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We introduce phase-diagram analysis, a standard tool
in compressed sensing (CS), to the X-ray computed
tomography (CT) community as a systematic method
for determining how few projections suffice for
accurate sparsity-regularized reconstruction. In
CS, a phase diagram is a convenient way to study
and express certain theoretical relations between
sparsity and sufficient sampling. We adapt phase-
diagram analysis for empirical use in X-ray CT for
which the same theoretical results do not hold. We
demonstrate in three case studies the potential of
phase-diagram analysis for providing quantitative
answers to questions of undersampling. First, we
demonstrate that there are cases where X-ray CT
empirically performs comparably with a near-optimal
CS strategy, namely taking measurements with
Gaussian sensing matrices. Second, we show that,
in contrast to what might have been anticipated,
taking randomized CT measurements does not
lead to improved performance compared with
standard structured sampling patterns. Finally,
we show preliminary results of how well phase-
diagram analysis can predict the sufficient number of
projections for accurately reconstructing a large-scale
image of a given sparsity by means of total-variation
regularization.
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1. Introduction

(a) Sparsity regularization in X-ray CT
Sparsity-regularized (SR) image reconstruction has shown great promise for X-ray computed
tomography (CT). Many works, e.g. [1–6], have demonstrated that accurate reconstructions can be
obtained from substantially less projection data than is normally required by standard analytical
methods such as filtered back-projection and algebraic reconstruction methods. Acquiring less
data is of interest in many applications of X-ray CT to reduce scan time or exposure to
ionizing radiation.

The typical SR set-up for X-ray CT, and the one we employ, is that an unknown discrete image
x ∈R

N is to be reconstructed from measured discrete data b ∈R
m, connected to x through a linear

model, b≈Ax, for some measurement matrix A ∈R
m×N . A common reconstruction problem is

x∗ = arg min
x

R(x) subject to ‖Ax− b‖2 ≤ ε, (1.1)

where R(x) is a sparsity regularizer, for example the 1-norm, the total variation (TV) semi-norm
or a 1-norm of wavelet coefficients or coefficients in a learned dictionary, depending on which
domain sparsity is expected in, and ε is a regularization parameter that must be chosen to balance
the level of regularization enforced with the misfit to data.

In contrast to analytical and algebraic reconstruction methods, SR can admit reconstructions
in the underdetermined case m < N as shown in the references given above. However, from the
existing individual studies, it is difficult to synthesize a coherent quantitative understanding of
the undersampling potential of SR in CT. From a practical point of view, we want to know how
many CT projections to acquire in order to obtain an SR reconstruction of sufficient quality to
reliably solve the relevant imaging task, for example detection, classification, segmentation, etc.
This question is difficult to address meaningfully in general, because specific applications pose
different challenges, for example varying levels of noise and inconsistencies in the data as well
as different quality requirements on the reconstruction. But even in an application-independent
setting, systematic analysis of the undersampling potential of SR in CT remains unexplored.

We consider in the present work an idealized form of the reconstruction problem (1.1) with
ε = 0 and consider only synthetic noise-free data. This simplified set-up allows us to study more
precise questions with fewer complicating factors involved. Specifically, we consider the three
reconstruction problems, P1, LP and TV:

(P1) arg min
x
‖x‖1 subject to Ax= b,

(LP) arg min
x
‖x‖1 subject to Ax= b, x≥ 0

and (TV) arg min
x
‖x‖TV subject to Ax= b.

The first two are standard 1-norm minimization (the latter with non-negativity constraint
enforced) for reconstruction of images sparse in the image domain. The last is TV minimization
for sparsity in the gradient domain. The TV semi-norm is defined as

‖x‖TV =
N∑

j=1

‖Djx‖2,

where Dj is a finite-difference approximation of the gradient at pixel j. In this work, we use
forward differences and Neumann boundary conditions.

In the idealized set-up, we are interested in the central property of recoverability: an image is
said to be recoverable (from its ideal synthetic data) if it is the unique solution to the considered
reconstruction problem. For example, we say that an image xorig is recoverable by P1 from data
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b=Axorig if xorig is the unique P1 solution. The fundamental question we are interested in is:

How few samples are enough for recovery of an image of a given sparsity by SR reconstruction?

In other words, we want to study recoverability as a function of sparsity and sampling levels. In
the present work, we will develop and apply a systematic analysis tool known as phase-diagram
analysis from the field of compressed sensing (CS) for this purpose in the setting of CT.

(b) Compressed sensing
The field of CS addresses precisely the question of how few samples one can acquire and still
provably recover the image. In general, obviously, we need N linearly independent samples of an
image x ∈R

N to recover x. Central to CS is sparsity: an image is said to be s-sparse if it has at most
s non-zero entries. What CS says is that if the image x is sufficiently sparse then by taking the
right kind of samples, we can recover x by SR from fewer than N samples. Furthermore, the more
sparse x is, the fewer samples will suffice. CS was initiated with the works of Donoho [7] and
Candès and co-workers [8,9]. Before the advent of CS, SR reconstruction using the 1-norm had
been used heuristically for reduced sampling in CT [10,11], but the works of Donoho and Candès
et al. sparked renewed interest and a new focus on guarantees of accurate reconstruction.

An important quantity for CS guarantees is the restricted isometry property (RIP), which is
defined as follows. A matrix A is said to satisfy the RIP of order s if there exists a constant δs ∈ (0, 1)
such that for all s-sparse signals x it holds that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1+ δs)‖x‖22. (1.2)

An example of an RIP-based CS guarantee is (e.g. [12]): if a matrix A satisfies the RIP with δ2s <√
2− 1, then all s-sparse images x will be recovered by P1 from data b=Ax.
The problem is then to identify matrices satisfying this, and unfortunately computing RIP

constants is in general NP-hard [13]. An important class of matrices that admit RIP results are
the Gaussian sensing matrices, for which matrix elements are independent samples from the
zero-mean, unit-variance normal distribution. If the number of measurements m satisfies

m≥Cs log
(

N
s

)
, (1.3)

where C is a constant, then with high probability a Gaussian sensing matrix possesses the RIP,
such that all s-sparse images x will be recovered.

In a certain sense, the Gaussian sensing matrices constitute a near-optimal sampling strategy
[12,14], because no other matrix type can provide the same recovery guarantee for fewer samples
than (1.3). The importance of the Gaussian sensing matrices in CS is further established by many
additional guarantees based, for example, on incoherence of the sensing matrix. It is not our
intention to give a comprehensive review of CS theory here; such can be found in many places,
for example the recent overview by Foucart & Rauhut [15].

