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Abstract

direct evidence of cranial drug access.

and adverse events noted.

Trial registration: ClinicalTrials.gov: NCT01290354

Background: Brain metastases are common in human epidermal growth factor receptor (Her)-2-positive breast
cancer. Drug access to brain metastases and normal brain is key to management of cranial disease. In this study,
positron emission tomography (PET) scanning after administration of radiolabelled lapatinib was used to obtain

Methods: Patients with Her-2+ metastatic breast cancer either with at least one 1-cm diameter brain metastasis or
without brain metastases underwent dynamic carbon-11 radiolabelled lapatinib (['' Cllapatinib)-PET. Less than 20 ug
of [”C]Iapatinib was administered before and after 8 days of oral lapatinib (1,500 mg once daily). Radial arterial blood
sampling was performed throughout the 90-min scan. The contribution of blood volume activity to the tissue signal
was excluded to calculate lapatinib uptake in normal brain and metastases. Partitioning of radioactivity between plasma
and tissue (V) was calculated and the tissue concentration of lapatinib derived. Plasma lapatinib levels were measured

Results: Six patients (three with brain metastases) were recruited. About 80% plasma radioactivity corresponded to intact
["'Qlapatinib after 60 min. PET signal in the brain corresponded to circulating radioactivity levels, with no [''Cllapatinib
uptake observed in normal brain tissue. In contrast, radioactivity uptake in cranial metastases was significantly higher
(p=0.002) than that could be accounted by circulating radioactivity levels, consistent with [''Cllapatinib uptake in brain
metastases. There was no difference in lapatinib uptake between the baseline and day 8 scans, suggesting no effect of
increased drug access by inhibition of the drug efflux proteins by therapeutic doses of lapatinib.

Conclusions: Increased lapatinib uptake was observed in brain metastases but not in normal brain.

Keywords: Lapatinib bio-distribution in brain metastases; Her-2-positive breast cancer; PET imaging; Blood-brain barrier

Background

Overexpression of human epidermal growth factor re-
ceptor (Her)-2 in breast cancer is considered an inde-
pendent factor for development of brain metastases [1]
with up to 37% of patients with Her-2-positive disease
relapsing intracranially despite control of extra-cranial
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metastatic disease [2]. Possible reasons for the increased
incidence of brain metastases include the aggressive na-
ture of Her-2-positive disease, increased ability of Her-2
cells to survive and/or home to the brain and inability of
drugs to pass an intact blood-brain barrier (BBB) [2,3]. It
has been hypothesised that in contrast to the large
monoclonal antibodies, the small molecule lapatinib
(Tykerb/Tyverb; GlaxoSmithKline, Brentford, UK; mo-
lecular weight: 581.07), an oral dual epidermal growth
factor receptor and Her-2 inhibitor, may cross the BBB.
In addition, since lapatinib is a P-glycoprotein (Pgp) and
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breast cancer resistance protein (BCRP) substrate, thera-
peutic doses of lapatinib may inhibit drug efflux by
blocking Pgp/BCRP [4], thereby enhancing its access
into the brain through an intact BBB.

In order to evaluate lapatinib access into normal brain
and brain metastases, a positron emission tomography
(PET) study was performed with carbon-11 radiolabelled
lapatinib ([*'C]lapatinib) in patients with Her-2-positive
breast cancer. Further, in order to test our hypothesis
that therapeutic doses of lapatinib increase brain access
into the brain and brain metastases, by blockage of the
drug efflux pump, paired [*'C]lapatinib-PET imaging in
patients before and after therapeutic doses of lapatinib
was performed. A schematic representation of our study
hypothesis is shown in Figure 1.

