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Abstract

Hematopoietic SCT is currently the only curative therapy for a range of benign inherited and 

acquired primary hematologic disorders in children, including BM failure syndromes and 

hemoglobinopathies. The preferred HLA-matched sibling donor is available for only about 25% of 

such children. However, there has been substantial progress over the last four decades in the use of 

alternative donors for those without a matched sibling—including HLA-matched unrelated donors, 

HLA-haploidentical related donors and unrelated-donor umbilical cord blood—so that it is now 

possible to find a donor for almost every child requiring an allograft. Below, we summarize the 

relative merits and limitations of the different alternative donors for benign hematologic 

conditions, first generally, and then in relation to specific disorders, and suggest recommendations 

for selecting such an alternative donor.

INTRODUCTION

There are unique considerations, as described below, that must be taken into account when 

planning for hematopoietic SCT (HSCT) for a primary benign hematologic disorder. The 

preferred source for HSCT is a matched sibling donor (MSD), but there are other options 

when one is not available. Table 1 describes the advantages and disadvantages of the 

alternative donor options —matched unrelated donor (URD), umbilical cord blood (UCB) 

and HLA-‘half-matched’ related (haploidentical or haplo)—as they pertain to these 

considerations. Others have compared advantages and disadvantages of alternative donor 

sources in a similar manner.1

TRANSPLANT TIMING

Unlike HSCT for hematologic malignancies, HSCT for benign hematologic disorders does 

not always carry with it the same time pressure. For patients with worrying infectious 
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histories or organ dysfunction, HSCT can be very urgent; but for others, HSCT can be 

planned in a less hurried manner. Haplo-HSCT donors and UCB units are rapidly accessible, 

but the obstacles for URD HSCTs include identifying a ‘suitable’ donor and the speed with 

which a graft can be acquired. Further, if a donor is identified, then issues including 

unavailability or a change in the desire to donate can arise. The frequency with which an 

URD can be identified may be around 50% for Caucasians, but the likelihood falls to ≤ 10% 

for those of certain ethnic or mixed race backgrounds.2

GRAFT CELL DOSE

Wagner et al.3 found that UCB with CD34+ cells/kg ≥ 1.7 × 105 is associated with improved 

OS and decreased TRM. Grafts with > 2.7 × 105 CD34 cells/kg have been associated with 

even lower rates of TRM and higher CD34+ cell dose partially overcomes the negative 

impact of HLA for each level of HLA disparity. For example, in recipients of UCB grafts 

mismatched at two HLA loci, patients who received transplants of ≥1.7 × 105 CD34 cells/kg 

had a higher survival (0.61, n = 30) than those receiving a lower cell dose (0.11, n = 9).3 

Subsequently, Cairo et al.4 reviewed 268 UCB transplants (UCBTs) between 1994 and 

2005, including those for BM failure syndromes (BMFs, 48%), ultimately recommending a 

cell dose with ≥4.9 × 107 nucleated cells (NC)/kg at collection and 3.5 × 107 NC/kg at 

infusion, and avoiding grafts with > 2 HLA mismatches, particularly with infusion cell doses 

< 3.5 × 107 NC/kg.

HLA MISMATCHES

A retrospective look at 663 URD transplants for non-malignant disorders revealed that 

double, but not single, high-resolution HLA mismatches at the HLA-A, -B, -C and -DRB1 

loci, but not at the HLA-DQ or -DP loci, were associated with increased mortality.4 There 

was no association between HLA mismatch and acute GVHD, in contrast to the Japanese 

severe aplastic anemia (SAA) study, which showed a significantly higher incidence of grade 

II-IV acute GVHD (aGVHD) in multivariate analysis with HLA mismatching (single allele 

C or DRB1/DQB1 and multiple allele mismatches).5

Haplo-HSCT for hematologic malignancies is now comparable to HLA-matched transplants 

in terms of graft failure and GVHD risk. A variety of methodologies have helped achieve 

these results, including megadose G-CSF-mobilized PBSCs,6 depletion of T cells,7 graft 

engineering, anti-thymocyte globulin (ATG)-based GVHD prophylaxis,8 and post-

transplantation cyclophosphamide (PT/CY).9–16 However, in exchange for successful 

engraftment and GVHD rates, regimens that have depleted T cells, utilized megadose 