The prominent role of the Gaussian sensing matrices and other random matrix constructions
in CS gives the impression that random sensing is a key CS feature and it is tacitly assumed
that random sensing provides superior recoverability performance to that of structured sampling.
This assumption has even led researchers to investigate hardware implementations of random
sampling for CT [16]. However, more recently, novel CS guarantees have appeared for certain non-
random matrices [17], which may be a step towards reduced focus on random sampling, although
these matrices are also quite far from those of CT.

It is generally well understood [15,18] that current CS theory does not cover deterministic
sampling set-ups in real-world applications. For CT, in particular, Petra & Schnörr [19,20] showed
that CS guarantees are extremely poor. The main sensing problem of CT is its fundamental nature
of sampling the object by line integrals. Each line integral only samples a small part of the object,
thus leading to sparse, highly structured and coherent CT sampling matrices. By contrast, CS



4

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140387

.........................................................

sensing matrices, such as the Gaussian, are dense, have random elements and are incoherent, and
hence fundamentally different. In other words, there remains a large gap between the empirically
observed effectiveness of SR in CT and the mathematical CS guarantees of accurate recovery
typically involving random matrices.

(c) Own previous work and contribution of present work
We have recently been interested in analysing SR in CT from a CS perspective [21–23].
More specifically, we have studied recoverability from fan-beam CT data by 1-norm and TV
regularization. We introduced the use of certain phase diagrams from CS to the setting of CT
for systematically studying how recoverability depends on sparsity and sampling. Our work
demonstrated quantitatively that recoverability from equi-angular fan-beam CT data for certain
classes of test images exhibits a phase-transition phenomenon very similar to what has been
proved in CS for the Gaussian sensing matrices, as will be explained in §2.

In the present work, we will further refine the phase-diagram analysis we introduced in [22,23]
and demonstrate how it can be used to systematically provide quantitative insight into the
undersampling potential of SR in CT by applying it to three cases. First, in §2, we will give the
sufficient theoretical background on phase-diagram analysis and the application to CT. Following
that, we address in §§3–5 the following studies:

Study A. How does CT sampling compare in terms of recoverability to a near-optimal CS
sampling strategy, i.e. using Gaussian sensing matrices?
Study B. Is recoverability improved by taking random CT measurements?
Study C. How accurately can small-scale synthetic-data phase diagrams predict sufficient
sampling for realistically sized images of real objects?

Finally, in §6, we conclude the paper.
The purpose of Study A is to put the CT phase-transition behaviour we observed in [22,23]

more clearly into context of CS theory. Quite surprisingly, our results demonstrate that standard
CT sampling is almost comparable with Gaussian sensing matrices in terms of recoverability.
This is surprising since the Gaussian sensing matrices form a near-optimal CS sampling strategy,
as explained previously in this section.

Study B addresses the use of random sampling in CT for potentially allowing for accurate
reconstruction from fewer measurements than regular structured CT sampling. By use of phase-
diagram analysis, we will show that random sampling does not lead to improved performance,
but rather unchanged or in some cases even substantially reduced performance.

The purpose of Study C is to establish a connection to real-world CT image reconstruction by
investigating the practical utility of phase diagrams for predicting how much CT data to acquire
for reconstructing accurately a large-scale image of a given sparsity.

In all three studies, we use phase-diagram analysis as the main tool. Our goal is both to arrive
at the particular insights of the three studies and to demonstrate phase-diagram analysis as a
useful tool for systematically gaining quantitative understanding of SR in CT.

2. Phase-diagram analysis

(a) Theoretical phase-transition results
As explained in §1b, the Gaussian sensing matrices play a central role in CS. It is also possible to
give a theoretical description of its P1 and LP recoverability in terms of phase-diagram analysis.
We present two different theoretical analyses, by Donoho and Tanner (DT) and by Amelunxen,
Lotz, McCoy and Tropp (ALMT).

DT established in a series of papers [24–28] phase-transition behaviour of the Gaussian sensing
matrices. Their analysis is based on so-called neighbourliness of random polytopes and builds
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Figure 1. Theoretical phase-transition curves for Gaussian sensing matrices. (a) DT asymptotic phase-transition curves for
strong and weak recovery by P1 and LP; recovery occurs below the curves. (b) ALMT phase-transition curves for recovery by
P1 and LP; recovery above the curves.

on earlier work by Vershik & Sporyshev [29]. For an s-sparse signal x ∈R
N and m samples,

the DT phase diagram displays recoverability as a function of (δ, ρ) for δ =m/N ∈ [0, 1] and
ρ = s/m ∈ [0, 1]. For the set of s-sparse signals, DT consider two notions of recoverability: strong,
meaning that all s-sparse signals are recovered, and weak, meaning that most s-sparse signals are
recovered at a given sampling level. DT then showed for the Gaussian sensing matrices and P1
and LP that asymptotically there exist strong/weak phase-transition curves ρ(δ) such that at a
sampling level of δ with high probability all/almost all signals with ρ < ρ(δ) will be recovered.
Similarly, with high probability not all/almost no signals with ρ > ρ(δ) will be recovered. The
strong and weak phase-transition curves for P1 and LP are shown in figure 1a, plotted from
tabulated phase-transition values [30]. Below the phase-transition curves are strong and weak
full-recovery regions; above the weak phase-transition curves are in addition weak no-recovery
regions. We note that the weak full-recovery regions are substantially larger than their strong
counterparts and that LP has a larger full-recovery region than P1. Both observations intuitively
make sense. As we will demonstrate in §3, the asymptotic weak phase-transition curves are in
excellent agreement with empirical phase diagrams for finite-sized problems.

ALMT use a completely different analysis [31] based on the so-called statistical dimension of
descent cones to prove asymptotic phase-transition behaviour for the Gaussian sensing matrices.
The ALMT phase diagram shows recoverability as a function of (s/N, m/N) ∈ [0, 1]2. ALMT give
phase-transition curves, i.e. critical sampling values m/N as a function of sparsity values s/N such
that most images of a given sparsity are recovered from more samples than the critical level and
not recovered from fewer samples. The P1 and LP ALMT phase-transition curves are shown in
figure 1b, computed using the software SNOWMAKER [32]. Contrary to the DT phase-transition
curves, the full recovery regions are above the curves. We will demonstrate in §3 that the ALMT
phase-transition curves are in excellent agreement with empirical phase diagrams.