Methods

Study design

An open-label study was performed in patients with Her-2-
positive breast cancer with no brain metastases (cohort 1)
and with at least a single brain metastases >1 ¢cm (cohort 2)
as confirmed by MRI Other inclusion criteria included fe-
male patients aged at least 18 years with histologically or
cytologically confirmed advanced or metastatic breast
cancer with overexpression of Her-2, Eastern Cooperative
Oncology Group (ECOG) performance status of 0-2, stable
condition as judged by the investigator and adequate hep-
atic and renal function. An Allen’s test to check the ad-
equacy of collateral circulation of the hand was also
performed at screening as radial arterial cannulation was
performed on the day of the scan. The protocol stipulated
that patients were not allowed to receive concurrent treat-
ment with an investigational medicinal product or anti-
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cytotoxic therapy whilst on the imaging part of the study
apart from the use of anastrozole. Patients were required a
washout period of 4 weeks and 30 days after previous
radiotherapy or chemotherapy, respectively. Up to 1.5 mg
of dexamethasone was allowed whilst patients were on the
imaging part of the study. Two PET-computed tomography
(CT) scans were performed after administration of a micro-
dose (<20 pg) of ["'Cllapatinib, (i) at baseline (day 1) in
lapatinib-naive patients and (ii) after 7 days of 1,500 mg of
oral lapatinib daily, starting on day 1 after completion of
the day 1 PET scan. The day 8 PET scan started at 3 h
post-dosing of oral lapatinib to coincide with the known
maximal plasma lapatinib level (Cp.x). Approval was ob-
tained from the West London Research Ethics Committee
(10/H0707/93) to conduct this PET imaging study in this
patient group with metastatic disease during the ‘window’
prior to starting lapatinib-based therapy. Approval was
also obtained from the UK Administration of Radioactive
Substances Advisory Committee. The study was registered
with the European Union Clinical Trials database
(EudraCT 2009-009884-76), National Institute of Health
database (NCTO01290354) and the National Cancer
Research Network study portfolio (NCRN262).

Patients

Demographics and disease characteristics of the eight
patients recruited to the study are detailed in Table 1.
Six patients (three with and three without brain metas-
tases) underwent both baseline and day 8 [M'Clapatinib-
PET scans, except one who was unable to have the base-
line scan due to radiochemistry failure (tumour
receptor status and injected radioactivity and mass for
patients scanned are summarised in Tables 2 and 3,

No brain metastases

Brain metastases

* Microdose (<20 pg cold lapatinib)
¢ ['"C]lapatinib-PET on Day 1

Pharmaceutical dose
Affected drug efflux system
* 1500 mg lapatinib for 8 days
 Steady state
¢ ['"C]lapatinib-PET on Day 8
(approximately 3 h post last dosing)

(Cohort 1) (Cohort 2)
* BBB intact * BBB disruption
Tracer alone ([''C]lapatinib)
Unaffected drug efflux system Brain penetration Brain penetration

Poor (+)

Brain penetration
Low (+)

Effect of disruption of BBB

Moderate (++)

Jodsuel; ggg ul uonessye Jo 19943

Brain penetration Y
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-

emission tomography.

Figure 1 Study hypothesis. It was hypothesised that brain penetration in normal brain would increase with therapeutic serum concentrations of
lapatinib due to the effect of lapatinib on drug efflux pumps. Higher brain penetration in metastases compared with normal brain was also
hypothesised due to the disruption of the BBB in cranial metastases. ''C, carbon-11 radiolabelled; BBB, blood-brain barrier; PET, positron
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Table 1 Patient demographics and disease characteristics
of all patients recruited

Demographic characteristics Value
Age in years, mean (range) 55.9 (42 to 79)
Race, n (%)
White 4 (50)
African heritage 2 (25)
Asian - Japanese/East Asian/Southeast Asian heritage 1 (13)
Asian - Central/South Asian heritage 1(13)
Baseline ECOG performance status, n (%)
0 6 (77)
2 2 (25)
Time since diagnosis (years), median (range) 45(1t09)

Of the eight patients recruited, only six patients underwent PET. ECOG, Eastern
Cooperative Oncology Group; PET, positron emission tomography.

respectively). In another subject, the baseline scan was
not assessable due to tissue extravasation of the radio-
tracer. All three patients with brain metastases had
completed prior cranial radiotherapy about 5, 11 and
70 weeks prior to the baseline PET scan (Table 3). Op-
tional extra-cranial static PET scans were obtained for
six PET sessions, approximately 95 to 100 min after
["'C]lapatinib injection to evaluate the uptake of
[''C]lapatinib in sites of extra-cranial metastases and
normal tissue within the field of view of the optional
scan. Two of the eight patients recruited were unable to
undergo [''C]lapatinib-PET scans due to inability to re-
schedule scans after radiochemistry failure and due to
regulatory issues. As it was unethical to delay start of
their therapy to accommodate the [''C]lapatinib-PET
scans, both the subjects started their lapatinib therapy
on time, as planned.

