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Abstract

Mapping aging-related brain structure and connectivity changes can be helpful for assessing 

physiological brain age (PBA), which is distinct from chronological age (CA) because genetic and 

environmental factors affect individuals differently. This study proposes an approach whereby 

structural and connectomic information can be combined to estimate PBA as an early biomarker 

of brain aging. In a cohort of 136 healthy adults, magnetic resonance and diffusion tensor imaging 

are respectively used to measure cortical thickness over the entire cortical mantle as well as 

connectivity properties (mean connectivity density and mean fractional anisotropy) for white 

matter connections. Using multivariate regression, these measurements are then employed to (1) 

illustrate how CA can be predicated—and thereby also how PBA can be estimated—and to 

conclude that (2) healthy aging is associated with significant connectome changes during 

adulthood. Our study illustrates a connectomically-informed statistical approach to PBA 

estimation, with potential applicability to the clinical identification of patients who exhibit 

accelerated brain aging, and who are consequently at higher risk for developing mild cognitive 

impairment or dementia.
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1. Introduction

Recent scientific research has shown that both healthy aging as well as various forms of 

brain pathology are associated with substantial changes in brain structure and connectivity 

(Thompson et al. 2003; 2004; Narr et al. 2005; Frisoni et al. 2007). As early as 1980, the rate 

of decreases in gray matter (GM) and white matter (WM) volumes per decade had been 

quantified in healthy human adults (Miller et al.). Pfefferbaum and Sullivan found ageing- 

and sex-related differences in WM diffusivity throughout the brain, particularly in the 

corpus callosum (Pfefferbaum et al. 2000; 2003). Importantly, it has been acknowledged that 
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the human cortex experiences cortical thinning throughout the lifespan, and neuroimaging 

studies (Salat et al. 2004; Sowell et al. 2003; 2004) have measured cortical thinning rates 

and proposed their use as clinical biomarkers of increased risk for accelerated brain 

degeneration in adulthood, senescence and disease (Gur et al. 1999). Specifically, combining 

neuroimaging with computational neuroanatomy and statistical prediction models has 

allowed neuroscientists to assess the extent and severity of GM loss across adulthood. Such 

methods can allow individual subjects to be compared against the healthy population by 

evaluating the difference between their cortical thinning rate and the mean value of this 

quantity in healthy adults. This can allow one to identify adult individuals whose brains 

experience accelerated aging, i.e. whose brains appear to be significantly older than 

expected for the average person at their given chronological age based on structural and 

connectomic properties. In addition, this process can allow identification of such individuals 

at early stages of the accelerated senescence process, which can be useful in the context of 

timely clinical intervention. It is, thus, useful here to distinguish between chronological age 

(CA) and physiological brain age (PBA), the latter being clearly more difficult to assess than 

the former due to genetic and environmental factors which affect individuals differently. 

Such influences lead to statistical variability in PBA across healthy subjects even when CA 

is held constant. Given appropriate knowledge of brain structure changes across the lifespan 

in the healthy population, a person’s PBA can be estimated. Specifically, if the cortical 

thickness of an individual deviates substantially from the population mean at her/his CA, the 

direction of the deviation (i.e. the magnitude and sign of the statistical residual from the 

regression line) can be used to infer whether that subject’s PBA is substantially lower or 

higher than expected for an individual of their CA, the latter scenario being suggestive of 

accelerated aging.

Because of the often-reported relationship between cortical thickness and CA over extensive 

areas of the cortex (Walhovd et al. 2005; Fjell et al. 2009a; McDonald et al. 2009), the 

former measure can be used to estimate PBA. Nevertheless, though certainly useful to this 

end, cortical thickness is not the only measure which can be employed for PBA assessment 

because insight provided by other neuroanatomical correlates of brain aging can also 

contribute to the assessment of this phenomenon. Specifically, since aging-related changes 

in the human connectome are also likely to reflect brain aging, the inclusion of connectomic 

information in statistical models for PBA estimation is possibly informative. In this context, 

the purpose of this study is twofold: firstly, it aims to assess how changes in the connectivity 

density (CD) and fractional anisotropy (FA) of WM connections reflect aging-related 

changes in the human connectome throughout adulthood. Secondly, it provides evidence to 

the effect that connectomic information can be used to improve PBA statistical estimates 

above and beyond the extent to which this can be accomplished solely using cortical 

thickness measurements. Thus, in addition to demonstrating an improved statistical 

approach for PBA estimation, this study is the first to illustrate how aging affects human 

brain connectivity.
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2. Methods