Regarding recovery guarantees for TV, we are only aware of the RIP results by Needell &
Ward [33,34]. To our knowledge, it is an open question whether theoretical phase-transition
results can be obtained. In the present work, we demonstrate empirically that such behaviour
can be observed from both Gaussian and fan-beam CT sensing matrices.

In addition to the Gaussian sensing matrices, phase-transition behaviour has been
observed [25] for several other classes of random matrices and some theoretical analysis has
been given [35]. However, it remains open to establish phase-transition behaviour for matrices
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occurring in practical imaging applications such as CT. Our motivation for the present work
is precisely to establish that at least empirically it is possible to observe phase-transition
behaviour in CT.

(b) Experimental procedure of empirical phase-diagram analysis
Even though no theoretical phase-transition results exist for CT, we can construct empirical phase
diagrams by repeatedly solving the same reconstruction problem over an ensemble of problem
realizations for a range of sparsity and sampling levels. In our case, we found that 100 realizations
at each sparsity and sampling level were enough to demonstrate phase-transition behaviour.

Each problem realization is generated in the following way. Given sparsity and sampling
levels, a test image xorig is generated, a sampling matrix A is set up and ideal data b=
Axorig is computed. From the data b, the appropriate reconstruction problem is solved and the
reconstruction is denoted x∗. Recovery is declared if x∗ is sufficiently close numerically to xorig;
here, we test whether the relative 2-norm error ‖x∗ − xorig‖2/‖xorig‖2 < ε, for some choice of
threshold ε. For P1 and LP, we found ε = 10−4 to be suitable, while for TV we use ε = 10−3, as
the conic optimization problem is more difficult to solve accurately.

As in [22,23], we use the commercial optimization software MOSEK [36] to solve the
reconstruction problems required to construct a phase diagram. MOSEK uses a state-of-the-
art primal-dual interior-point method, which allows us to solve P1 and LP (recast as linear
programs) and TV (recast as a conic program) very accurately. An accurate solution is necessary
for correctly assessing numerically whether an image is recovered, as numerical inaccuracies and
approximate solutions may lead to the wrong decision. While allowing for high accuracy, interior-
point methods are not efficient for large-scale problems. For the reconstruction problems in Study
C, we use a large-scale optimization algorithm, which will be described there.

For the Gaussian sensing matrices, each problem realization contains a new realization of the
sampling matrix, while in the fan-beam CT case a single matrix (at each sampling level) is used
throughout. This is because, in CT, we really are interested in the performance of a fixed matrix,
which is specified by the physical scanner geometry.

For the ALMT phase diagrams, we use 39 relative sparsity levels s/N= 0.025, 0.050, . . . , 0.975
and 26 sampling levels, namely from 1 to 26 equi-angular projection views. At 26 views, the
matrix has size 3338× 3228 and is full rank, such that any image, independent of sparsity, will be
recovered. For the DT phase diagram, we use the same 26 sampling levels in combination with 32
sparsity levels (relative to the sampling level), i.e. ρ = s/m= 1

32 , 2
32 , . . . , 32

32 .
With 100 realizations at each sparsity and sampling level, a total of 101 400 reconstruction

problems need to be solved for a single ALMT phase diagram (at the chosen resolution), while
the same number for a DT phase diagram is 83 200. Even with the small images used in this paper,
our results have taken many hours of computing time on a cluster at the DTU Computing Center.

3. Study A. How does CT compare to compressed sensing?
As we have explained, the Gaussian sensing matrices are central to CS, as they admit strong
theoretical results and are shown to form a near-optimal sampling strategy. In this study, we
use phase-diagram analysis to compare recoverability of fan-beam CT with the Gaussian sensing
matrices. We will show that, despite the lack of CS guarantees for fan-beam CT, we can empirically
observe almost comparable recoverability.

(a) Measurement matrices
We consider two types of measurement matrices: the Gaussian sensing matrices and a
system matrix corresponding to a two-dimensional equi-angular fan-beam scanning geometry.
A Gaussian sensing matrix is generated by drawing independent, identically distributed elements
from the standard zero-mean unit-variance normal distribution.
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The two-dimensional fan-beam CT system matrix is practically the same one we used
in [22,23], where it is described in detail, and the non-zero structure and the scanning geometry
are illustrated in [23]. In brief, we consider a disc-shaped image of N pixels in total, inscribed in
an Nside ×Nside square pixel array. Fan-beam projections are recorded at Nv equi-angular views
of a 360◦ scanning arc, each consisting of 2Nside pixels on a curved detector. The total number
of measurements is m=Nv · 2Nside, and the m×N system matrix is computed by the function
fanbeamtomo from the MATLAB� toolbox AIR Tools [37]. The only difference from [22,23]
is that the first angle is not chosen to be on a coordinate axes but offset by 20◦. This offset
regularizes the matrix by avoiding identical rows arising from rays in opposite views aligned
with the coordinate axes.

(b) Image-domain sparsity
(i) Signedspikes by P1
We consider first the unconstrained problem P1. The standard image class considered in CS phase-
diagram studies consists of images with random-valued pixels at random locations. We refer to
this image class as signedspikes; see [22] for details and illustration. Specifically, we generate a
signedspikes image realization as follows: given an image size (number of pixels) N and sparsity
(number of non-zero pixels) s, select uniformly at random s pixels and assign values sampled
from the uniform distribution on [−1, 1].

We generate DT and ALMT phase diagrams as described in §2b for Gaussian and fan-beam
CT sensing matrices (figure 2). At each sparsity and sampling level, the colour represents the
empirical success rate, ranging from 0% (shown black) to 100% (shown white). Overlaid in cyan
is the 50% contour line indicating the empirical transition curve, as well as in yellow and magenta
the 5% and 95% contour lines to quantify the transition width. Further, in red is shown the
theoretical phase-transition curve for the Gaussian sensing matrices.