Radiochemistry

["'C]Lapatinib was prepared in a two-pot four-step syn-
thesis, with intermediate preparation of [''C]-3-fluoro-
benzyl iodide (Figure 2). Cyclotron-derived [''C]CO,
was first reacted with 3-fluorophenylmagnesium brom-
ide in tetrahydrofuran. The resulting acid was reduced
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with lithium aluminium hydride, followed by iodination
reaction in the presence of hydriodic acid. The obtained
[*'C]-3-fluorobenzyl iodide was intermediately purified
by solid-phase extraction, before being reacted with the
lapatinib precursor in dimethylformamide in the pres-
ence of caesium carbonate. Purification of [*'C]lapatinib
was achieved by reverse-phase high-performance liquid
chromatography (HPLC). The fraction containing the
product was formulated into 20% ethanolic saline by
solid-phase extraction, followed by filtration through a
0.2-um Pall Tuffryn® membrane (Pall Corporation, Port
Washington, NY, USA). Quality control methods for
clinical batches of [HC]lapatinib were developed in ac-
cordance with the European Pharmacopoeia guidelines.

PET scanning procedure and blood sampling

Following a low-dose CT scan for attenuation correction,
dynamic PET scans lasting 90 min were performed on a
Siemens HiRez 6 PET-CT scanner (Siemens, Munich,
Germany) after intravenous administration of [''C]lapa-
tinib. PET data were reconstructed using filtered back
projection with corrections for attenuation, scatter, ran-
doms and dead time, into 26 frames of the following
duration: 8 x15 s, 3x60 s, 5x120 s, 5x300 s and 5 x
600 s. Continuous (5 mL/min for 15 min) and discrete
(from 5 to 90 min after injection) sampling of radial arterial
blood was performed throughout the PET scan for radio-
activity and radioactive metabolite analyses. Whole-blood
and plasma radioactivity measurements were performed on
a PerkinElmer 1470 Wizard well counter (PerkinElmer,
Waltham, MA, USA). An Agilent 1200 HPLC analytical
system (Agilent Technologies, Inc., Santa Clara, CA, USA)
was used to determine the fraction of radioactivity cor-
responding to the intact parent compound. Additional
hourly blood samples from 1 to 6 h after oral lapatinib
dosing were assessed on the day 8 scan. Radiation dos-
age to patients in the study from exposure to the radio-
pharmaceutical and the attenuation CT scan of the head
was 6.5 mSv, equivalent to approximately 3 years of
background radiation exposure in the UK. An optional
extra-cranial static PET for 10 min was performed in
some of the patients.

Table 2 Tumour receptor status of patients imaged in the study

Subject number HER-2 status (IHC)

Oestrogen receptor (ER) status

Progesterone receptor (PR) status

1 3+ ER negative PR negative
3 3+ ER negative PR positive
4 3+ ER positive PR negative
7 2+ ER positive PR negative
9 3+ ER positive PR positive
10 3+ ER negative PR negative

IHC, immunohistochemistry.
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Table 3 Patient injected radioactivity and mass of
["'Cllapatinib

Subject Brain Time lapse Scan Injected Radiotracer
number metastases  after previous day activity mass (pg)
cranial RT (MBq)
(weeks)
1 No NA Baseline 44 1.16
Day 8 148 445
3 No NA Baseline 69 447
Day 8 288 521
4 Yes 70 Baseline 104 2.26
Day 8 229 3.77
7 Yes 5 Baseline 349 12.39
Day 8 167 6.85
9 No NA Baseline 222° 6.73

Day 8 139 5.50

Baseline -° -

Day 8 114 4.65

10 Yes n

?Data not included in analysis due to tissue extravasation of radiotracer
injection. ®Subject was unable to have baseline scan due to radiochemistry
failure. MBg, megabecquerel; NA, not applicable as patients did not have
brain metastases.

Patient monitoring

Fourteen days after the second PET scan, patients were
reverted to standard hospital treatment by their oncologist
which in most instances was lapatinib and capecitabine.
Adverse events (AEs) were noted starting from the baseline
scan to 14 days after the second scan; after this, AEs were
not actively sought but noted on patient self-reporting.

Data analysis
Tumour and normal brain regions of interest manually
drawn using Analyze® software were applied to dynamic
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PET images to obtain time versus radioactivity curves
(TACs), which were corrected for radioactive decay and
normalised for injected radioactivity and patient’s body
weight. Tissue uptake (standardised uptake value) and
exposure (area under the TAC (AUC)) were calculated.
Novel methods were developed to exclude the effects of
blood volume signal from images. As the blood volume
fraction in metastases cannot be assumed, kinetic mod-
elling was performed to fit the blood volume fraction.
This modelling was performed on a voxel-by-voxel basis
to remove any assumptions about region boundaries and
does not assume homogeneity of blood volume. The frac-
tion of PET signal enabled dissection of the total signal
into blood and non-blood components and permitted
visual evaluation of metastases in the PET image. Kinetic
tissue modelling was performed using in-house MIAKAT"
software implemented using Matlab R2008b (The
MathWorks Inc., Natick, MA, USA) to obtain PET vol-
ume of distribution (V) [5]. Statistical ¢-tests were per-
formed to evaluate differences in tissue exposure.