Subjects and data acquisition

The study cohort included N = 136 healthy adult subjects (42 males) with CAs between 18.6 

and 61.1 (mean: 33.3 years, standard deviation: 11.6 years). Subjects provided their 

informed written consent as required by the Declaration of Helsinki, U.S. 45 CFR 46, and 

neuroimage volume acquisition was conducted with the approval of the local ethics 

committees at the respective research institutions where data were acquired. Participants 

were recruited by advertisements in local newspapers and campus flyers. Subjects were all 

healthy and had no history of neurological or psychiatric illnesses. No participant had a 

current or past psychiatric diagnosis (including substance abuse) or was taking medications 

for any medical reasons. Additional exclusion criteria for all participants included left-

handedness, hypertension, neurological illness, metal implants, and a history of head trauma 

with loss of consciousness for more than 5 minutes. Neuroimaging data sets were fully 

anonymized, and no linked coding or keys to subject identity were maintained. For these 

reasons, in compliance with the U.S. Health Insurance Portability and Accountability Act 

(HIPAA; http://www.hhs.gov/ocr/privacy), this study does not involve human subjects’ 

materials. Structural T1-weighted magnetic resonance imaging (MRI) and diffusion tensor 

imaging (DTI) volumes were acquired from each patient using a Siemens Trio Tim 3.0 T 

scanner. For MRI, an ultrafast ‘Turbo’ gradient-recalled MP-RAGE sequence (repetition 

time (TR) = 20 ms, echo time (TE) = 3 ms, flip angle = 25°, slice thickness = 1 mm, 

acquisition matrix = 256 × 256 × 256) was used. For DTI, a 12-channel coil and a sequence 

with the following parameters were used: TR = 9.4 s, TE = 88 ms, flip angle = 90°, slice 

thickness = 2 mm, number of gradient directions = 68, acquisition matrix = 128 × 128 × 

128. Two non-diffusion weighted volumes were acquired for each subject (B0-values: 0 

s/mm2 and 1000 s/mm2). The same scanner and sequence types were used for data 

acquisition from all subjects.

Cortical thickness and connectomic calculation

Using FreeSurfer software, the cortical surface was reconstructed as a triangular tessellation 

with ~300,000 vertices (average inter-vertex distance of ~1 mm) to produce a high-

resolution, smooth representation of the GM/WM interface, as detailed extensively 

elsewhere (Fischl et al. 2002; Fischl et al. 1999; Dale et al. 1999). At each vertex vi of the 

tessellation, cortical thickness was measured as the distance between the GM/WM boundary 

and the cortical surface. For each subject, DTI and MRI volumes were first co-registered 

using affine registration. Eddy current correction was then applied to each DTI volume, 

which was subsequently processed using TrackVis (http://trackvis.org) to reconstruct fiber 

tracts using deterministic tractography. Fiber bundles shorter than 15 mm were discarded.

Following cortical parcellation and WM tractography, the connectivity matrix of each 

subject’s brain was reconstructed. Let vi and vj be cortical mesh vertices linked by some 

WM connection cij. For each connection, the spatial coordinates associated with the 

extremities of cij (i.e. with vi and vj) were first identified. The corresponding entry indexed 

by i and j in the connectivity matrix C of the subject was updated to reflect the presence of a 

connection between the two vertices, and the process was repeated for each connection. The 
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mean FA of cij was calculated as the average of FA values over all DTI voxels traversed by 

cij from one end of the connection to the other. Similarly, at each vertex on the cortical 

mesh, the mean FA of connections linking vi to the rest of the brain was calculated. The CD 

at each vertex was computed as the sum of all reconstructed fibers linking it to the rest of the 

brain, divided by the surface area of the vertex neighborhood and by the total number of 

connections in the brain. Here, the neighborhood of some vertex vi denotes the portion of the 

mesh surface containing points which are closest to vi.

It is important to note that the generation of the connectivity matrix C did not involve the 

use of a predefined parcellation scheme. Because the extremity of each WM bundle is 

associated with some point vi on the cortical mesh, the size of C is determined by the 

number of bundles reconstructed via tractography, rather than by the number of parcels in a 

parcellation scheme which is specified a priori. Because most parcellation schemes currently 

available comprise at most ~1,000 brain regions (Hagmann et al. 2008), the advantage of the 

present method for generating C lies in its ability to accommodate substantially more 

connectivity information than previously possible, and without the need for averaging of 

connectivity measures over the surface of each parcel, as is the case in conventional 

parcellation approaches. For example, in the present study, C was of size ~35,000 × 35,000 

in each subject compared to at most ~1,000 × 1,000 in previous studies (Hagmann et al. 

2008). Thus, the process of generating C using this approach carries with it the ability to 

specify connectivity information for each cortical location at a spatial resolution far greater 

than previously reported.