PBSCs and/or ATG are associated with slower immune reconstitution, increased TRM and 

infectious morbidity. Haplo-HSCT for hematologic malignancies using T cell-replete grafts 

with PT/CY have decreased TRM and infectious complications10,12 and for non-malignant 

conditions (n = 9), we have had no TRMs with a median follow-up time of 15 months 

(Symons, unpublished data).
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ENGRAFTMENT

Historically, graft failure has been more problematic with alternative donors. Antibodies 

directed against donor-disparate HLA antigens increase graft failure as reported with 

alternative donors,17 particularly problematic for heavily transfused patients. Isoimmunity 

can be a concern especially in SAA, where hematopoietic targeted isoimmunity is likely 

responsible for the disease.18

The ability to achieve stable mixed donor chimerism (MC) is curative in some benign 

hematologic disorders such as hemoglobinopathies. In fact, as little as 10% donor chimerism 

in sickle cell disease (SCD) and 10–20% in thalassemia can eradicate disease. For 

thalassemia, the percentage of RHCs (residual host hematopoietic cells) 2 months post 

transplant was predictive of graft rejection, with nearly all patients rejecting when RHCs 

exceeded 25%.19–21 In SAA and Fanconi anemia (FA), progressive MC increased late graft 

rejection and poor survival after MSD, haplo and URD HSCT.22 Emerging evidence 

supports the importance of looking at lineage-specific chimerism, for example, erythroid 

chimerism to help guide clinical decision making.23 Evidence looking at MC in other 

inherited BMFs has not been studied; however, it is likely that anything less than complete 

engraftment increases the risk of leukemia from the remaining recipient hematopoiesis.

DONOR LYMPHOCYTE INFUSIONS

The potential for secondary marrow aplasia and GVHD with associated mortality fuels the 

debate over DLI for falling chimerism and/or graft failure and data are scarce.24–27 Limited 

data with escalating doses of DLI starting at 1 × 107 for thalassemia patients after MSD 

HSCT has had some success in MC (75–90% donor), but not in patients with < 75% donor 

chimerism.28 Another report demonstrated that 8/13 recipients who had MC with < 75% 

donor after 2 months eventually lost their grafts despite DLI. Considerations for DLI include 

(1) patients with host chimerism > 25% at the 2-month mark; (2) MC < 75% donor at Day 

30 and transfusion dependence; and (3) > 20% decrease in the percentage of donor cells at 

subsequent evaluations and a decrease in Hb.26 Prospective studies of DLI after alternative 

donor HSCT for non-malignant conditions are warranted.

INTENSITY OF PREPARATIVE REGIMEN

The main role of the preparative regimen in non-malignant conditions is to sufficiently 

immunosuppress the host in order to allow engraftment of donor cells. Ideally, this could be 

achieved with a reduced-intensity conditioning (RIC) regimen, as opposed to a fully 

myleoablative regimen, to minimize both short- and long-term side effects. Historically, 

however, graft rejection has been problematic with RIC alternative donor regimens, 

especially with heavily transfused, alloimmunized patients. Reduced toxicity, yet marrow 

ablative regimes such as those using treosulfan,29–34 have also been beneficial in 

minimizing specific side effects such as liver-related complications. Table 2 describes RIC 

regimens for non-malignant diseases and their outcomes, which are improving.
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COST

Overall HSCT costs, duration of hospitalization and donor acquisition fees vary by graft 

source. A recently published single-institution report of pediatric allogeneic HSCT 

concluded that for 2004–2006, the mean costs per day survived, as well as graft acquisition 

fees, were highest with URD and UCB recipients.35 The authors concluded that an URD 

source adds approximately $100 000 to the cost of the first 3 months of HSCT medical care. 

Using haplo donors spares the graft acquisition fees associated with MUDs and UCB (> $80 

000). Additionally, haploBMT with PT/CY is technologically simple and does not involve 

costly T cell-depletion procedures.9

BM FAILURE SYNDROMES

The idea of disease-specific HSCT protocols was driven by the BMFs, for example, de-

escalation of HSCT conditioning SAA and tailoring the HSCT to accommodate the alkylator 

sensitivity in FA. These advances, introduced in the treatment of BMFs, continue to 

influence and advance the field of HSCT.