Results

PET scanning

The scanning procedure was well tolerated by all pa-
tients. Apart from some soreness and self-resolving
mild local swelling, there were no local consequences in
the patient who experienced extravasation of the radio-
tracer. There were no other acute side effects related to
the administration of [*'C]lapatinib. The most common
AEs observed after completion of the imaging part of
the study were diarrhoea (88%), vomiting (50%) and
nausea (38%), in keeping with the AE profile of oral
lapatinib. The overall recruitment of patients to the
study lasted 17 months.

MgBr O OMgBr . O
["CICO, THF LiAIH, THF
E 65°C, 1 min RT, 1 min F
step 1 step 2
Cl
P 0. .
Lapatinib Precursor
HI Cs,CO,, DMF/EL,0 /] HN
110°C, 2 min E 70°C, 2 min NH O NN F
step 3 step 4 <— N)
/S=O
O/
["C]Lapatinib
Figure 2 Fully automated and good manufacturing process-compatible synthesis developed to label lapatinib with radiolabelled carbon-11 in
the benzylic position. [''ClLapatinib was prepared in a two-pot four-step synthesis, with intermediate preparation of [''C]-3-fluorobenzyl iodide
that was reacted in the last step with the lapatinib precursor. ''C, carbon-11.
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(See figure on previous page.)

uptake value; TAC, time-averaged concentration.

Figure 3 Radioactivity versus time curves and tissue exposure. Time-activity curves (TACs) for individual metastases for all the subjects from the
day 8 PET scan (A) show variability in uptake between and within patients. Mean TAC is also shown for comparison (green) and shows minimal
variability. In (B), mean TACs for normal brain (green) is plotted for comparison with mean whole blood (red) and plasma (plasma) TACs. Uptake
has been corrected for injected activity and normalised for body weight and quantified in the Y-axis as standardised uptake value (SUV; g/mL).
Tissue exposure (area under the TAC SUV (min.g/mL) for normal brain (C) and metastases (D) shows variability in uptake in metastases. However,
there is minimal variability in uptake within metastases on day 1 (red bars) compared to day 8 (green bars). Minimal variability in lapatinib uptake
is seen in normal brain between subjects. AUC, area under the curve concentration; contrib, contribution; min, minutes; Sub, subject; SUV, standardised

Radiochemistry productions

There were 4/15 (27%) radiochemistry production run
failures, mostly equipment-related, due to the complex-
ity of the fully automated process. The mean (standard
deviation (SD)) radiochemical yield generated for quality
control was 1,286 (572) MBq, with the high variability
due to sensitivity of most of the reagents used and the
complexity of the synthesis. Although the radioactivity
released for injection was 492 (201) MBq, the sticky na-
ture of the [*'C]lapatinib solution leading to its adher-
ence to the injection syringe and line resulted in lower
administered activity (170 (93) MBq; SD (Table 3)). The
mean radiochemical purity was 100%, and the mean
(SD) mass and specific activity of [*'C]lapatinib was 5.22
(2.92) pg and 66 (24) GBq/umol, respectively.

Blood data

Radioactivity data

Arterial blood data obtained from all scans revealed a
mean radioactivity in plasma of 83% at 60 min which
corresponded to [''Cllapatinib with minimal variability
allowing generation of population [''C]lapatinib fraction.
Individually measured blood and plasma data were used
with the population parent fraction curve to generate
the required plasma parent input function.

Plasma lapatinib on day 8

Pharmacokinetic parameters were variable, spanning a
fourfold range of values, consistent with previous pub-
lished data [6]. The maximum observed concentrations
(Cinax) were 911 to 4,121 (mean 2,592) ng/mL and varied
1.4 to 14.7-fold over the pre-dose concentration (range 136
to 4,121 ng/mL; mean 445 ng/mL). Lag times in absorption
ranged from O to 4 h post-dose. The absorption phase ap-
peared to be complete by 6 h (7},,,,) in all but two patients
(patients 3 and 7); in these two patients, actual Cp,,x may
be higher and T}, later than the observed values.