In all subjects, the total number of connections was smaller than the total number of cortical 

mesh vertices. Consequently, the calculation resulted in the presence of vertices with no 

assigned value for either CD or mean FA. To correct for this effect, cortical maps were 

smoothed across using a circularly symmetric Gaussian kernel on the folding surface with a 

full width at half maximum of 5 mm, a value which is more conservative—and possibly 

more appropriate—than in studies similar to ours (Salat et al. 2004; Fjell et al. 2009b). The 

maps were then averaged across subjects in FreeSurfer using a non-rigid, high-dimensional 

spherical averaging method to align cortical folding patterns (Fischl et al. 1999). This 

method involves (1) inflation of the cortical surface, (2) flattening of each hemisphere, and 

(3) morphing of each hemisphere into a surface which maintains the topological structure of 

the original surface, but has a closed-form coordinate system.

Statistical analysis

In many aging research studies, the desire to estimate cortical thickness and/or its rate of 

change (as statistical response variables) based on CA (as a statistical predictor variable) has 

been of preponderant interest. By contrast, the present study aims to explore the converse, 

i.e. the ability of cortical thickness and of brain connectomic properties to predict CA, and 

thereby also to estimate PBA, with potential clinical applications to the identification of 

clinical patients with accelerated brain aging. Implementing the procedures described in the 

previous two sections results in the association of three numerical values with each cortical 

location, namely cortical thickness, CD and the mean FA of connections linking each vertex 

to the rest of the brain; these quantities form a multivariate feature vector of size q = 3. The 
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connections linking the vertex to the rest of the brain can be thought of as the set of 

connections which ‘innervate’ the cortical region represented by that vertex.

To investigate whether and to what extent the FA and CD measures are correlated, the 

Pearson product moment correlation coefficient between the two measures was first 

computed across subjects for each point on the cortex. Subsequently, the null hypothesis that 

there is no correlation between the two measures was tested using Student’s t test at α= 0.05 

subject to the FDR correction for multiple comparisons. Because the null hypothesis was not 

accepted at any cortical location, it was deemed appropriate to include the two measures in 

the design matrix of the regression model described below.

Let Y be an N × 1 vector containing the CAs of the subjects in our sample of size N = 136. 

To explore the extent to which cortical thickness can predict the CA of each subject, one can 

form the standard set of multivariate regression equations Y = Xβ + ε, where Y contains the 

response variable values (subjects’ CAs), X is a design matrix containing q predictor 

variables, and where β and ε are vectors of regression coefficients and residuals, 

respectively. The least squares solution to this set of equations is β̂ = (XTX)−1XTY. To 

account for the potential effect of sex as a confounding factor in the analysis, this predictor 

variable was initially coded as a binary variable in the design matrix. The effect of this 

predictor variable was then regressed out following a standard approach (Rencher 2002). 

Subsequently, the following statistical analyses were implemented.

In step 1, to test the omnibus null hypothesis that none of the independent variables predicts 

CA, one can compute Wilks’ Λ test statistic as Λ = |YTY − β̂TXTY|/|YTY − NȳȳT|. This can 

be converted to an F statistic of the form F = [vE(1 − Λ)]/(vHΛ) and with vH = q = 3 and vE = 

N − q − 1 = 132 degrees of freedom (d.f.), cf. pp. 162–163 in (Rencher 2002). Here and 

throughout, vH and vE are the d.f. for the hypothesis and error, respectively. A split-half 

reliability analysis was implemented following standard classical test theory (Webb et al. 

2006). Specifically, the original sample of size N was first divided into two subsets by 

randomly assigning each sampling unit (subject) to one of the subsets. The reliability 

coefficient —measuring the extent to which the regressors β̂X could 

reliably predict CA, i.e. Y—was computed for each subset. The Spearman-Brown prediction 

coefficient  was then used to assess the reliability of the 

regression model as a CA predictor. These calculations were repeated over 1,000 distinct 

random split-half assignment iterations, and the mean reliability coefficient 〈 〉 and 

Spearman-Brown prediction coefficient 〈 〉 over all 1,000 realizations were computed 

at each cortical location.

In step 2, we examined the ability of cortical thickness alone to predict CA. This can be 

accomplished using ‘leave-one-out’ regression, i.e. reduced-model regression involving the 

deletion of a single predictor variable from the design matrix (cf. pp. 330–332 in (Rencher 

2002)). When removing exactly one variable (cortical thickness in this step) from the design 

matrix, the null hypothesis that the removed variable does not contribute above and beyond 

all other variables to the regression can be tested using an F statistic which has 1 and N − q 
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− 1 d.f. When the numerator d.f. of the F-test is 1, such a statistic is the square of a t-

statistic, given by , where j is the appropriate index of the predictor variable 

being deleted, gij is the j-th diagonal element of (XTX)−1 and s = (YTY − β̂TXTY)/(N − q 

−1)1/2.