SEVERE APLASTIC ANEMIA

In the 1970s, BMT was first used to treat SAA,36 thus making BMT the prototypical stem 

cell therapy. Outcomes of pioneering HSCT protocols, graft selection and supportive care in 

SAA have improved remarkably over the last three decades.37–40 Because of the careful 

collection and analysis of data, it has been possible to optimize recommendations on: (1) 

conditioning regimens, (2) HLA matching and (3) age groups for whom the HSCT from 

URDs may be considered as a first-line therapy.

Recent efforts have focused on limiting exposure to CY during conditioning to maintain 

efficacy while decreasing early and late regimen-related toxicities. Early data from the 

BMTCTN (Bone Marrow Transplant Clinical Trials Network) trial of CY de-escalation 

demonstrated that both high-dose CY therapy (150 mg/kg) and omission of CY result in 

excess mortality and graft failure, respectively.39,40 The treatment with middle-dose cohorts 

(50 and 100mg/kg) has been completed and will be reported later this year.

Next, the review of HSCT outcomes from 7/8 and 8/8 HLA-matched URDs showed that 

regimen-related toxicities, rates of GVHD and survival rates are comparable. Furthermore, 

outcomes of these HLA-matched URD transplants for younger adults are approaching those 

of HLA genotypically identical transplants.41–44 Additionally, the Hopkins group has 

utilized pharmacokinetically adjusted BU and CY with HLA-matched or haplo donors and 

PT/CY for nine patients with SAA who failed at least one prior treatment regimen. All 

patients engrafted, none developed GVHD, and one patient died of TRM (A Dezern, 

personal communication). In general, it is customary for immunosuppressive therapy to 

continue through 1 year post transplant for SAA patients.45

Evidence is emerging in support of the extension of inclusion criteria for first-line URD 

HSCT to adults up to 40 years of age. Using HSCT as frontline therapy limits risks of 

infection, allosensitization and iron overload that occur during pre-HSCT 
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immunosuppressive therapy.46–48 With viral load monitoring, preemptive therapy with anti-

CD20 antibody (rituximab) can be given (for EBV viremia), and with the advances in T-cell 

mediated eradication of many viruses, prevention and treatment of DNA viral infections is 

within reach. UCBT, however, may require new approaches such as combination with 

haploidentical graft or cell dose optimization.49–51 Outcomes using alternative donors for 

SAA are shown in Table 3.

DYSKERATOSIS CONGENITA

For those Dyskeratosis congenita (DC) individuals with aplastic anemia who never respond 

or lose their response to androgen therapy, HSCT can be curative.52,53 Historically, 

individuals with BMFs in DC had poor outcomes due to physical (for example, sinusoidal 

obstruction syndrome/veno-occlusive disease54 and interstitial pneumonia) and immune (for 

example, GVHD) side effects of HSCT. Gadalla et al.55 reviewed data on 34 individuals 

with DC who were treated with allogeneic HSCT (half had MSDs) between 1981 and 2009. 

HLA mismatch was associated with increased mortality; half of the deaths occurred late 

after HSCT (some of pulmonary failure) and the 10-year probability of survival was 30%.

In the last decade however, fludarabine-based conditioning with reduced-intensity alkylator 

and radiation dosing has dramatically improved the regimen-related toxicity, resulting in an 

OS of more than 75%.52,55,56 Remarkably, long-term survival has been possible even for 

individuals with the severe variant of DC (Hoyeraal-Hreidarsson syndrome)52 (personal 

experience, J Tolar). Post-HSCT, immunosuppression for DC and SAA patients is generally 

continued for 270 days and then weaned over 6–8 weeks.43,52,57,58

FANCONI ANEMIA

In FA, genome instability leads to a complex and varied phenotype including exhaustion of 

hematopoietic stem cells and predisposition to myelodysplasia and leukemia. Constitutional 

chromosome fragility in FA, however, necessitates significant modifications of the classical 

HSCT: administration of alkylator at much lower doses (total CY dose from 200 to 20 

mg/kg)59 and use of an antimetabolite fludarabine that is myelosuppressive but does not 

cause inter-strand cross-links.60–62 Further, addition of ATG and graft T-cell depletion has 

been widely used to limit the risk of severe GVHD.63 This has resulted in greatly improved 

outcomes of URD HSCT for FA in the last two decades, from approximately 30% to more 

than 90%.43 Simultaneously, this platform is a foundation for the recent treatment-

optimization strategies, including thymic shielding to decrease the risk of opportunistic 

infections via enhanced immune reconstitution, haplo-HSCT with PT/CY, and de-escalation 

of TBI.43,57,64,65 Results of alternative donor transplants for FA are shown in Table 4.

