et al., 2005). 

Therefore, inhibition of the PI3K/Akt pathway is a potential target for the treatment of EBV 

and KSHV associated malignancies.

Targeting the PI3K/Akt pathway to inhibit virus replication and virus-associated 
malignancies

While a number of small molecule inhibitors are available to block PI3K/Akt activity in 

vitro and many of these have been shown to inhibit herpesvirus replication, most of these 

drugs are not licensed for use in humans. Recently miltefosine, which blocks Akt 

phosphorylation, has been approved for use in leishmaniasis. Pre-treatment of cultured cells 

with miltefosine, followed by HSV-2 infection, inhibited virus plaque formation 

(Cheshenko, Trepanier et al. 2013). Further studies showed the miltefosine blocked virus 

entry into epithelial cells, calcium release, and reactivation of virus from explanted ganglia 

to epithelial cells. Miltefosine inhibited replication of acyclovir-sensitive and acyclovir 

resistant HSV-2 strains. Several PI3K inhibitors are currently in trials for treatment of 

malignancies (Bauer et al., 2014; Blachly and Baiocchi, 2014; Tasian et al., 2014). Recently, 

a small molecule inhibitor of PI3Kδ (idelalisib) was approved for treatment of patients with 

relapsed chronic lymphocytic leukemia and follicular B cell lymphoma (Furman et al., 2014; 

Gopal et al., 2014). Thus, Akt or PI3K inhibitors might be used for treatment of anti-viral 

resistant herpesvirus infections in the future.

The PI3K/Akt pathway results in activation of mTOR. While several mTOR inhibitors are in 

clinical trials for cancer therapy (Bauer et al., 2014; Blachly and Baiocchi, 2014; Tasian et 

al., 2014), at present only sirolimus (also known as rapamycin), everolimus, and 

temserolimus are approved for use in humans. These drugs are immunosuppressive and used 
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in transplant recipients and for treating selected malignancies. Sirolimus inhibits the growth 

of KSHV primary effusion lymphoma cells in vitro (Sin et al., 2007). Replacement of 

cyclosporine with sirolimus therapy in 15 kidney transplant recipients with Kaposi's 

sarcoma resulted in the resolution of Kaposi's sarcoma skin lesions (Stallone et al., 2005). 

Substitution of calcineurin inhibitors with sirolimus in 14 patients with post-transplant 

Kaposi's sarcoma resulted in complete remissions in two patients and partial responses in 8 

patients (Lebbe et al., 2006). Similarly, a pooled analysis from several transplant centers 

showed that substitution of immunosuppressive regimens in 12 renal transplant recipients 

with regimens containing either sirolimus or everolimus resulted in resolution of Kaposi's 

sarcoma lesions in 11 patients (Campistol and Schena, 2007).

Sirolimus also inhibits EBV-positive B cell lymphomas in a xenogenic mouse model and in 

EBV LMP2/Myc transgenic mice (Cen and Longnecker, 2011; Nepomuceno et al., 2003). In 

three patients with EBV-associated post-transplant lymphoma, replacement of calcineurin 

inhibitors and mycophenolate mofetil or azathioprine with sirolimus resulted in complete 

resolution of B cell lymphomas in two patients and a temporary remission of a T cell 

lymphoma in one patient (Boratynska and Smolska, 2008). A pooled analysis of 19 renal 

transplant recipients with post-transplant lymphoproliferative disease from multiple 

European transplant centers showed that substitution of calcineurin inhibitors with sirolimus 

or everolimus, along with rituximab therapy in six patients and chemotherapy in six patients, 

resulted in complete remission of disease in 15 patients (Pascual, 2007). While sirolimus has 

a partially inhibitory effect on EBV-positive B cell lymphoma lines and resistance to 

sirolimus is associated with high levels of phosphorylated Akt, the addition of a PI3Kδ 

inhibitor to sirolimus enhanced the ability of the latter to kill the cells (Furukawa et al., 

2013). Similarly, an experimental drug that inhibits both PI3K and mTOR was more 

effective than either PI3K or mTOR inhibitors to inhibit the growth of KSHV-positive 

primary effusion lymphoma cells in vitro and in a xenograft tumor model (Bhatt, Bhende et 

al. 2010

Conclusions

Human herpesviruses express multiple proteins during the immediate-early, early, and late 

phases of the virus replication cycle and during latency that activate the PI3K/Akt pathway. 

Activation of PI3K/Akt by viral glycoproteins such as gB in HSV, CMV, and KSHV, HSV 

gD, and EBV gp350, as well as tegument proteins of HSV and VZV present during 

herpesvirus entry is important for preparing the cell for virus infection to optimize virus 

replication. Similarly, activation of PI3K/Akt by immediate-early proteins such as CMV IE1 

and IE2, and Rta in EBV and KSHV are important for the initial stages of virus infection. 