In step 3, we sought to determine whether two connectomic variables (CD and mean FA)—

can predict CA above and beyond the extent to which cortical thickness can alone. In this 

case, the standard set of multivariate regression equations assumes the form ε = X′ β′ + ε′, 

where ε is the set of residuals from the regression performed in the first step of the analysis 

(i.e. the set of differences between the true CAs of the subjects and their CAs as estimated 

using cortical thickness alone). The primes in X′,β′ and ε′ are used to distinguish the design 

matrix, regression coefficients and residuals, respectively, in this step of our analysis from 

those in the first step. Thus, X′ is a design matrix containing two predictor variables (CD and 

mean FA), while β′ and ε′, are the regression coefficients and residuals, respectively, 

computed in the current step of the analysis. To test the omnibus null hypothesis that the 

connectomic variables do not predict CA above and beyond the extent to which cortical 

thickness alone can predict it, one can use an F statistic as previously explain, where F has 

vH = q = 2 and vE = N − q − 1 = 133 d.f.

Finally, in step 4, to investigate the distinct contribution of each connectomic variable to the 

estimation of CA, we implemented leave-one-out regression as previously explained, 

starting from the model containing only the connectomic variables and removing only one 

such variable at a time from the model. For all statistical tests included in this study, 

corrections for multiple comparisons were implemented using the false discovery rate (FDR) 

approach of Benjamini & Hochberg (1995).

3. Results

Figure 1A displays the results of the first step of the statistical analysis to determine the 

extent to which all three feature variables used can predict CA in adulthood. For each 

cortical location, this figure displays the F statistic for the omnibus test of the null 

hypothesis that none of the three independent variables (cortical thickness, CD and mean 

FA) predicts subject CA. Here and throughout, the displayed values of the test statistic are 

thresholded for both significance (using FDR < 0.05) and reliability (using ). 

The cortical maps reveal that the null hypothesis is rejected for large portions of the frontal 

lobe, both laterally, medially and ventrally. Additional areas where the omnibus null 

hypothesis is rejected include bilateral portions of the insula, parietal lobe (especially on the 

banks of the post-central sulcus and of the parieto-occipital sulcus), and occipital lobe. 

Regions where the F statistic is particularly large (F > 10) by comparison to other regions 

include the antero-medial and dorsal aspects of the superior frontal gyrus, triangular part of 

the inferior frontal gyrus (right hemisphere), as well as the straight and orbital gyri.

In Figure 1B, the distinct contribution of cortical thickness to the estimation of CA is 

examined (the second step of the analysis). This figure conveys the result of testing the null 

hypothesis that cortical thickness does not contribute to the regression model above and 

beyond all other predictor variables. The cortical maps confirm, as expected, that cortical 
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thickness is a strong predictor of CA for most cortical locations where omnibus aging-

related effects exist. For cortical locations where Student’s t > 0, increases in cortical 

thickness translate into increases in CA; conversely, for cortical locations where Student’s t 

< 0, decreases in cortical thickness translate into increases in CA. The latter is the case for 

most locations in questions, with a few notable exceptions such as the anterior extremity of 

the parahippocampal gyrus, bilaterally, and isolated portions of the left subcallosal gyrus 

and calcarine sulcus.

Figure 2 attempts to capture the results of the regression presented in Figure 1B in a more 

detailed, intuitive and visual manner. Specifically, Figure 2 contains two-dimensional (2D) 

plots of the response variable (CA, in years) plotted as a function of the most prominent 

predictor variable (cortical thickness, in mm) for all N subjects at 12 distinct cortical 

locations. All such locations were selected from among the set of points on the brain surface 

where the null hypothesis of Student’s t test—as described in step 2 of the statistical analysis

—is not accepted. In each plot, an ellipse is drawn to indicate the 95% confidence region for 

the average thickness measure as a function of age. In other words, given the mean and 

standard deviation of the sample cortical thickness at the locations explored in each plot, the 

area of each ellipse indicates the 2D region in which 95% of all measurements are likely to 

be located. One property of the population sample being studied which is made obvious in 

Figure 2 is the approximately linear relationship between CA and cortical thickness within 

the available CA range (18.6 to 61.1 years), which illustrates the appropriateness of a linear 

regression model. Another property being featured is the presence of outliers in the 

population sample, as indicated by points located outside each confidence region. At all the 

cortical locations highlighted by the 2D plots, certain subjects are represented by points 

which are located outside the corresponding ellipse, which indicates that these subjects have 

cortical thickness values which are either significantly larger or smaller than expected for a 

healthy adult of their age. In the latter case, this may be indicative of accelerated senescence, 

and the methodological approach illustrated here may be useful for identifying individuals at 

high risk for neurological or neuropsychiatric illness.