THALASSEMIA

At present, allogeneic HSCT is the only cure for β-thalassemia major. The results of 

transplants from HLA-matched related donors by Lucarelli risk class66 and alternative donor 

outcomes are reported in Table 5. In URD HSCT, rates of graft failure, aGVHD and 

cGVHD are still unacceptably high and novel strategies are needed.32–34 Limited experience 

with URD HSCT have shown more encouraging results, suggesting that improvements in 
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donor selection and conditioning regimens have increased safety. HSCT with treosulfan-

reduced toxicity conditioning for 60 patients (40 URDs) revealed promising results, 

especially in comparison with other URD HSCTs32–34 with low rates of graft failure, TRM, 

GVHD and promising DFS.30

Recently, Gaziev et al.67 described promising results (Table 5) in 16 patients with 

phenotypically matched or 1-antigenmismatched (MM) donors compared with 66 MSD 

HSCTs. The entire HLA-MM group had sustained engraftment. DFS and TRM were not 

statistically significant at 94 and 6% (P = 0.24) for the HLA-MM group.

The potential benefits of UCBT are the low risk of graft viral contamination and the 

decreased incidence of GVHD, however, the small number of stem cells in the UCB product 

can be problematic for engraftment. Some have received UCB transplantation in 

combination with BM or peripheral progenitor cells68 or with double cord products.68,69 

Since data are scarce and rates of rejection high, if unrelated UCB is the only option, 

consider storing the patient's own BM in case of graft failure. It is reasonable to prioritize 

other donor sources over unrelated UCBT for thalassemia at this time. Additional data for 

transplants with unrelated UCB are required for definitive conclusions.

Using hydroxyurea and azathioprine to eradicate BM during the 2 months before haplo-

HSCT, along with G-CSF and EPO to facilitate the effects of hydroxyurea, may promote 

engraftment.70 In particular, grafts that contain megadoses of positively selected CD34+ 

progenitor cells from G-CSF-mobilized haplo-PBSCs combined with 2 × 105 haplo-BM 

mononuclear cells/kg may help engraftment, limit GVHD, and reduce the incidence of post 

transplant lymphoproliferative disorder.70,71 In a trial of 43 children with thalassemia who 

were transplanted from haplodonors, OS is 89% and EFS is 58% (P Sodani, personal 

communication, Table 5). However, post-transplant infectious complications and relapse 

remain the most important barriers yet to be overcome in this setting.

The incidence of MC in 335 patients who received MSD HSCT for thalassemia was 32% at 

2 months after transplant.72 Graft loss occurred in 35/108 (32%) with MC. The risk of graft 

rejection was only 13% in patients with < 10% RHCs and was 41% in patients with 10–25% 

RHCs.19,20 The duration of post-HSCT immunosuppression varies based on clinical 

outcomes as well as chimerism status, but generally ranges from about 8 months to 1 year 

post HSCT.67,70

Recent literature suggests that it is important to look at erythroid chimerism in mixed 

chimeras as, despite the presence of few donor NC, the majority of erythrocytes are of donor 

origin.23 Moreover, the proportion of donor-derived erythroid precursors is equivalent to 

that observed in the mature NC, rather than that of the RBC. These results suggest that for 

patients with MC, a selective advantage of maturation of donor erythroid precursors might 

successfully offset the problems associated with the recipient’s ineffective erythropoiesis 

and that evaluation of RBC chimerism might provide relevant clinical information in the 

routine monitoring of engraftment.73
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SICKLE CELL DISEASE

There is very little data on URD HSCT for SCD, likely because it is difficult to find a 

suitable URD. A pilot study looked at six patients who received a RIC prep, unrelated BM 

or UCB, and MSCs. Although no infusion-related toxicity was seen, the co-transplantation 

of MSCs was not sufficient for reliable engraftment, with only two patients engrafting.74