Imaging data

Semi-quantitative tissue uptake

Mean TAC for normal brain from the day 8 scans plotted
with individual TACs for brain metastases (Figure 3A) and
with mean whole blood and plasma [''C]lapatinib TAC
(Figure 3B) illustrates the high variability of uptake in

metastases compared with normal brain. No difference in
within-tissue exposure (AUC) was observed between days
1 and 8 in normal brain and metastases. However, tissue
exposure was significantly higher in metastases compared
with normal brain (p = 0.002 (Figure 3C,D and Table 4)).

Quantification of uptake with model-independent methods
To verify if [*'C]lapatinib crossed an intact BBB, the
contribution of blood volume to the PET was corrected
by scaling the tissue TACs assuming a 5% cerebral blood
volume [7] and compared with arterial TACs. In contrast
to normal brain TACs which were identical to blood
TACs (Figure 4A), uptake in metastases was higher than
that accounted by blood volume only (Figure 4B), con-
firming that the PET signal in normal brain was due to
the blood volume and not due to access of [**C]lapatinib
in to the brain tissue.

However, since the blood volume in metastases may be
higher and not 5% as in normal brain, a blood volume frac-
tion model was fitted to dynamic data, which permitted dis-
section of the PET image data into fitted non-blood and
blood components and allowed visual assessment (Figure 5).
These images show that the uptake of radioactivity in the
brain metastases (highlighted in blue circle) is higher than
that contributed from a model-fitted blood volume, sug-
gesting that the observed uptake of [''C]lapatinib in

Table 4 Tissue exposure (AUC) for the duration of the
PET scan

Normal brain AUC Tumour metastases AUC
(min.g/mL) (min.g/mL)

Sub 1-BL 319.6318 Sub 4 met - BL 708.198
Sub1-D38 3287575 Sub4 met-D 8 623.23
Sub 3 - BL 304.0247 Sub 7 met 1 - BL 518.227
Sub3-D8 301.1074 Sub7met1-D8 665.909
Sub 4 - BL 203.6962 Sub 7 met 2 - BL 2,584.31
Sub4-D38 198.8753 Sub7met2-D38 2,757.36
Sub 7 - BL 289.1109 Sub 10 met1-D 8 2,731.19
Sub7-D38 2729378 Sub 10 met2-D 8 1,577.81
Sub9-D38 233.2629 Sub 10 met3-D 8 22893
Sub10-D 8 2527335 Sub 10 met4-D 8 1,647.02

AUC, area under the curve concentration; BL, baseline; D, day; met, metastases;
min, minutes; PET, positron emission tomography; Sub, subject.
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Figure 4 Blood volume contribution to activity to intracerebral uptake. Mean radioactivity versus time curves for (A) normal brain and (B) brain
metastases and scaled-down blood radioactivity versus time curves to illustrate cerebral blood volumes of 5%. Sub, subject; SUV, standardised

brain metastases cannot be attributed to blood vol-
ume alone.

Kinetic modelling of tissue data

As normal brain tissue signal was adequately described as a
simple blood volume component, no further modelling was
required. Metastases TACs were noisy and thus described
adequately by several models, with the most appropriate
being a one-tissue compartment model for reversible bind-
ing, with PET V7t estimates ranging from 0.16 to 1.03 with
no significant differences in Vt or K; (the other model par-
ameter) between baseline and day 8 scans. Therefore,
assuming equilibrium conditions, lapatinib concentrations
in metastases between 300 and 2,000 ng/mL (0.52 to
3.44 uM) were estimated by multiplying the PET V7t by the
plasma lapatinib concentration on day 8.

["'Cllapatinib uptake in other tissues

[*'C]Lapatinib uptake was observed in tissues such as
muscle and bone (Figure 5) that were within the FoV of
the cranial PET scans. However, due to the short half-life
of carbon-11 (20 min), the in vivo radioactivity was re-
duced to <4% of the administered activity by the time
(approximately 100 min) the optional extra-cranial scans

were completed. This, combined with biological wash-
out, meant that the images contained relatively high
noise compared with the signal. Uptake was observed in
extra-cranial tumours, although the signal quality was
insufficient to support quantitative analysis. Higher up-
take on visual inspection was primarily observed in the
liver and gallbladder when they were in the scanner’s
field of view.