Figure 3A explores the results of testing the null hypothesis that neither of the connectomic 

variables predicts CA above and beyond the ability of cortical thickness to do so (the third 

step of the analysis). This figure indicates that the null hypothesis is rejected at a number of 

cortical locations, though particularly on portions of the paracentral lobules, on the banks of 

the occipito-parietal sulci, in the prefrontal areas of the superior frontal gyri, and on the 

anterior portions of the parahippocampal gyri.

Figure 3B conveys the distinct contribution of each connectomic variable to the estimation 

of CA above and beyond the contribution of cortical thickness (the fourth step of the 

analysis). The null hypothesis is that the independent variable in question cannot predict CA 

above and beyond the ability of cortical thickness to predict it. Figure 3B indicates that, in 

the case of CD, the null hypothesis is rejected on portions of the paracentral lobules, on the 

banks of the occipito-parietal sulci, and in the prefrontal regions of the superior frontal gyri. 

Figure 3C shows that mean FA contributes significantly to the prediction of CA above and 

beyond the contribution of cortical thickness for areas such as the right paracentral lobule, 

the banks of the parieto-occipital sulci, the prefrontal aspect of the superior frontal gyri, etc.
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Figures 4 and 5 are similar to Figure 2 in that they attempt to illustrate the results of the 

regressions presented in Figures 3A and 3B in a more intuitive manner. Thus, both figures 

contain 2D plots of the response variable (residual CA, in years, after accounting for effects 

due to cortical thickness) plotted as a function of either CD (Figure 4) or mean FA (Figure 

5). As in Figure 2, all N subjects are represented and all 12 highlighted cortical locations are 

selected from the set of points on the cortical surface where the null hypothesis of Student’s 

t test—as described in step 4 of the statistical analysis—is not accepted. Subjects 

represented by points located outside the confidence region have atypical CD (Figure 4) or 

mean FA (Figure 5), with potential implications as already mentioned.

4. Discussion

Interpretation

Comparison of Figures 1 and 3 in this article confirms that cortical thickness is the strongest 

predictor of PBA among the three feature variables selected. Thus, an important finding 

which emerges from examination of Figure 3 is that healthy brain aging throughout 

adulthood is associated with statistically significant changes in the connectomic properties 

of the brain even though not as extensively as cortical thickness. Additionally, we identify 

four principal cortical regions for which both the mean CD and the mean FA of the 

connections which link them to the rest of the brain are significantly affected by CA. 

Bilaterally, these are (A) the paracentral lobule, (B) the anterior wall of the central sulcus, 

(C) the banks of the parieto-occipital sulcus extending partially onto the cuneus and 

precuneus, and (D) the antero-medial aspect of the superior frontal gyrus.

Healthy aging is known to be associated with serotonin-modulated changes in glucose 

metabolism in the paracentral lobule, suggesting the presence of compensatory 

neurochemical processes prompted by aging-related loss of serotonin innervation (Goldberg 

et al. 2004). A neuroimaging study by Cheng et al. (2010) found aging-related FA loss in the 

right paracentral lobule and bilateral superior frontal gyrus in patients exhibiting abnormal 

WM microstructure and frontal disconnectivity. A spatial navigation study (Wenger et al. 

2012) found that, in contrast to young subjects, older adults have reduced potential for 

experience-dependent cortical alterations in the left precuneus and paracentral lobule, 

suggesting that aging-related loss of spatial navigation skills may disproportionately affect 

connectivity between these structures and the rest of the brain. Thus, it appears that the 

aging-related connectivity alterations identified here between the anterior wall of the central 

sulcus (primary motor cortex), the paracentral lobule and the rest of the brain may partly 

reflect loss of motor acuity and serotonergic circuit degeneration throughout adulthood. 

Nevertheless, further study to test this hypothesis is required and the causality relationships 

involved in these aging-related connectomic alterations remain unclear.

In our study, both the mean CD and the mean FA of the connections linking the parieto-

occipital sulcus to the rest of the brain are found to increase with CA (Figure 3). Such 

increases in connectivity with age have been reported by other authors as well (Lemaitre et 

al. 2012). In the case of the parieto-occipital sulcus, although a number of studies have 

attempted to identify its cortical functions, the precise role of this structure remains 

insufficiently delineated and it is thus challenging to interpret our findings involving this 
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anatomical structure. The parieto-occipital sulcus is known to be the generative locus for the 

reactive alpha rhythm, whose amplitude and parameters are modulated by visual shape 

stimuli, spatial information transfer and other functions commonly associated with the 

dorsal visual pathway (Vanni et al. 1997). Whereas one study of target selection using 

reaching movements posited a role for the parieto-occipital sulcus and for surrounding 

anatomical areas in prehension (de Jong et al. 2001), another investigation suggested both 

proprioceptive as well as visual and non-visual reaching roles for this structure (Filimon et 

al. 2009). Ino et al. (2002) even proposed that mental navigation in humans is processed in 

the anterior bank of the parieto-occipital sulcus. Given the intriguing nature of our findings, 

it would thus be interesting for future studies to investigate whether aging-related increases 

in CD and mean FA associated with connections between the parieto-occipital sulcus and 

other brain areas are related to training or habituation processes taking place over the 

lifespan, or whether other causality mechanisms are involved instead.