The experience using UCB is limited. Out of a total of 33 cases reported, two-thirds were in 

the related donor setting.75 Unrelated UCB appears to be associated with a greater risk of 

graft rejection and GVHD, with the largest study consisting of seven patients. This study 

reported one death, EFS of 43%, five patients with aGVHD and one patient with cGVHD.75 

There has been one report of a double UCBT, which was used in an attempt to augment the 

total cell dose in a young adult patient with SCD and Hodgkin lymphoma.76

Iannone et al.77 described a non-myeloablative HSCT approach in six pediatric patients with 

SCD and one with thalassemia. Regimen-related toxicity was minimal, but transient donor 

engraftment occurred in only six patients, suggesting that more intensive conditioning is 

required. More recently, a non-myeloablative conditioning regimen was reported to be 

successful in adults with SCD transplanted with MSDs.78 If RIC can sustain MC with little 

regimen-related toxicity then it will allow more low-risk patients the option of cure without 

long-term morbidity. Both the National Institute of Health and Johns Hopkins have used 

RIC preparative regimens with alternative donors and PT/CY with success.79 Table 6 

presents results for alternative donor transplants for SCD.

Length of immunosuppressive therapy for SCD post transplant varies, with shorter time 

courses for T cell-depleted grafts given the lower risk of GVHD, and 6 months to 1 year for 

T cell-replete grafts, with ultimate discontinuation when stable MC or full donor chimerism 

is achieved.

A subgroup of patients who undergo HSCT for SCD develop lifelong stable MC once 

donor–host tolerance is established.75,80 Stable MC was observed in 13 out of 50 patients 

(26%) who showed SCD-free survival for a median duration of 6.9 years.73 Among these 

patients, five had donor MC of < 75% (range of 11–74%), and none of them developed 

sickle cell-related complications during a 3-year median follow-up period.

SUMMARY

This review is limited to primary benign hematologic disorders and thus does not address 

HSCT for other non-malignant conditions such as immunodeficiencies and metabolic 

disorders. Overall recommendations regarding alternative donor HSCT for patients with 

non-malignant hematologic conditions include transplanting early to minimize graft failure 

and TRM. Ideally, one should utilize the least intensive preparative regimen and post 

transplant immunosuppressive regimen to maximize engraftment and immune 

reconstitution, and minimize GVHD. When time to HSCT is not a priority, URD HSCT 

should be strongly considered to achieve these goals. When time is a priority and/or an URD 

is not available, haplo-HSCT should be strongly considered. Although historically haplo-

HSCT was associated with unacceptable rates of GVHD, newer regimens have lowered the 

Tolar et al. Page 7

Bone Marrow Transplant. Author manuscript; available in PMC 2015 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rates of GVHD similar to that of MSD HSCT. Additionally, maximizing cell dose for 

engraftment is more controllable. UCB might confer less GVHD, but also increases the 

potential for graft failure depending on cell dose. Prospective studies comparing donor 

sources including URD, UCB (single and double) and haplo-HSCT are warranted to support 

more definitive recommendations.
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Table 1

Alternative donor options: advantages and disadvantages

Graft source Advantages Disadvantages

Unrelated donor Historical ‘gold standard’ Wealth of experience Well-
published outcomes Reproducible quality of stem cell 
product Faster immune reconstitution Donor 
lymphocytes available

Availability (~50%, ≤ 10% for minorities) Time 
delay More expensive

Umbilical cord blood Availability (> 95%) Speed to HSCT No risk to donor 
Extension of the donor pool Small cryopreserved 
volume with easy transportability Low risk of 
infectious disease transmission of latent viruses 
Decreased GVHD

Low cell number Single use/no DLI available 
Slower hematopoietic engraftment/immune 
reconstitution Infection Few large-size and high-
quality units compared with URD More 
expensive Recommendation to have autologous 
product as back-up

HLA-haploidentical related donor Availability Speed to HSCT Less expensive 
Maximize cell dose Faster immune reconstitution 
Donor lymphocytes available

Less experience Delayed immune reconstitution 
and expensive (T cell-depleted grafts)

Abbreviations: HSCT =hematopoietic SCT; URD =unrelated donor.
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