We make the following observations. First, for the Gaussian sensing matrices, both the
empirical DT and ALMT phase diagrams are in perfect agreement with the theoretical DT and
ALMT phase-transition curves. This was to be expected but we include it here to verify that we
can indeed reproduce the expected phase-transition curves using our software implementation.
Second, and much more surprising, the fan-beam CT phase diagrams are almost identical to the
Gaussian case. The single apparent difference is in the bottom left corner of the DT phase diagram,
where the CT recovery region does not extend to the same level as the Gaussian case. The poor
CT recovery performance here is easily explained: the two leftmost columns correspond to a
single projection and two projections 180◦ apart, from which it is inherently difficult to produce
an accurate reconstruction. Note that this issue is not apparent from the present ALMT phase
diagram. Apart from this difference, the CT recovery performance is almost identical to the
Gaussian case; in particular the transition is as sharp, as indicated by the 5% and 95% contour
levels. Regarding the width of the transition, we have observed that smaller/larger images yield
a wider/narrower transition region. This is in agreement with [28,31]. Furthermore, we observed
that, if only a small number of repetitions is used, the transition generally appears wider. We
found 100 repetitions to be sufficient for the transition width to stabilize. On very close inspection,
the CT recovery region is slightly smaller than the Gaussian case, as seen by the lower cyan curve
in the DT case and higher in the ALMT case.

Nevertheless, considering that the Gaussian sensing matrices form a near-optimal sampling
strategy and that CT sampling matrices are highly structured, coherent and sparse, we find it
extremely surprising to observe almost as good recoverability for CT.

(ii) Non-negative spikes by LP

Typically in CT, a non-negativity constraint can be employed as the imaged quantity, the linear
attenuation coefficient, is non-negative, and hence the reconstruction problem LP is appropriate.
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Figure 2. Phase diagrams for the signedspikes image class and P1 reconstruction. DT phase diagrams (a,b) and ALMT phase
diagrams (c,d). Gaussian sensing matrices (a,c) and fan-beam CT systemmatrices (b,d). Theoretical phase-transition curves for
Gaussian sensing matrices (red), empirical phase-transition curve at 50% contour line (cyan), and 5% and 95% contour lines
(yellow and magenta).

For LP, we consider the natural non-negative version of the signedspikes class, which we call
spikes, with the single change that values are sampled from the uniform distribution on [0, 1]
(see [22] for illustration).

We construct again empirical DT and ALMT phase diagrams and display them in figure 3
together with the theoretical Gaussian-case phase-transition curves for LP. Also in this case, the
CT phase diagrams are almost identical to the Gaussian case, in terms of both the empirical phase-
transition curve and the width as indicated by the 5% and 95% contour lines. In fact, the similarity
is even larger, as the cyan 50% contour in the CT case coincides with the theoretical transition
curve, except at the bottom left corner of the DT phase diagram, as before caused by having
only one or two CT projections. In accordance with the theoretical curves, we see that even fewer
samples suffice for recovery in the non-negative case compared to before.
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Figure 3. Phase diagrams for the non-negative spikes image class and LP reconstruction. DT phase diagrams (a,b) and ALMT
phase diagrams (c,d). Gaussian sensing matrices (a,c) and fan-beam CT system matrices (b,d). Theoretical phase-transition
curves forGaussian sensingmatrices (red), empirical phase-transition curve at 50%contour line (cyan), and5%and95%contour
lines (yellow and magenta).

(iii) A structured image class

CS recovery guarantees, for example for the Gaussian sensing matrices state, that the sufficient
number of samples depends on the signal only in terms of the signal sparsity. That is, signals
with structure in the non-zero locations should not require a different number of samples for
recovery than unstructured signals such as the spikes images. Does the same hold for CT? We
will demonstrate that the answer is no. Owing to non-zero pixels selected at random in the spikes
classes, there is no structure, i.e. correlation between neighbouring pixels. As an example of a
class of sparse images with some structure in the non-zero locations, we use the 2-power class
from [22]. This image class is based on a breast tissue model, but for our purpose here, it suffices
to say some correlation has been introduced between neighbouring pixel values.

Images from the 2-power class are non-negative, so we use LP for reconstruction, create DT
phase diagrams (figure 4) and compare with the spikes-class DT phase diagrams in figure 3,
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Figure4. DTphase diagrams for the 2-power image class and LP reconstruction. Gaussian sensingmatrices (a) and fan-beamCT
system matrices (b). Theoretical phase-transition curves for Gaussian sensing matrices (red), empirical phase-transition curve
at 50% contour line (cyan), and 5% and 95% contour lines (yellow and magenta).

omitting ALMT phase diagrams for brevity. As expected, our results verify that image structure
does not matter for the Gaussian sensing matrices, as the DT phase diagram is identical to the
spikes case. But, for the fan-beam CT case, the phase diagram has changed drastically; most
notably the transition is now much smoother as indicated by the 5% and 95% contour lines.
Also the empirical phase-transition curve (50% contour line) has moved away from the theoretical
curve. We note that at low sampling (left part), the transition is lower, while at high sampling, it
is higher, so recoverability can be both better and worse, depending on sampling level. The 95%
contour line limits a region of almost full recovery, and this region is not much different from the
spikes case.

The 2-power result for CT is in stark contrast to the Gaussian sensing matrix behaviour in
figure 3. We conclude that, even though the spikes results suggest close resemblance of CT with
the near-optimal CS case of Gaussian sensing matrices, CT is clearly more complex.

(c) Gradient-domain sparsity
Sparsity in the image domain is interesting due to well-developed theory, in particular for
Gaussian sensing matrices. For CT, it is more common to expect sparsity in the gradient domain,
which has motivated the successful use of TV regularization. However, to the best of our
knowledge, no phase-transition behaviour has been proved, not even for the Gaussian case. Here,
we demonstrate empirically that for both Gaussian and CT sensing matrices similar sharp phase
transitions can be observed.

For generating images sparse in the gradient domain, we use the image class from [23]
alternating projection for (isotropic) TV, which we here refer to as altprojisotv. An image is
generated in an iterative procedure of taking alternating projections onto the range of the gradient
operator and thresholding the number of non-zeros in the image gradient to the desired sparsity
level (see [23] for details and illustration).

Once again, we construct DT and ALMT phase diagrams (figure 5); this time with sparsity
values referring to gradient-domain sparsity. We observe also in this case a sharp phase transition
in both the DT and ALMT phase diagrams. In the lack of a theoretical reference curve for TV, we
compare with the P1 and LP curves and find that transition takes place between the two curves.
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Figure 5. Phase diagrams for the altprojisotv image class and TV reconstruction. DT phase diagrams (a,b) and ALMT phase
diagrams (c,d). Gaussian sensing matrices (a,c) and fan-beam CT systemmatrices (b,d). Theoretical phase-transition curves for
P1 and LP reconstruction for Gaussian sensing matrices (red), empirical phase-transition curve at 50% contour line (cyan), and
5% and 95% contour lines (yellow and magenta).