Discussion and conclusions

In this study, we have clearly demonstrated that there is
uptake of lapatinib in brain metastases that cannot be at-
tributed to blood volume effects alone. The extent of up-
take was highly variable between the metastases, consistent
with preclinical rodent studies [8] and clinical data from
Morikawa et al. which showed a 60-fold variability of lapati-
nib uptake (1 to 63 pM) in resected brain metastases of
four patients after oral lapatinib [9]. Although the sevenfold
variability (300 to 2,000 ng/mL; 0.5 to 3.4 uM) in metastatic
uptake observed in our study was lower, which may be due
to some imprecision in our estimation due to low biological
uptake and small volume of the metastases sampled, ad-
equate fitting of kinetic models was obtained. Nevertheless,
lapatinib concentrations in brain metastases in our study
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MRI, magnetic resonance imaging; SUV, standardised uptake value.

Figure 5 Image data for patient 10. The image data show radioactivity distribution in normal brain and cerebral metastases (enclosed in blue
circle) (top panel) and are separated into non-blood (middle upper panel), blood (middle lower panel) and corresponding contrast-enhanced MRI
images (bottom panel). Since the blood volume in metastases may not be 5%, a blood volume fraction model was fitted to dynamic data on a
voxel-by-voxel basis. The uptake of radioactivity in the brain metastases was higher than that contributed from a model-fitted blood volume.

were comparable to those obtained by Morikawa et al. [10]
and within the range of the half maximal inhibitory concen-
tration (ICs) for breast cancer cell lines (0.025 to 5 uM)
[4]. However, the variable lapatinib uptake in metastases
demonstrates the challenge posed by tumour heterogeneity
[9], a barrier for optimisation of therapy as demonstrated
by the modest single-agent clinical activity [11].

In contrast to Morikawa et al., we were also able to
evaluate lapatinib uptake in normal brain and observed
a consistent lack of lapatinib uptake in normal brain, in
patients with and without brain metastases. The radio-
activity observed in normal brain was due to brain vas-
culature activity and not due to brain tissue uptake. Our
hypothesis that therapeutic levels of lapatinib [4] may in-
crease lapatinib brain uptake by acting as a substrate for
drug efflux proteins was disproved in normal brain and
metastases. This would imply that the utility of lapatinib
as prophylactic therapy that aimed to exploit the study
hypothesis is likely to be futile. However, from the study
design, it is not possible (nor did we aim) to investigate
lapatinib access into normal brain in combination with
other cytotoxic agents or agents that target the BBB
[12,13]. Since the uptake of [**C]lapatinib coincides with
regions of enhanced signal on gadolinium magnetic

resonance relative to areas of no uptake, we have estab-
lished that lapatinib uptake in brain metastases is mainly a
result of local BBB impairment in the metastases. This
confirms the preclinical data which similarly demonstrated
that uptake in brain metastases correlated with altered
BBB permeability and that uptake in normal brain was
very minimal even at higher doses of lapatinib suggesting
that higher doses of lapatinib were unable to block the
drug efflux mechanisms, as anticipated [8,14].

We observed bone uptake that may be consistent with
Her-2 expression in haematopoietic cells [15]. Despite
the poor image quality of extra-cranial PET, increased
uptake in the liver and gallbladder was consistent with
the known hepatic metabolism of lapatinib.

Management of cranial disease remains a challenge in pa-
tients with Her-2-positive breast cancer and is an unmet
need [2]. Although lapatinib and capecitabine in combin-
ation demonstrated activity in patients with previously un-
treated Her-2-positive brain metastases [12], the CEREBEL
study was unable to demonstrate the lack of superiority for
lapatinib over trastuzumab in the prevention of brain me-
tastases [16]. Therefore, this study if it had been performed
earlier would possibly have informed an alternative design
of the CEREBEL study. This also highlights the importance
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of planning and conducting such small but important
translational imaging studies early in the rational develop-
ment of drugs.

Despite the value demonstrated, such studies require
considerable radiochemistry development to quality clin-
ical standards, are technically and logistically challenging
and are restricted to specialised centres. However, the
highly sensitive and quantitative nature of PET provided
conclusive answers with six patients to facilitate decision-
making in the clinical development of a drug asset. Signifi-
cantly, if such answers are provided early, this may result
in cost-saving and rational drug development.

Key message

Patients with Her-2-positive breast cancer have higher
incidence of brain metastases. PET scans were done after
administration of carbon-11 radiolabelled lapatinib to in-
vestigate intracranial lapatinib access. Lapatinib uptake
was observed in brain metastasis, but not in normal
brain, suggesting that lapatinib may have a role in the
treatment of brain metastases but not in its prevention.
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