Herpesvirus proteins expressed in the early phase of virus replication, such as KSHV vIL-6 

and vGPCR, also contribute to PI3/Akt activation. PI3K/Akt is also critical for maintaining 

latent herpesvirus infection and this pathway is activated by HSV LAT and the EBV latency 

proteins LMP1, LMP2, and EBNA-2. PI3K-Akt signaling is required for optimizing protein 

synthesis, cell growth, transformation, and inhibiting apoptosis. Constitutive activation of 

PI3K due to mutations in the cellular genes PIK3CD or PIK3R1 result in severe herpesvirus 

infections due to impaired cellular immunity.PI3K/Akt is activated in several EBV and 

KSHV associated B cell and epithelial cell malignancies. Recently, several drugs that block 

Liu and Cohen Page 11

Virology. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Akt or PI3K have been licensed for treatment of malignancies or for a parasitic infection. 

These include miltefosine, which blocks Akt phosphorylation and inhibits HSV in vitro and 

idelalisib, which blocks PI3Kδ. These drugs, and others currently under development, might 

be used to treat human herpesvirus infections or virus-associated malignancies. Inhibitors of 

mTOR, such as sirolimus, everolimus, and temserolimus, which block signaling downstream 

of PI3K/Akt might also have a role in treating herpesvirus infections. Thus, further studies 

and development of inhibitors of the PI3K/Akt pathway may lead to novel therapies for both 

acute herpesvirus infections and for virus-associated malignancies.
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Highlights

Human herpesvirus replication and latency proteins activate the PI3K/Akt pathway.

PI3K/Akt is important for protein synthesis, transformation, and blocking apoptosis.

Constitutive activation of PI3K is associated with severe herpesvirus infections.

PI3K/Akt is activated in several EBV and KSHV associated malignancies.

Drugs that block PI3K/Akt might be used to treat herpesvirus infections or cancers.
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Fig. 1. 
Receptor-mediated activation of PI3K-Akt pathway and signaling. Binding of ligands to cell 

surface receptors induces activation of PI3K. Activated PI3K converts membrane-bound 

PIP2 to PIP3. PTEN dephosphorylates PIP3 to form PIP2. PIP3 recruits PDK1 and Akt to 

the plasma membrane, resulting in Akt phosphorylation by PDK1. Akt can be 

dephosphorylated by PP2A and PHLPP2. Activated Akt (a) stimulates protein synthesis by 

phosphorylation of mTOR inhibitor TSC2, leading to mTOR1 activation, and 

phosphorylation of 4EBP1 (an inhibitor of translation) and S6K1, (b) stimulates cell cycle 

progression by phosphorylation of cell cycle inhibitors p21Cip1 and p27Kip1 for their 

degradation, and phosphorylation and inactivation of transcriptional factors GSK-3β and 

FOXO3, leading to increased cyclin D1 and reduced p27Kip1 expression, and (c) inhibits 

apoptosis by phosphorylation and inactivation of proapoptotic proteins BAD, Bax, caspase 

9, and transcriptional factor FOXO3 to reduce Bim and FasL expression. * indicates that 

idelalisib blocks PI3Kδ only.
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Table 1

Herpesvirus proteins that modulate the PI3K/Akt pathway

Virus Protein Location in virus, 
expression kinetics

Cellular target for viral protein Effect of modulating PI3K/Akt signaling

HSV1 gB Envelope, γ Akt, PILRα Virus entry

Envelope, γ Nectin-1, HVEM, 3-OS HS Virus entry

gH Envelope, γ integrins Virus entry

VP11/12 Tegument, γ Lck, p85 subunit of PI3K

US3 Tegument, γ GSK-3, FOX1, TSC2 Protein translation

LAT Latency Latency

HSV2 ICP10 Lytic, β caspase-8 Anti-apoptosis

VZV ORF12
Tegument, γ

* p85 subunit of PI3K Cell cycle progression

ORF47
Tegument, γ

*

ORF66
Tegument, γ

*

HCMV gB Envelope, γ integrins Virus entry

IE1 Lytic, α Anti-apoptosis

IE2 Lytic, α Anti-apoptosis

EBV gp350 Envelope, γ CD21 Virus entry

BRLF1 (Rta) Lytic, α Reactivation from latency

LMP1 Latency CD40 mimic, TRAFs, p85 subunit of 
PI3K

Anti-apoptosis, protein translation, 
transformation

LMP2A Latency BCR mimic, Syk, Lyn, Shb Anti-apoptosis, protein translation

EBNA-2 Latency p55α subunit of PI3K B cell proliferation

KSHV gB
Lytic, γ

* Integrins Virus entry

K1 Lytic, β, low level 
expression in latency

BCR mimic, p85 subunit of PI3K, 
Syk, Lyn

Anti-apoptosis, protein translation

vGPCR Lytic, β GPCR mimic Anti-apoptosis, protein translation

vIL-6 Lytic, β, low level 
expression in latency

IL-6 mimic (binds to gp130) Anti-apoptosis; Reprogramming of 
endothelial cells to lymphatic cells

Rta Lytic, α Reactivation from latency

PILRα, paired immunoglobulin-like type 2 receptor-α; HVEM, herpesvirus entry mediator; 3-OS

HS, 3-O-sulfated heparan sulfate

*
Putative kinetic assignment, inferred from its homolog in HSV

Virology. Author manuscript; available in PMC 2016 May 01.