An irregularity is observed in the bottom left corner of both DT phase diagrams. The
explanation is that the altprojisotv procedure has difficulty in generating images which are
extremely sparse in the gradient domain. In spite of the irregularity, we find that our empirical
TV results convincingly demonstrate that sharp phase transition takes place also in the TV case,
dividing the phase space into regimes of full and no recovery, and again that CT recoverability is
similar to the Gaussian case.

(d) Conclusion on Study A
We used phase-diagram analysis to compare fan-beam CT recoverability with near-optimal CS
sampling using the Gaussian sensing matrices. For unstructured signed images with P1 and non-
negative images with LP, we found almost identical phase-transition behaviour in terms of critical
sampling level and width of the transition. We thereby demonstrated that empirically fan-beam
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CT in the average case performs close to the near-optimal. While recoverability by the Gaussian
sensing matrices was unaffected by the introduction of structure in the non-zero pixels, fan-
beam CT recoverability drastically changed to a much smoother transition. Interestingly, except
for the lowest sampling range, the recovery region actually became larger, meaning that many
images at a given sparsity level are recovered from fewer samples than the Gaussian sensing
matrices’ critical sampling level. In spite of the close resemblance on the unstructured images,
this example demonstrates that fan-beam CT is fundamentally different from the Gaussian
sensing matrices.

Also in the case of TV recoverability, we found almost identical behaviour of fan-beam CT
and the Gaussian sensing matrices. In particular, in both cases, we saw a sharp phase transition,
thus suggesting that the phase-transition phenomenon generalizes to TV. To our knowledge, no
theoretical explanation of this observation has been given in the literature.

4. Study B. Is random sampling beneficial in CT?
As mentioned in the Introduction, random sampling is a near-optimal strategy and important in
many recovery guarantees. Sampling in CT is normally done in a very structured manner and a
natural contemplation is therefore whether the introduction of some form of randomness could
lead to recovery guarantees for CT or improved recoverability compared to regular sampling.
In this study, we use phase-diagram analysis to investigate whether CT sampling strategies
involving randomness can improve the recoverability of sparse images, i.e. enable accurate
reconstruction of images of a given sparsity from fewer measurements than regular equi-angular
fan-beam CT.

(a) Measurement matrices
Many forms of randomness can be conceived in CT sampling. In this work, we consider two
straightforward ones. The first is a fan-beam geometry denoted fanbeam_rand in which the
source angular positions are no longer equi-distant but sampled uniformly from [0, 360◦]. Second,
we consider a set-up we denote random_rays of independent random rays through the image.
Each ray is specified by two parameters: the angle of the ray with a fixed coordinate axis and
the intersection of the ray with the orthogonal diameter of the disc-shaped image. The angle
and intersection are sampled from uniform distributions on [0, 180]◦ and [−Nside/2, Nside/2],
respectively, where Nside is the diameter length and the image is assumed centred around the
origin.

(b) Image-domain sparsity
We create DT phase diagrams as in the previous section for the signedspikes class reconstructed
by P1 and spikes reconstructed by LP (figure 6). ALMT phase diagrams are omitted for brevity.
As the purpose of this study is to compare not with the Gaussian sensing matrices but with equi-
angular fan-beam CT sampling, we do not show the theoretical phase-transition curves as in the
previous section but instead, with the dashed red line, the empirical phase-transition curves for
the equi-angular fan-beam CT geometry, which was shown in cyan in figures 2 and 3.

Compared to the equi-angular fan-beam case, we observe essentially no difference for the
fanbeam_rand case: the empirical phase-transition curves follow the dashed red line closely in
both signedspikes with P1 and spikes with LP phase diagrams. The random_rays set-up has
very similar phase diagrams, but in the signedspikes case, the transition curve is slightly lower
than in the equi-angular fan-beam case. In other words, on this set of image-domain sparsity test
cases, randomness does not lead to improved recoverability, but rather to comparable or slightly
reduced recoverability.
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Figure6. DTphasediagrams. Signedspikes image class andP1 reconstruction (a,b) and spikes image class and LP reconstruction
(c,d). Fan-beamwith random source positions (a,c) and random rays geometry (b,d). Empirical phase-transition curve for equi-
angular fan-beam CT (dashed red), empirical phase-transition curve at 50% contour line (cyan), and 5% and 95% contour lines
(yellow and magenta).

(c) Gradient-domain sparsity
For TV, we create phase diagrams for the altprojisotv class with both of the random-sampling
CT set-ups (figure 7) and compare with the equi-angular fan-beam results in figure 5, indicated
again by dashed red line. In both TV cases, we observe worse recoverability than for equi-angular
fan-beam.

The fanbeam_rand set-up has a slightly lower empirical phase-transition curve and the
transition is wider than for equi-angular fan-beam, as indicated by the larger distance between
the 5% and 95% contour lines. This means that on average slightly more projections are
needed to recover the same image and further that the critical sampling level sufficient for
recovery is less well defined than for the equi-angular fan-beam case where the phase transition
is sharper.
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Figure 7. DT phase diagrams for the altprojisotv image class and TV reconstruction. Fan-beamwith random source positions (a)
and random rays geometry (b). Empirical phase-transition curve for equi-angular fan-beam CT (dashed red), empirical phase-
transition curve at 50% contour line (cyan), and 5% and 95% contour lines (yellow and magenta).

For random_rays, the transition curve is substantially lower, meaning that on average more
measurements are needed for recovery of a same-sparsity image compared with the equi-angular
fan-beam case. The largest difference is seen in the left half of the phase diagram, i.e. at fewer
samples. One possible explanation of the reduced recoverability here is that, with relatively
few and independent rays, the probability that some pixels are not intersected by any ray is
relatively large. Thus, there is no information about such a pixel in the data, so the reconstructed
value is solely determined by the regularizer. By contrast, in a fan-beam set-up with dense
projection-view sampling as in our case, all pixels will be intersected by at least one ray from each
projection view.

(d) Conclusion on Study B
By use of phase-diagram analysis, we have compared two random-sampling strategies for CT
with the more standard equi-angular fan-beam CT. The analysis revealed, in contrast to what
might have been anticipated from the key role of randomness in CS, that random sampling does
not improve recoverability in CT. On the contrary, in some cases, random sampling even leads to
worse recoverability, most notably for the random_rays set-up.