Innovation

In contrast to previous studies which have aimed to estimate cortical thickness as a function 

of CA, we here explored the converse and novel approach of using cortical thickness and the 

connectivity properties of the cortex to predict CA, and thereby to estimate PBA. 

Specifically, the magnitude of each residual ε′ in the regression model described in step 3 of 

our statistical approach in the Methods section indicates the number of years by which the 

PBA of a given patient deviates from the mean PBA over healthy individuals who have the 

same CA as the patient in question. The sign of the residual indicates the direction of the 

deviation, with a negative residual indicating slower brain aging and a positive one 

indicating accelerated aging compared to the average rate. In the latter case, the approach 

illustrated in this study holds considerable translational impact because it can allow health 

professionals to identify patients whose brains are effectively older than they are expected to 

be compared to the average healthy population at that CA. This can direct clinicians’ 

attention to such patients for further examination and possibly for clinical intervention. 

Patients with accelerated aging may be at higher risk for conditions such as mild cognitive 

impairment or dementia, and the implementation of a statistical analysis approach such as 

ours may be of substantial use for the early identification of individuals who are likely to 

develop either of these conditions. In addition, as this analysis focuses upon structural brain 

changes which occur throughout adulthood, our study illustrates the growing need for age-

stratified brain atlases, as outlined elsewhere (Van Horn and Toga 2009).

Comparison to previous studies

The pattern of cortical thickness changes which occur throughout the lifespan have been 

reported by numerous studies. Salat et al. (2004), for example, reported significant bilateral 

aging-associated cortical thinning in the superior frontal gyrus, medial occipital lobe, 

Broca’s and Wernicke’s areas, precentral gyrus, and significant bilateral cortical thickening 

in anterior cingulate and parahippocampal regions. A later study by Fjell et al. (2009b) 

reported high consistency of regional cortical thinning in aging across multiple samples, 

with substantial atrophy being observed over most of the cortex, with the exception of the 

anterior cingulate and inferior aspect of the medial frontal lobe, as in the study of Salat et al. 

In the present study, we similarly identify significant cortical thinning over the frontal lobe 
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as well as cortical thickening in the anterior portions of the medio-ventral temporal lobes 

(e.g. parahippocampal gyri).

An important difference between our study and those of Salat et al. and Fjell et al. is that the 

decrease in cortical thickness which we have identified in the medial occipital lobe, in 

Broca’s area, in Wernicke’s area and in the precentral gyrus is not as significant and as 

spatially extended as in these two studies. Detailed comparison of our cortical atrophy maps 

(Figure 1) to those presented by Fjell et al. in Figure 3 of their article suggests that this 

discrepancy is likely due to the fact that our study does not include a substantial number of 

subjects older than 60. Specifically, our analysis involves a sample of 136 subjects with CAs 

in the range of 18.6 to 61.1 years (mean CA: 33.3 years, standard deviation of CA: 11.6 

years). By contrast, Salat et al. base their analysis on a sample of 104 subjects with ages in 

the range of 18–93 years (mean CA: 56.4 years), whereas Fjell et al. use six distinct samples 

with various CA ranges and means. Thus, whereas Fjell et al. investigate cortical atrophy 

throughout both adulthood and senescence, it may be the case that the findings and 

conclusions of the present study are only applicable to adulthood due to the demographic 

profile of our sample. Examination of the characteristics associated with the six samples 

used by Fjell et al. and comparison of these characteristics with those of our own sample 

reveals that the Fjell sample whose demographics are most similar to ours is their Swedish 

sample (Sample No. 3), which consists of 106 subjects with CAs between 19 and 56 years 

(mean CA: 41.6 years). Not only is the CA range of the Swedish sample most similar to ours 

(19–56 years vs. 18.4–61.1 years), but the difference between the mean CA of the subjects 

in the Swedish sample and the mean CA of our own sample is 8.3 years. This is the lowest 

difference of CA means between our sample and any of the samples in the study of Fjell et 

al., which all contain a substantial number of subjects with CAs over 60 (with the exception 

of the Swedish sample).