5. Study C. Linking to realistic CT systems
In this section, we begin the task of linking the small-scale recovery results to realistic CT systems.
What we are interested in is whether phase diagrams can be used to predict critical sampling
levels as a function of sparsity in a realistic CT system. The studies presented should not be
regarded as complete, and many issues for future research will be highlighted. Broadly speaking,
the two main areas of concern are test phantom and optimization algorithm. A good test phantom
presents a challenge. The small-scale phase-diagram results use phantom ensembles generated
from a probabilistic model. While the results provide a sense of group recovery, a realization from
any of the considered object models does not look like an actual object that would be CT scanned.

Which optimization algorithm to use is also an important question. For the small-scale studies,
MOSEK is a convenient choice because a highly accurate solution can be computed reliably and
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reasonably fast. This means that whether or not an image is recoverable can be easily verified
numerically. Optimization algorithms for large-scale CT systems cannot involve more expensive
operations than matrix–vector products, at present, ruling out software packages such as MOSEK
in favour of first-order methods that are inherently less accurate, in particular for large-scale
problems, where in practice it is often necessary to truncate iteration early. As we will show,
having less-accurate solutions makes it more difficult to decide whether an image is recoverable.

As large-scale studies are necessarily sparse, we cannot provide comprehensive empirical
evidence of sufficient sampling but only a preliminary indication of how well phase-diagram
analysis can predict sufficient sampling for SR for realistic CT systems. As we will show, even
this is a complex task, for example due to complicated image structure and algorithmic issues,
and we will point out several future directions to pursue.

Section 5a presents two phantoms generated for the present study to have different levels
of realism with respect to an actual CT scanned object. Section 5b presents the first-order
optimization algorithm we use for the large-scale recovery studies, while §5c illustrates some
of the algorithmic and numerical challenges we face. Section 5d shows recovery results for the
two phantoms as a function of number of CT projections and comparison with critical sampling
levels predicted from small-scale phase diagrams.

(a) Walnut test phantoms
In the present large-scale study, there are two links that need to be established to relate the small-
scale phase-diagram analysis to realistic CT: the system size needs to be extrapolated up, in this
case to Nside = 1024; and the results from the various probabilistic phantom models need to extend
to realistic structure as seen in actual CT scan objects. We address both by designing two large-
scale test phantoms with increasing realism from an actual CT scan of a walnut. The idea of
scanning a walnut comes from [38].

In choosing a test phantom for image recovery studies, we aim for an image with gradient-
domain sparsity to illustrate the effectiveness of TV in reducing the necessary number of
samples for accurate image recovery. Yet, the phantom should also have features somewhat
representative of what would be encountered in CT applications. Typical computer phantoms for
CT image reconstruction testing, composed of simple geometric shapes of uniform grey levels, are
unrealistically sparse in the gradient domain. Such phantoms would be helpful in extrapolation
of small-scale phase-diagram analysis, but do not have much bearing in actual CT applications.

The basis of the test phantoms we generate is a cone-beam CT scan dataset of a walnut. The
data consists of 1600 equi-angular 10242-pixel projections acquired on a Zeiss Xradia 410 Versa
micro-CT scanner operated at a 40 kV source voltage, 5 s exposure per projection, and 10.51 cm
source-to-centre and 4.51 cm centre-to-detector distances. The central slice is reconstructed onto
a 10242-pixel image (pixel size 46.0773× 10−6 m) from the corresponding rows of data using 500
iterations of a simultaneous iterative reconstruction technique (SIRT) algorithm.

The first and simplest phantom, the structure phantom, is derived from the resulting image
by equalizing the image grey-value histogram to seven discrete grey levels, including the
background value of 0. The second and more complex phantom, the texture phantom, is
derived from the walnut image by performing TV-denoising on the original walnut image after
thresholding small background pixel values to zero. The two versions of the walnut phantoms
including blow-ups and gradient-domain images are shown in figure 8 and gradient-domain
sparsity values are given in table 1. The studies are idealized in that there is no data inconsistency;
in actual CT, the projection data b will in general not be in the range of the projection operator A,
and there is in this case no solution to the linear system Ax= b.

(b) Large-scale first-order optimization algorithm
We consider large-scale solvers for problems P1 and TV. There has been much recent research
on first-order algorithms [39,40], motivated by exactly the type of problem we face here. We
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Figure 8. (Top row) Tomographic slice of a walnut, (middle row) structure phantom derived from the walnut slice image and
(bottom row) texture phantom also derived from this image. The left column shows the whole image in the grey scale window
of [0, 0.5] cm−1, except for the originalwalnut imagewhere it is [−0.1, 0.5] cm−1. Themiddle column shows ablown-up region
of interest in the narrower grey scale window [0.3, 0.4] cm−1 in order to see the texture on the walnut meat. The right column
illustrates the gradient-magnitude image in the grey scale window [0, 0.01] cm−1, except for the original walnut image where
it is [0, 0.05] cm−1.

require a solver that can handle the non-smoothness of P1 and TV, and which can be applied
to large-scale systems such as CT, where the images can contain 106 pixels in two dimensions or
109 voxels in three dimensions and datasets of similar size. The CT system specifically presents
another challenge in that the system matrix representing standard X-ray projection has poor
conditioning [41]. An additional difficulty in solving P1 and TV, compared to the form (1.1), is
in satisfying the equality constraint; achieving this constraint to numerical precision with present
computational and algorithmic technology is not possible as far as we know. We present, here,
our adaptation of the Chambolle–Pock (CP) primal-dual algorithm, which we have found to be
effective for the CT system [42–44].

The algorithm used is essentially the same as the one developed in [44]. The CP algorithm
instance is designed to solve the following optimization problem:

arg min
x

λ

ν

∑
j

‖νSjx‖2 subject to Ax= b, (5.1)
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Table 1. Walnut test images with gradient-domain sparsity levels, number of projections at which recovery is observed, and
DT and ALMT phase-diagram predictions of critical sampling levels. A reference point of full sampling is Nv ≥ 403 projections,
where the systemmatrix has more rows than columns.

walnut image gradient sparsity recovered at DT prediction ALMT prediction

structure 45 074 68 69.3 71.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

texture 186 306 ? 188.7 185.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where equation (5.1) becomes P1 and TV when the sparsifying operator is Sj = Ij and Sj =Dj,
respectively; Ij is an image where the jth pixel is one and all other pixels are zero; ν is a constant
which balances the operator norms

ν = ‖A‖2‖S‖2
,

where S is a matrix of Sj for all j; and the parameter λ, which does not affect the solution of
equation (5.1), is used to improve numerical convergence. The parameter λ is tuned empirically.
The corresponding algorithm for solving equation (5.1) is shown in pseudo-code form in
algorithm 1.

Algorithm 1. Pseudo-code for K steps of the CP algorithm instance for solving equation (5.1).
When S= I and S=D, this algorithm applies to P1 and TV, respectively. The variables yk and zk
are dual to the sinogram and image, respectively. For gradient-domain sparsity (TV), zk has the
dimension of the image gradient, and for image-domain sparsity (P1), zk has the dimension of the
image itself.
1: INPUT: data b, system matrix A, matrix S
2: INPUT: tuning parameter λ, total number of iterations K
3: ν = ‖A‖2/‖S‖2
4: L←‖(A, νS)‖2
5: τ← 1/L; σ← 1/L; θ← 1; k← 0
6: initialize x0, y0, and z0 to zero vectors
7: x̄0← x0
8: repeat
9: yk+1← yk + σ (Ax̄k − b)

10: z′k← zk + σνSx̄k
11: zk+1← z′k((λ/ν)/ max(λ/ν, |z′k|))
12: xk+1← xk − τ (ATyk+1 + νSTzk+1)
13: x̄k+1← xk+1 + θ (xk+1 − xk)
14: k← k+ 1
15: until k≥K
16: OUTPUT: xK

Considering that the phantom-recovery studies for which we want to use algorithm 1 involve
multiple runs over different system matrices A corresponding to CT sampling with different
numbers of projections, we found it most practicable to obtain results for fixed iteration number
K and tuning parameter λ. The computational time for performing the expensive operations Ax
and ATx makes consideration of a prescribed stopping criterion difficult. For the Nside = 1024
system of interest, these time-limiting operations take 1 s for our GPU-accelerated projection
codes. A fixed stopping criterion entails variable numbers of iterations, and we have observed
that for algorithm 1 the number of iterations can vary from 1000 to over 100 000 for a convergence
criterion of interest. In terms of computational time, this range translates to 20 min to well over a
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Figure 9. Image RMSE curves resulting from algorithm 1 run with different values of λ for Nv = 21 and data generated from
the Nside = 128 version of the structure walnut phantom. Results for P1 and TV are shown on (a) and (b), respectively.

day. As a result, a study may not be completed in a reasonable amount of time; thus, we fix K and
λ for our phantom-recovery study.

Because large-scale first-order optimization algorithms are seeing many new developments at
present, it is likely that there either exists or will be a better alternative to algorithm 1. In fact, we
invite the interested reader to find such an alternative, which can have an important impact on
CT imaging! For example, as will be seen shortly, algorithm 1 has limited success for phantom
recovery studies for P1 on systems of realistic size.

(c) Algorithm issues
We demonstrate first some of the challenges in carrying out large-scale recovery studies by
applying algorithm 1 to a medium-scale problem using an Nside = 128 version of the structure
walnut phantom. The phantom has a gradient-domain sparsity of 1826 and a pixel sparsity of
2664 out of a total of 11 620 pixels. We do a recovery study by studying the reconstruction root-
mean-square error (RMSE) as a function of the number of projections. We discuss in detail specific
issues of the sampling recovery study for the purpose of understanding the large-scale results.

(i) The tuning parameterλ and convergence

The tuning parameter λ does not affect the solution of P1 or TV, but it can have a large impact
on convergence. To illustrate this, we show results of single runs for Nside = 128 and Nv = 21 for
both P1 and TV in figure 9. The value Nv = 21 is chosen because it is the smallest number of views
for which accurate recovery is obtained for both P1 and TV. Note that we are showing results
for K= 100 000 iterations for P1, while only K= 10 000 for TV. It is clear that convergence rates
change significantly with λ, and consequently recovery curves will be affected by λ. While λ is
specific to algorithm 1, optimization algorithms generally entail parameters with large effects on
convergence rate.

The impact on recovery curves is seen in figure 10, where we compare recovery curves
obtained at different λ for P1 (K= 100 000 iterations) and TV (K= 10 000 iterations). While overall
the recovery curves are similar, some differences appear, in particular near the jump in error for
P1. This can complicate the accurate estimation of the jump location. Overall, in this case, the
lowest image RMSE is obtained for λ= 5× 10−4. For the large-scale system Nside = 1024, we have
found the value of λ= 1× 10−4 to be useful for P1 and TV, and for different values of Nv and
Nside. One could envision a strategy where algorithm 1 is run with a small set of λ values and
the lowest image RMSE at iteration K is taken for the recovery plot. In the large-scale results
presented shortly, we found this to be unnecessary, and λ is simply fixed at 1× 10−4.
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Figure 10. Image and data RMSE plots for the Nside = 128 version of the structure walnut phantom using algorithm 1 with
different values ofλ. The results for P1 (a,c) are obtained for K = 105 iterations except for the indicated curve for K = 104. The
results for TV (b,d) are obtained for K = 104 iterations.

(ii) Recovery plots and difficulty with P1
The phantom recovery plots for P1 and TV in figure 10 both show the distinct jump in RMSE at a
certain number of projections, at which the image is recovered. We recognize this from the small-
scale Nside = 64 studies in [22]. The price of using fixed K, however, is that convergence results
across projection numbers are not uniform, as the data discrepancy varies with view number.

Furthermore, the recovery curve can be severely affected by poor convergence. If instead of
K= 100 000 we only take K= 10 000 as in the TV case, the remaining recovery curve in figure 10
is obtained. The previously abrupt change in error is considerably smoothed and shifted to a
different number of views.

The issue of convergence, here, is ubiquitous in iterative image reconstruction for CT and it
can be traced to the use of matched projection, A, and back-projection, AT, where it is well known
in the CT community that matched projector/back-projector pairs can lead to Moiré artefacts that
decay extremely slowly [45]. As a result, many iterative algorithms in CT employ a different back-
projection matrix B �=AT [46]. For our purpose, we must use the matched pair, in order to solve
a well-defined optimization problem. For the larger system, sufficient iteration for P1 lies out of
reach with algorithm 1 and we focus only on phantom recovery for TV.