Comparing our findings to those of Fjell et al. is relevant here because the mean cortical 

atrophy pattern exhibited by the Swedish sample of Fjell et al. (third row in Figure 3 of their 

article) is very similar to the cortical atrophy pattern displayed in Figure 1 of the present 

article. As in our case, the atrophy pattern in the Swedish sample of Fjell et al. exhibits 

significant atrophy over the lateral and medial aspects of the frontal lobes, though 

conspicuously less atrophy over occipital, parietal and temporal areas. What this may 

suggest is that, whereas the frontal lobe atrophies, on average, relatively early in life (i.e. 

before a CA of 60), most of the atrophy observed in other cortical regions by Salat et al. and 

by Fjell et al. in their other 5 samples becomes significant after this CA. Naturally, future 

research may clarify and provide further insight into the spatiotemporal variability of 

cortical atrophy patterns in the human cortex. In addition, the fact that suitable imaging 

volumes acquired from subjects over 61 were not available to us for this study constitutes a 

limiting factor of the study. Nevertheless, the agreement between the atrophy pattern of our 

sample as displayed in Figure 1 and that of the Swedish sample in Figure 3 of the article by 

Fjell et al. does suggest qualitative and quantitative agreement between our study on healthy 

aging and theirs, subject to the acknowledged limitations of our own approach and to the 

methodological differences between the two studies.
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The atrophy pattern described in Figure 1 contains an age-related, anterior-posterior gradient 

of thinning with a strong frontal component. As pointed out by an anonymous reviewer, this 

result is in excellent agreement with at least two previous studies of longitudinal changes in 

cortical thickness due to normal aging. In one of these, Thambisetty et al. (2010) 

investigated thickness changes in older adults without dementia and concluded that ageing is 

associated with age-related decline in thickness exhibiting an anterior-posterior gradient 

with frontal and parietal regions, where decline rates are greater than in temporal and 

occipital regions. Similarly, a thorough review by Sullivan and Pfefferbaum (2006) 

concluded that the ageing-related decline of WM FA is linear from about age 20 onwards, 

and has a primarily frontal distribution, just as indicated by our study.

Limitations and caveats

The cross-sectional nature of the cohort whose neuroimaging measurements are used in this 

investigation must be acknowledged as a limitation. Specifically, our study does not take 

into account effects due to sex, ethnicity, intelligence, educational attainment, or to 

environmental factors which may influence PBA. Partly as a result of such drawbacks, the 

present investigation is best viewed as a pilot study which illustrates PBA estimation as a 

proof of concept. Additional studies with larger sample sizes are consequently needed in 

order to estimate and regress out the possible confounding effects of these factors 

(Ingalhalikar et al. 2014; Dennis and Thompson 2013). Similarly, one drawback of having a 

sample of moderate size (N = 136) with subjects whose CA varies over a wide range (18.6 to 

61.1 years) is that, for some given CA, there are not enough subjects available here for the 

purpose of accurately assessing PBA variance in the healthy population for some fixed CA. 

Accordingly, given the structural and connectomic profile of a particular subject of interest, 

our cohort cannot be used as a normative sample for testing the hypothesis that the subject’s 

PBA is significantly different from the PBA of the healthy population at his/her CA. For 

these reasons, the cross-sectional nature of the sample and its relatively small size are two 

potential limitations which should be addressed by future studies aiming to use the PBA 

estimation approach in a clinical setting for the purpose of identifying human patients whose 

PBAs are significantly higher than expected given their CAs.

One methodological limitation of the PBA estimation approach is related to the loss of 

contrast between GM and WM in T1-weighted MRI as a function of adult age, which may 

adversely impact the ability of tissue classification methods to segment the GM-WM 

boundary accurately. In the present case, tissue segmentation was performed based on 

spatial intensity gradients across tissue classes where the former are not simply reliant on 

absolute signal intensity, and previous studies of aging using this methodology have shown 

that the resulting segmentations can detect sub-millimeter differences between groups 

(Fischl et al. 2002; Fischl et al. 1999; Dale et al. 1999).

Another limitation of the present study is that it does not account for the potential confound 

of systematic differences in head movement patterns as a function of age. Such movement 

artifacts can impact measurements of FA, CD and GM thickness (Rohde et al. 2004; Freire 

and Mangin 2001). Avenues for addressing this challenge include (A) providing the ability 

to relate head position during MR scanning to an independent frame of reference (Qin et al. 
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2013), (B) using repeated scans of each subject to tease out motion-related effects (Ernst et 

al. 1999), or (C) implementing an MR sequence which implements intra-scan motion 

correction (Ugurbil et al. 2013; Herbst et al. 2014). In the present case, because none of 

these options was available to the imaging staff at the time of MR acquisition, we must 

acknowledge this as a potential limitation and draw attention to the fact that the results 

presented here must be interpreted with caution.