(d) Large-scale recovery results
(i) Predicting sufficient sampling from phase diagrams

We will use the phase diagrams from Study A to predict critical sampling levels for large-scale
TV reconstruction. We found in [22] that the ALMT phase diagram of a given image class remains
unchanged at image resolutions Nside = 32, 64 and 128, i.e. is independent of resolution. We
assume this holds also for the DT phase diagram, and we use the DT and ALMT phase diagrams
from figure 5 (which are for Nside = 64) to predict critical sampling levels for the two walnut
images at Nside = 1024.
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Figure 11. Prediction of critical sampling for TV and walnut phantoms by ALMT (a) and DT (b) phase diagrams.
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Figure 12. Image and data RMSE plots for the Nside = 1024 structure (a,c) and texture (b,d) walnut phantom using algorithm 1
withλ= 10−4. The results are obtained at K = 104 iterations.

We illustrate in figure 11 how to determine critical sampling levels given a sparsity level.
The number of pixels inside the disc is 823 592 and the gradient sparsity levels of the structure
and texture walnut images are given in table 1. In the ALMT phase diagram, we can trace
vertical lines at each s/N value and find the intersections (indicated by circles) with the empirical
phase-transition curve, which gives the predicted critical m/N values. By multiplication of N and
division by the number of rays in a single projection, i.e. 2048, we get the critical number of
projections (table 1).

To do the same in the DT phase diagram, we combine δ=m/N and ρ = s/m into ρ = (s/N)(1/δ),
i.e. a fixed sparsity s traces out a hyperbola on δ ∈ (0, 1). For the hyperbola of each walnut image,
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Figure 13. First row: reconstructed images from data generated by the structure walnut with 40 (left), 60 (middle) and
68 (right) projection views (grey scale window [0.3, 0.4] cm−1). Second row: same as first row except the structure walnut
image is subtracted from the reconstructed images (grey scale window [−0.01, 0.01] cm−1). Third row: reconstructed images
from data generated by the texture walnut with 80 (left), 120 (middle) and 160 (right) projection views (grey scale window
[0.3, 0.4] cm−1). Fourth row: same as third row except the texture walnut image is subtracted from the reconstructed images
(grey scale window [−0.001, 0.001] cm−1).
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we find the intersection point (m/N, s/m) with the empirical phase-transition curve. Up to the
accuracy of reading off the figure, the two components lead to identical critical values of m, from
which we find the critical number of projections for each walnut image (table 1).

We note that the larger number of gradient non-zeros in the texture walnut image leads to
prediction of a higher critical sampling level. Similar plots for image-domain sparsity could be
constructed based on figures 2 and 3 and the fixed-sparsity curves would then reflect that the
walnut images have more non-zeros in the pixel domain than in the gradient domain, yielding
higher predicted critical sampling levels for P1/LP than for TV.

(ii) Recovery of the large-scale walnut phantoms

We employ algorithm 1 to solve TV on the large-scale Nside = 1024 CT system for the structure and
texture walnut phantoms. The resulting recovery plots are shown in figure 12. For the structure
walnut, we observe an abrupt change in image RMSE with Nv = 68 yielding accurate recovery, as
decided by the first point where there is essentially no further decrease in RMSE. The predicted
critical sampling levels from DT and ALMT phase-diagram analysis are only slightly higher at
Nv = 69.3 and Nv = 71.7, respectively (cf. table 1). This result is rather remarkable in that the
extrapolation is extended quite far from the size of the original phase-diagram analysis. Also,
the structure phantom is clearly different from any expected realization of any of the studied
probabilistic phantoms models.

The recovery curve for the texture phantom, on the other hand, does not exhibit an abrupt
change in reconstruction error, rather a gradual improvement all the way up to 200 projections.
We therefore cannot point to a specific critical sampling level.

(iii) Reconstructed images for the structure and texture phantoms

It is illuminating to inspect some of the reconstructed images in figure 13, which correspond to
the plots in figure 12. The second and third reconstructions for the structure phantom straddle
the sharp transition in the corresponding image RMSE curve, and it can be seen clearly in the
difference image that the result for Nv = 60 is not recovered, while that for Nv = 68 is much
closer to the test phantom. We point out, however, that the difference images are displayed in
a narrow 4% grey scale window and visually the Nv = 60 image appears the same as the structure
phantom. That the discrepancies between reconstruction and phantom are so small emphasizes
the challenge for the large-scale optimization algorithms; for actual application where images are
presented for visual inspection, such accurate solution to equation (1.1) would not be necessary.
The results for the texture phantom are also quite interesting in that we see the reconstructed
image is visually accurate for as few views as Nv = 80. That there is no sharp recovery transition
for the texture phantom is probably due to the fact that the object variations occur on two scales:
the jumps of the structure borders, and the splotches of the walnut meat texture. It also cannot be
ruled out that a sharper recovery transition will occur if the accuracy of the computed solutions
is improved even further.

(e) Conclusion on Study C
In this study, we have taken first steps towards phase-diagram analysis for prediction of critical
sampling levels for realistic CT systems. Both test phantom design and accurate large-scale
optimization are more difficult than for small-scale studies, and we have demonstrated how
phantom appearance as well as parameters and convergence of the algorithm can affect recovery
studies. For the simplest, and piecewise constant, structure walnut phantom, we found the critical
sampling level to be predicted very well by phase-diagram analysis. The situation for the texture
walnut phantom was more complex, which motivates further and more extensive large-scale
studies, including of the influence of texture on recovery and possibly a different definition of
image recovery itself.
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6. Conclusion
We have presented a systematic framework of phase-diagram analysis from CS for analysing
the undersampling potential of SR in X-ray CT. In three, quite different, studies, we have
demonstrated the potential of phase-diagram analysis. We saw that, under certain conditions,
X-ray CT in terms of recoverability performs comparably with a near-optimal CS sampling
strategy of Gaussian sensing matrices; that random sampling in X-ray CT in terms of
recoverability does not perform better, and in some cases is worse, than a regular fan-beam
sampling set-up; and that, at least in a simple case, the critical sampling level for a large-scale
X-ray CT system can be predicted. An interesting future direction is to address the question: Can
the observed phase-transition behaviour in X-ray CT be theoretically explained, in particular the
high degree of similarity with the Gaussian sensing matrix case?
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