Finally, the use of linear regression in contrast to other approaches such as logistic or other 

forms of nonlinear regression may constitute a drawback of this study. Previously, both 

approaches have been used in neuroimaging studies of aging, and advantages as well as 

drawbacks associated with both techniques have been identified (Wang et al. 2009; Lerch et 

al. 2008; Dickerson et al. 2012). Because aging-related changes in the structural and 

connectomic variables considered here may exhibit either linear or nonlinear behaviors 

depending on metric type and age range, it may be challenging to argue persuasively in 

favor of applying a nonlinear regression model for all metrics considered here (Dickie et al. 

2013). Our choice of linear regression is based on the consideration that linear models are 

more parsimonious and that their results are easier to interpret, whereas nonlinear models 

are less common and additionally require strong empirical justification. Given that the upper 

limit of the CA range is 61.1 years in our case, the use of linear regression is reasonable 

particularly because cortical thickness changes below a CA of ~60 do not exhibit clearly 

nonlinear behavior (Sowell et al. 2003).

5. Conclusion

Here we have proposed that connectomic metrics can be used in combination with cortical 

thickness to assess PBA in healthy aging over the course of adulthood. Using multivariate 

linear regression analysis, we illustrate the process of predicting CA and thereby estimating 

PBA while also concluding that healthy aging is associated with significant connectomic 

changes throughout adulthood. Whereas most aging research studies have attempted to 

estimate cortical thickness and its rate of change based on CA, one novel aspect of the 

present study is that it has explored the converse, i.e. the ability of cortical thickness and of 

brain connectomic properties to predict CA, and thereby also to estimate PBA. Though the 

sample size employed here is typical of pilot studies, both the statistical methodology and its 

demonstrated implementation are useful and may hold potential clinical applications for the 

identification of clinical patients with accelerated brain aging.
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Fig. 1. 
(A) Results of the statistical analysis to determine the extent to which all three feature 

variables (cortical thickness, CD and mean FA) can predict chronological age. For each 

cortical location, the F statistic with 3 and 132 d.f. is displayed for the omnibus test of the 

null hypothesis that none of the three independent variables predicts subject age. Here and 

throughout, the displayed values of the test statistic are thresholded for significance using 

FDR < 0.05. (B) Result of testing the null hypothesis that cortical thickness does not 

contribute to the regression model above and beyond all other predictor variables. The test 

statistic is Student’s t with 132 d.f. Some areas are colored in red, corresponding to t > 0, 

whereas others are colored in blue, indicating that t < 0. For areas colored in red, as cortical 

Irimia et al. Page 16

Brain Imaging Behav. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



thickness increases, so does age. For areas colored in blue, as thickness decreases, age 

increases.
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Fig. 2. 
CA (in years) as a function of cortical thickness (in mm) at 12 locations where thickness 

contributes to the regression above and beyond all other predictor variables (see text). Each 

dot represents a subject and ellipses are drawn to indicate the 95% confidence regions for 

thickness. The linear relationship between CA and cortical thickness within the CA range 

displayed (18.6 to 61.1 years) is apparent. Outliers (dots located outside the confidence 

interval) indicate the presence of subjects with atypical cortical thickness values given their 

CAs. Note the decrease in thickness at all highlighted locations, with the exception of two 

locations (bottom row, middle) where cortical thickening as a function of age is apparent.
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Fig. 3. 
(A) Results of testing the null hypothesis that neither of the connectomic variables predicts 

age above and beyond the ability of cortical thickness to do so. As in Figure 1A, the test 

statistic is the F statistic with 2 and 133 d.f. Color-coded arrows indicate prominent regions 

where the null hypothesis is rejected, namely the paracentral lobule of the right hemisphere 

(magenta), the anterior bank of the central sulcus in the left hemisphere (green), the banks of 

the parieto-occipital sulci (bilaterally, black), and the antero-medial aspects of the superior 

frontal gyri (bilaterally, cyan). (B) Results of testing the null hypothesis that CD alone 

Irimia et al. Page 19

Brain Imaging Behav. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cannot predict age above and beyond the ability of cortical thickness to predict it. As in 

Figure 1B, the test statistic is Student’s t with 133 d.f. (C) As in (B), for mean FA.
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Fig. 4. 
Residual CA (in years) as a function of CD (scaled by 106 for convenience) at 12 locations 

where CD contributes to the regression above and beyond cortical thickness (see text). Each 

dot represents a subject; ellipses are drawn to indicate the 95% confidence regions for CD. 

Note that (1) the residual CA can be either positive or negative, depending on whether 

thickness alone over- or underestimates CA, and that (2) there are outliers much farther 

outside the confidence region than in the case of cortical thickness (Figure 2) or mean FA 

(Figure 5).
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Fig. 5. 
As in Fig. 4, but where residual CA is plotted as a function of mean FA rather than CD. 

Note that there are both decreases in mean FA as a function of CA (Student’s t < 0, left and 

right columns), as well as increases (Student’s t > 0, middle, top and bottom).
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